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One of the main uses of an epidemic model is to predict the scale of an out-

break from the first few cases. In a homogeneous and non-spatial model there

is a straightforward relationship between the basic reproductive ratio, R0, and

the final epidemic size; however when there is a significant spatial component

to disease spread and the population is heterogeneous predicting how the

epidemic size varies with the initial source of infection is far more complex.

Here we use a well-developed spatio-temporal model of the spread of foot-and-

mouth disease, parameterised to match the 2001 UK outbreak, to address the

relationship between the scale of the epidemic and the nature of the initially

infected farm. We show that there is considerable heterogeneity in both the

likelihood of a epidemic and the epidemic impact (total number of farms

losing livestock to either infection or control) and that these two elements are

best captured by measurements at different spatial scales. The likelihood of

an epidemic can be predicted from a knowledge of the reproduction ratio of

the initial farm (Ri), whereas the epidemic impact conditional on an epidemic

occurring is best predicted by averaging the second-generation reproduction

ratio (R(2)
i ) in a 58 km ring around the infected farm. Combining these two

predictions provides a good assessment of both the local and larger-scale

heterogeneities present in this complex system.

The role of R0 in disease spread

Mathematical modelling of infectious diseases is a rapidly growing research area. Recent

high profile epidemics in animals (e.g. Foot-and-Mouth Disease (FMD), Bluetongue Virus

(BTV) and Avian Influenza (AI)), and in humans (e.g SARS) has increased the need for a

greater understanding of the processes leading to the spatial spread of disease (Ferguson et al

2001; Keeling et al 2001; Savill et al 2006; Lipsitch et al 2003). Recent work on foot-and-
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mouth disease has highlighted the role of local spatial transmission and spatial variation in

host populations as two important concepts in understanding (and hence optimising the control

of) infection. Since the 2001 epidemic, a range of publications (including Keeling et al 2001,

Ferguson et al 2001, Le Menach et al 2005) have constructed maps of the local average farm-

level basic reproductive ratio values (Ri) to act as a spatial prediction of at-risk regions and the

likely spatial extent of an epidemic (see for example Fig 1a). Here we address two fundamental

questions about such maps: firstly can they be used to inform epidemic properties such as

the probability of an epidemic and the size of the ensuing epidemic; and secondly what is the

appropriate scale to measure the local average Ri values.

From traditional mathematical models of infectious diseases, a single quantity (the population-

level basic reproductive ratio,R0) emerges which informs about the ability of a disease to invade

and spread through a naive population. R0 is defined as the number of secondary infections

caused by a single infected source in a totally susceptible population (Diekmann et al 1990l;

Anderson and May 1991). As well as defining a threshold for invasion, R0 can also inform

about expected growth rates of cases, the likely success of an epidemic in a stochastic frame-

work, the level of counter measures needed to control an epidemic and the total number of cases

expected (Kermack & McKendrick 1927). However, when dealing with the spatial spread of

infection, especially in a highly heterogeneous population, many other factors will contribute to

the final size of the epidemic (May and Lloyd 2001).

From standard SIR models without births or deaths, it can be shown that the expected cases

as a fraction of the entire population (also known as the final epidemic size, R∞) is determined

by the equation:

R∞ = S(0)
[
1− e(−R0R∞)

]

which assumes that the epidemic starts with a small seed of infection in a large homogeneous

population, in which a proportion S(0) are initially susceptible, and that the epidemic is not
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driven extinct early by stochastic forces (Kermack & McKendrick 1927). From a probabilis-

tic argument we find that this basic formulation is independent of the natural history of the

pathogen (Keeling & Rohani 2007). However, the expected total number of cases is influenced

by the risk of early stochastic extinction. Considering the early epidemic as a branching process,

the probability of extinction (before a major epidemic) starting with a single infected individual

is:

P
exp
ext =

1

R0
P fixed

ext = 1− R∞.

