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Abstract 

 

Mathematical modelling is playing an increasing role in developing an understanding 

of the dynamics of communicable disease and assisting the construction and 

implementation of intervention strategies. The threat of novel emergent pathogens in 

human and animal hosts implies the requirement for methods that can robustly 

estimate epidemiological parameters and provide forecasts. Here, a technique called 

variational data assimilation is introduced as a means of optimally melding dynamic 

epidemic models with epidemiological observations and data to provide forecasts and 

parameter estimates. Using data from a simulated epidemic process the method is 

used to estimate the start time of an epidemic, to provide a forecast of future epidemic 

behaviour and estimate the basic reproductive ratio. A feature of the method is that it 

uses a basic continuous-time SIR model, which is often the first point of departure for 

epidemiological modelling during the early stages of an outbreak. The method is 

illustrated by application to data gathered during an outbreak of influenza in a school 

environment.            

 

Keywords: epidemic model; parameter estimation; data assimilation, forecasting.
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1. Introduction 

 

Mathematical models of infectious disease epidemics are important tools for assessing 

the impact of communicable disease in both human and animal (wild and 

domesticated) populations (Anderson and May, 1991). At the most basic level they 

are a concise means of quantitatively representing the essential epidemiological and 

biological factors that relate to a particular disease pathogen in a given population. 

More sophisticated implementations can be used to assist in the design or evaluation 

of actual or prospective intervention programmes, such has been done for childhood 

disease immunisation (Grenfell et al., 2001; Jansen et al., 2003), analysing the spread 

and containment of BSE and foot-and-mouth disease in the United Kingdom 

(Anderson et al., 1996; Keeling et al., 2003), investigating the impact of 

HIV(Anderson and May, 1991), and in assessing the role of badgers in the on-going 

bovine TB epidemic in south-west England for example (Donnelly et al., 2006). 

 

In common with mathematical modelling in other disciplines there is a research 

imperative to develop ever more realistic epidemic models and simulations that 

include higher-fidelity representations of underlying biological or population 

processes. However, more realistic models tend to be more complex and they are 

frequently populated by a proliferation of parameters that need to be robustly 

estimated (Riley et al., 2003; Ferguson et al., 2005; Longini et al., 2005). In practice, 

the degree of model sophistication that is used in a given situation often reflects a 

judicious balance between the questions the model is required to address and the 

ability to reliably estimate parameters.  

 

When an unknown or poorly understood pathogen suddenly emerges in a population 

the challenges of epidemic modelling are exacerbated because much of the 

quantitative work has to be performed on a fast time-scale, usually with limited or 

poor quality data. There is a risk that the epidemiological dynamics might outpace the 

modelling response if too sophisticated an approach is adopted. One of the immediate 

tasks faced by policy advisors and modellers is determining the epidemic curve; 

specifically, the initial requirement is to estimate model parameters, produce a 

forecast for the duration of the epidemic and provide an estimate of the expected 

proportion of the population to be infected by the disease. In these circumstances the 
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simplest epidemic models are generally used because it is pointless to compound 

epidemiological uncertainties with those generated by inappropriate use of over-

complex and poorly parameterised models. Fitting epidemic models to data is a topic 

of ongoing research. Anderson and May (1991) and Daley and Gani (1999) give 

accounts of commonly used methods. Wearing et al. (2005), Ferrari et al. (2005) and 

Fraser (2005) provide a discussion of many of the challenges faced when attempting 

to estimate the basic reproductive ratio from epidemiological data.  

 

Motivated by the requirement for robust methods for parameter estimation and the 

need to derive full predictive benefit from the most basic of epidemic models in the 

early stages of an outbreak we present a new method for the determination of 

epidemiological parameters and for the subsequent production of epidemic forecasts. 

This method is one that has hitherto been used in weather and climate modelling, and 

it is known as variational data assimilation (VDA) (Bouttier and Courtier, 1999; 

Huang and Yang, 1996). A version has also been developed for predator-prey systems 

(Lawson et al., 1995). VDA has been developed to optimally combine a dynamical 

model with observations of the system to produce accurate forecasts, and it can be 

readily adapted to epidemiological applications. 

 

In this paper we introduce the concept of data assimilation and show how it can be 

adapted and applied to epidemic modelling and infectious disease management. In 

Section 2 we review the variational data assimilation procedure, and in Section 3 it is 

applied to a continuous-time SIR epidemic model. In Section 4 we introduce some 

simulated data (with errors) for a basic underlying epidemic process and show how 

the assimilation can be carried out using a model and data. Section 5 illustrates the use 

of assimilation to estimate the basic reproductive ratio 0R of the epidemic that gave 

rise to the data. In Section 6 the method is applied to an outbreak of influenza in a 

school setting.  
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2. Variational Data Assimilation 

 

Exploiting dynamical models that are constrained by observations or measurements to 

produce a prediction of future system behaviour is an issue that is of on-going interest 

to weather and climate forecasters. The challenges faced when attempting to predict 

the future behaviour of an epidemic and when forecasting the weather have much in 

common. Observations and data (with their associated uncertainties) need to be 

combined with (often non-linear) dynamical models in order to produce an estimate of 

future behaviour, i.e. a forecast. In weather forecasting the dynamical models