(Kermack & McKendrick 1927; Keeling 2004), where the two values give the probability of

extinction assuming exponentially distributed infectious periods (a constant rate of recovery)

and fixed duration infectious periods respectively (Keeling & Rohani 2007). The probability

of an infection occurring is an important quantity when predicting final epidemic size – faced

with an epidemic threat, policy makers are concerned with the risk of an epidemic occurring

and, should an epidemic occur, the resultant epidemic size. We therefore see that for stochastic

populations the expected total number of cases should be approximated by the standard final

size expression combined with the probability that the initial infection manages to cause an

epidemic:

Expected number of cases = Population Size× R∞ × (1− Pext).

The above theory holds for randomly mixed and homogeneous populations. For more com-

plex, realistic systems where transmission has a strong spatial aspect and there is consider-

able heterogeneity within the population, we generally rely on percolation theory to understand

thresholds of spatial spread (Sander et al. 2002); however according to such models the thresh-

old effectively separates parameter regions of small and large-scale (infinite) epidemics. Here

we consider how such percolation ideas translate to populations in which there is considerable

heterogeneity at large spatial scales, such that some regions can readily sustain an epidemic

while in other regions epidemics are doomed to rapid extinction. In addition, when considering
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the spread of foot-and-mouth disease we must not only count farms that lose livestock through

infection, but also farms losing livestock owing to control measures.

For the purposes of the investigation presented in this paper, we aim to understand the role

of local farm-level reproductive ratio, Ri, in disease spread. During the early stages of an out-

break, it is vital for policy makers to know the likelihood of a large scale epidemic occurring

so that appropriate control measures can come into force. We therefore investigate whether the

Ri values of the initially infected farm or region is an accurate guide of final epidemic impact

(defined as number of farms infected or culled as part of any control policy), or whether an

alternative parameter should be used from the early infection data to estimate the overall impact

of the outbreak.

The Model

The first generation of the model used in the analysis presented in this paper was developed

in 2001 by Keeling and collaborators to model the FMD epidemic in the UK (Keeling et al.

2001). It has since been adapted to investigate a variety of control strategies (Keeling et al.

2003, Tildesley et al. 2006), and has been refined by including power law scaling of farm-level

susceptibility and infectiousness with the number of livestock.

The rate at which an infectious farm i infects a susceptible farm j is given by:

Rateij = ([Nsheep,j]
psSsheep + [Ncow,j]

pcScow)× ([Nsheep,i]
qsTsheep + [Ncow,i]

qcTcow)×K(dij)

where Ns,i is the number of livestock species s recorded as being on farm i, Ss and Ts measure

the species-specific susceptibility and transmissibility, dij is the distance between farms i and j

and K is the transmission kernel. The transmission kernel takes the same form as in previous

work (Keeling et al. 2001) and is estimated from contact tracing, which captures how the rate

of infection decreases with distance. ps, pc, qs and qc are power law parameters accounting for

non-linear increases in susceptibility and transmissibility as animal numbers on a farm increase.
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These parameters are estimated from the 2001 epidemic data; previous work has found that this

power law model provides a closer fit to the 2001 data than one in which the powers are set to

unity (Tildesley et al 2008). As in previous versions of the model, the parameters are estimated

for five distinct regions: Cumbria, Devon, the rest of England (excluding Cumbria and Devon),

Scotland and Wales. This enables us to account for differences in regional farming practices

and culling levels (table 1).

In the 2001 epidemic, Dangerous Contact farms (DCs) were identified (and animals on these

farms culled) for each Infected Premises (IP) based upon veterinarian judgement of risk factors

and known movements from an IP. All farms sharing a common boundary with an IP were

defined as Contiguous Premises (CPs) and were culled from 23rd March as part of an increased

effort to control the spread of disease. Details of the modelling techniques used for CPs and

DCs can be found in earlier papers (Keeling et al. 2001; Tildesley et al. 2008).

In line with previous versions of the model (Keeling et al 2001; Tildesley et al 2006), we

make the assumption here that all farms are infected for 5 days before becoming infectious, and

are infectious for 4 days before being reported with infection. Once a farm is reported, control

measures are enforced. We assume a 24/48 hour policy, such that all IPs are culled within 24

hours of being reported and all DCs and CPs are culled within 48 hours.

For the above model we calculate the farm-level basic reproductive ratio Ri as:

Ri =
∑
j �=i

Probij =
∑
j �=i

1− exp (−RateijP )

where P is the length of the infectious period and Probij is the probability that farm i infects

farm j over its entire infectious period. It is now well understood that for a wide variety of

spatial models Ri is an over-estimate of the eventual growth of infection (Keeling & Eames

2005) as the strong negative spatial correlations between susceptible and infected individuals

is yet to develop. As an acknowledgement of this factor, we calculate C
(2)
i defined as the
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Parameters

Tcow (×10
−7) Tsheep (×10

−7) Scow qc qs pc ps

Region

Cumbria 15.9 9.2 10.0 0.42 0.49 0.41 0.20

Devon 8.1 8.4 8.9 0.37 0.42 0.37 0.40

Wales 8.0 1.9 3.6 0.25 0.22 0.31 0.43

Scotland 8.4 9.7 10.8 0.20 0.40 0.23 0.33

Rest of England 11.9 9.9 8.0 0.44 0.37 0.42 0.30

Table 1. Species-specific parameters for five regions of the UK that provide the

best-fit to the cumulative number of cases and culls at a regional level. Levels of

culling within each region have been scaled to match the temporal pattern in that

given region. In all regions, Ssheep is set to equal 1.

average number of cases generated after 2 generations starting with infectious farm i in a totally

susceptible population:

C
(2)
i =

∑
k �=i

1− exp

⎛
⎝−P

⎡
⎣Rateik +

∑
j �=i,k

ProbijRatejk

⎤
⎦
⎞
⎠

From this definition we can determine the second-generation basic reproductive ratio R
(2)
i de-

fined as the (appropriately weighted) average number of cases generated by each secondary

case when the primary infection is farm i:

R
(2)
i =

C
(2)
i

Ri

− 1

In a homogeneousmean-field (randomlymixed) model the primary and second-generation basic

reproductive ratios are equal (R(2)
i = Ri = R0). When heterogeneities exist in the population

the second-generation basic reproductive ratio is often larger than the primary, as the infection

is most likely to have become focused within the high-risk individuals who are both more sus-

ceptible and more infectious (Eames and Keeling 2002). In contrast, when there is a strong
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spatial element to transmission (but the population is otherwise homogeneous) then the second-

generation basic reproductive ratio is generally smaller than the primary as the secondary cases

find themselves in an environment with a reduced local density of susceptibles (negative spa-

tial correlations have developed between susceptible and infectious individuals) and hence a

reduced potential to cause further cases. In a heterogeneous spatial population either of these

factors may dominate – this is explored later in Figure 2.

Finally for both of these basic reproductive ratios we define a local spatial average:

Ri(D) =

∑
dij<D

Rj

∑
dij<D

1
and R

(2)
i (D) =

∑
dij<D

R
(2)
j

∑
dij<D

1
(1)

This local spatial average is the average over all farms within a distanceD of the index farm.

Simulation Results

Before the UK 2001 epidemic, 188496 farms were identified as livestock farms, although

only 142268 farms were actually part of the June 2000 census. For all 188496 livestock farms,

the County/Parish/Holding number (CPH), the X-Y co-ordinates of the farmhouse, the area of

the farm, and the number of cattle, pigs, sheep, goats and deer is recorded although the number

of livestock on each farm is subject to variation throughout the year as animals are born and

others are moved on or off the holding (Anderson 2002).

We now perform multiple epidemic simulations – starting with a single infected farm (la-

belled farm i) we allow the epidemic to propagate forwards while performing the appropriate

culling measures,. For each of the possible 188496 index farms we perform 10 replicate simu-

lations; for each index farm we record the average epidemic impact, Ei, (the average number of

farms either infected or culled) and the proportion of replicates that fail to generate more than

10 cases, P fail
i . We additionally define the conditional epidemic impact, Esuccess

i , calculated as

the average epidemic impact of those replicates that give rise to more than 10 cases; when the
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epidemic fails in all replicates (P fail
i = 1) then the conditional epidemic impact is undefined. In

addition, 100 replicate simulations are used to determine P fail
i more accurately, as these can be

halted once the number of cases exceeds 10.

Results of these simulations are shown in figure 1. Graph b shows the average epidemic

impactEi for all 188496 livestock farms in the UK. The two most striking features are the shear

range of epidemic impacts predicted and the extreme heterogeneity at a range of scales. There

is clearly broad qualitative agreement between regions of the country with high local averageRi

(as shown in Figure 1a) and regions that are predicted to give rise to large-scale epidemics, but

even within these regions there are considerable differences between individual farms. Notably

infected premises in Cumbria and Dumfries & Galloway often give rise to epidemic impacts

in excess of 4000 farms, with values exceeding 8000 farms not uncommon, but even in these

regions are farms which fail to generate any sizable epidemics. For the 2001 outbreak it has been

estimated that 73 premises were infected before stringent control measures were implemented

(Mansley et al 2003) and this gave rise to an epidemic impact of 10242 farms – a results that

is in agreement with our model simulations for the same conditions. In comparison the large

epidemic impacts predicted here from a single infected farm highlight the strong non-linearities

in the epidemic process.

Graph 1c shows the probability of each infected farm generating a significant outbreak (de-

fined as being more than 10 cases). Again there is good qualitative agreement between regions

likely to give rise to an epidemic and regions of high average Ri (comparing maps a and c). It

should be noted that for many areas of the country – including the location of the 2007 Sur-

rey outbreak – a substantial epidemic is highly unlikely. We now wish to relate Ei, P fail
i and

Esuccess
i to the farm-level and local reproductive ratios to see if we can capture some of the

underlying heterogeneity.

Figure 2 considers how Ri, R
(2)
i and Ei co-vary. In general we find that there is a strong
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positive correlation between first and second generation reproductive ratios; however, the re-

lationship is non-linear and far from the homogeneous prediction of R
(2)
i = Ri. We find that

the correlation coefficient for Ri and R
(2)
i is 0.345 (p < 0.001). For large values of Ri we

observe that R(2)
i is generally lower than Ri, with the average R

(2)
i values being between 2 and

3; this reduction reflects both the spatial structure that develops during the first generation but

also highlights that farms with high Ri may be imbedded in a population that lies closer to the

average. For small Ri values it is still possible for R
(2)
i to be relatively large, reflecting both

the local heterogeneity in the population and the greater susceptibility associated with high-risk

farms. In general we find that the average Ri is 0.61 while the average R
(2)
i is 0.728; given

that the average second generation reproductive ratio exceeds the first generation average, we

see that on average the natural focusing of the epidemic towards high-risk farms outweighs the

impact of spatial structure. In addition, it is clear that the smallest epidemic impacts (coloured

blue) are associated with small values of Ri and R
(2)
i , while larger reproductive ratios generally

lead to larger epidemic impacts. We can also investigate the correlation between the predicted

Epidemic Impact Ei and Ri or R
(2)
i , the correlation coefficients are found to be 0.376 and 0.444

respectively (p < 0.001). However we find that simple linear regressions are poor predictors of

the dynamics; instead we use a non-parameteric model to capture the degree to which individual

or local averages of the reproductive ratios can be used to predict the epidemic impact and other

large-scale aggregate features of the epidemics.

For a given observed quantity xi associated with farm i (for example its first generation re-

productive ratio), we use this quantity to predict an aggregate epidemic feature Ai (for example

the epidemic impact) as follows:

Predicted(Ai) =
1

n

∑
xj∈nearest(n,xi)

Aj

where nearest(n, xi) allows us to identify the n farms that have the nearest x value to xi. We

therefore wish to see if the aggregate epidemic feature associated with a given farm can be
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predicted by examining the aggregate epidemic feature associated with farms that have similar

local quantities – that is, do observed local quantities allow us to predict more global epidemic

patterns? For this analysis, we seek to minimise the error, Error(A), such that:

Error(A) =
√∑

i

(Predicted(Ai)− True(Ai))
2

Throughout we take n to be 0.1% of the population size. Although more sophisticated methods

of prediction (rather than taking a near average) could be employed, given the shear number of

farms these are unnecessary and do not provide any noticeable benefits.

The most obvious question to address is whether the individual first-generation reproductive

ratio, Ri, is a good predictor of epidemic impact Ei. Using the method outlined above we find

that the value of Ri explains 29.3% of the standard deviation in Ei – although we note that

17.8% of the standard deviation may be attributable to the large variation between epidemics

with the same seed. However, much greater precision can be achieved by decomposing the

average epidemic impact (Ei) into two elements, the probability an epidemic is successfully

spawned (1− Pfail) and the epidemic size conditional on it successfully taking off (Esuccess
i ).

In agreement with standard results, the best predictor of epidemic failure is the individual

reproductive ratio of the farm (Ri). The results of this analysis are shown in figure 3a. As

expected the probability of an epidemic taking off (generating more than 10 cases) increases

with Ri; however Ri = 1 no longer acts as a threshold. In fact at the threshold value of

Ri = 1 we find that 20% of initial seedings generate epidemics; this probability increases to

around 50% for the largest Ri values. These results clearly highlight the stochastic nature of

the disease in its early stages, and the dependence of the ensuing epidemic on favourable local

conditions in the neighbourhood of the initial infection. The reason why low Ri farms are still

capable of generating a large epidemic is exemplified in figure 2: farms with low Ri may still

have values of R
(2)
i above the threshold of one and therefore if the infection spreads beyond

the initial farm its likely success is dramatically increased. Using additional information on
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R
(2)
i provides a slightly more accurate prediction of epidemic success, but in general the same

qualitative features hold.

Predicting the average epidemic impact, Ei, is far more involved as the size of an epidemic

(and the control measures used) depend upon the population structure in general. In particu-

lar, once an epidemic has taken off, the structure of all farms in that region will affect spread

of disease. Therefore, a more appropriate indicator of epidemic size may come from averaging

individual farm-level reproductive ratios in a local region around each farm. We therefore inves-

tigate how the accuracy with which we can predict the epidemic impact varies as we adjust the

scale of the region in which we take the average (parameter D in equation 1). We consistently

find that averaging within a radius of D ≈ 50 − 60km provides the best predictors, and more

specifically that R(2)
i (58km) predicting the conditional epidemic impact ESuccess

i offers the best

match between local properties and large-scale epidemic potential (figures 3b and c). This scale

of 58km is clearly a compromise between a range of epidemiological factors, in particular the

ability to find regions of sufficient livestock density to support a continuing epidemic in both the

short and long term. Table 2 provides a more detailed examination of errors associated with pre-

dicting the epidemic impact; we consistently find that R(2)
i provides a better prediction (lower

error) than Ri, and that averages over 58km provide a better prediction than the individual-level

measures. Finally, only considering the average epidemic impact from outbreaks that exceed

10 cases further improves our ability to predict the outcome.

The above results can be related back to correlation coefficients discussed earlier, we find

that the correlation coefficient between R
(2)
i (58km) and Ei is 0.526 (p < 0.001) which is

much stronger that for local measures. We can also measure the residual errors from simple

linear regression models which are shown in the right-hand column of Table 2; clearly our

non-parameteric fit performs better than a linear regression, especially as our predictive ability

increases. We can also extend this linear analysis to far higher dimensions, taking into ac-
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Parameter Error(Ei) Residual Error

Ri 4.30× 105 4.31× 105

R
(2)
i 4.16× 105 4.17× 105

Ri(58km) 3.27× 105 4.08× 105

R
(2)
i (58km) 3.08× 105 3.95× 105

Parameter Error(Esuccess
i ) Residual Error

R
(2)
i (58km) 2.84× 105 3.91× 105

Table 2. Table showing the errors in predicting epidemic impact when errors are

calculated based upon Ri and R
(2)
i values of each farm, and averaged over the op-

timal radius of 58km. Values are shown for both the non-parameteric fit and linear

regression.

count Ri and R
(2)
i values averaged over a range of distances (Ei ≈

∑
0≤D≤60km ADRi(D) +

BDR
(2)
i (D) + C). However, even this more elaborate linear fit produces an error of 3.81× 105,

which is only a marginal improvement on the simple regression using R
(2)
i (58km) and is still

worse than our non-parameteric fit.

Finally, in figure 4 we bring together the two predictive measures of epidemic impact: the

predicted probability of success based upon the individualRi and the predicted conditional epi-

demic impact based upon R
(2)
i (58km). By combining predictions that utilize individual-level

farm information at two distinct spatial scales we are able to generate far more reliable predic-

tions of the total average epidemic impact starting in each farm – and by using a combination of

measures we are able to capture some of the local heterogeneity in the results. Figure 4 shows

the predicted value, which should be compared to Figure 1b; we note that these predictions

explain 31.7% of the standard deviation. We therefore have a relatively simple measure which

will allow us to translate from individual-level properties of farms (which are relatively quick
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to calculate) to emergent population-level values. It is therefore maps such as figures 1b and 4,

that should be used to provide an understanding of the risk posed by an outbreak in any given

location.

Discussion

One of the most valuable lessons learnt from the 2001 FMD epidemic is that information

regarding the risk of spread of infection is required as soon as possible during the early stages

of an outbreak of disease to enable policy makers to put control measures in place. An analysis

of the role of Ri on final epidemic impact when infection occurs on farm i sheds some light

on the ability of models to predict the risk of large scale outbreaks of disease based upon early

epidemic behaviour. A large range of epidemic impacts is observed, with largest epidemics

generally found to occur when primary cases are in Wales, Devon, the North of England and

Southern Scotland. This is unsurprising – these regions were epidemic hotspots during the 2001

epidemic. We note that the work presented in this paper focuses on Foot-and-Mouth disease

and the 2001 strain of FMD specifically and, whilst the general results could be applied to other

diseases, more work would need to be done to establish the conclusions for a range of livestock

and human diseases, as well as for other strains of FMD.

The conclusion reached in this paper is that individual farm-levelRi is not the main predictor

of epidemic impact for an outbreak of FMD in the UK.We find thatR(2)
i averaged within a 58km

radius around infected cases provides the best predictive measure of final epidemic impact. This

indicates that it is not only the nature of the primary case but the potential of other farms in the

locality that influence the extent of an outbreak of disease. The number of cases infected by the

source farm in the first generation provides a measure of the local spatial distribution of infected

farms. However, the number of subsequent cases produced by an average secondary case (R(2)
i )

is far more informative about the spread of infection, as it includes the establishment of spatial

correlations and the competition for local susceptible farms. In theory, this process could be
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extended to examine R
(3)
i terms, but these higher-order terms would need to be calculated by

multiple simulations rather than numerically reducing their immediate use.

The spatial scale over which R
(2)
i is averaged is clearly a compromise between capturing

the early ability of the disease to spread and its ability to generate a large-scale epidemic. The

optimal scale of 58km is likely to depend on several factors including the national farm land-

scape, the degree of spatial spread of the pathogen and the use of control measures. We are

still a long way from solving the general problem of percolation of infection through a highly

heterogeneous environment, but by analysing the sensitivity of our result to the culling effort we

gain some understanding of its robustness. We consider two other epidemic scenarios: doubling

the control culling levels and only culling infected farms. These two extreme cases lead to sim-

ilar optimal averaging scales of 56.5km and 62km respectively, although the non-parameteric

function used to predict the epidemic impact is very different in both cases. This provides some

evidence that for foot-and-mouth disease in the UK livestock industry, taking a spatial aver-

age within a 50-60km radius consistantly generates a useful measure of the likely extent of an

epidemic.

Related research has been conducted to search for signatures of epidemic outbreaks using

simple epidemic models in a number of spatial network structures with the goal of determining

epidemic features that can provide significant ”separability” to epidemics developed in well-

mixed systems using a multi-dimensional scaling approach (Burr and Chowell 2008). The ef-

fects of network clustering on the final epidemic size and the probability of outbreaks occurring

has been previously investigated (Vazquez et al 2003; Boguna et al 2003), and similar tools

could be applied to investigate the role of clustering, Ri and R
(2)
i in the context of an FMD

outbreak. Alternatively, we could use the transmission kernel to generate a static network of

connected farms; the local and global properties of such a network may also provide a fruitful

avenue of future research and has much in common with the recent work by Burr and Chow-

15



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

ell (2008) who used multi-dimensional scaling to elucidate which features most influenced the

characteristics of an epidemic spreading through a spatial network.

This work provides a useful tool for epidemic predictions and, in turn ascertaining the ne-

cessity for the introduction of control measures - risk maps such as those shown in figure 1b

are computationally intensive, whilst those in figure 4 are not. The close similarity between

the two figures means that risk can be determined more easily by such a method particularly

when investigating the effects of variation in parameter values. Of course, in an outbreak with

multiple initially infected cases in the same region, the infection processes will interact with

one another (i.e. the predicted epidemic impact in such a scenario will not simply be the sum

of the epidemic impacts assuming only one primary case).

It is somewhat surprising that a simple average within a given radius provides the greatest

predictive ability, but this measure consistently out-performs a range of more involved spatially

weighted averages, including measures using the 2001 transmission kernel. It remains to be

seen what epidemiological factors contribute to the optimal scale of 58km; we feel that this

scale coincides with the spatial scale of heterogeneity within the UK livestock industry – the

spatial aggregation of cattle in Cumbria occurs at a comparable scale.

In summary, we find that although spatial maps of locally-averaged farm levelRi (eg Figure

1a, which uses 5×5 km squares) provide a rapid means of assessing the risk associated with an

initial seed of infection of FMD, this only provides a limited qualitative understanding. We have

shown that it is dangerous to simply average Ri without paying particular attention to issues of

spatial scale, and that no single measure can capture the two elements of risk and consequences.

In this example, both the individual level values of Ri and a more wide-scale spatial average

R
(2)
i (58km) control the potential for an epidemic and its subsequent impact. Of course, we are

yet to reach the stage of obtaining true understanding of percolation in a heterogeneous spatial

environment. However, such results as presented in this paper may help us to identify high-risk
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regions in other countries or when different strains lead to alternative epidemiological parame-

ters.
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Figure 1 Spatial plots of (a) Ri, (b) Epidemic Impact given that an epidemic is seeded on an

individual farm and (c) the probability of an epidemic occurring from infection on an individual

farm. In (a) the colour scale shows the average value in 5×5 km grid squares. In (b) and (c) the

colour scale shows the value for each individual farm. In (c) infection results in an epidemic if

10 or more farms are infected.

Figure 2 Graph of R(2)
i against Ri. The colour scale shows the epidemic impact for each value

of Ri and R
(2)
i . Each point corresponds to the Ri and R

(2)
i values for a single farm in the UK.

The black line is shown for Ri = R
(2)
i .

Figure 3 (a) The probability of an epidemic againstRi and (b) Epidemic Impact againstR
(2)
i . In

both graphs 95% confidence intervals on epidemic impact are shown. The shaded region shows

the 95% confidence intervals of the mean of the y-axis quantity. Graph (c) shows the errors in

predicting epidemic impact when errors are calculated based upon Ri and R
(2)
i values of each

farm, where these values are averaged over rings of varying radii.

Figure 4 Spatial plot of the predicted epidemic impact based upon the value of R
(2)
i (58km)

multiplied by the predicted probability that an epidemic occurs. Each point corresponds to the

predicted epidemic impact for an epidemic seeded on each individual farm in the UK. An epi-

demic is defined as occurring if 10 or more farms are infected.
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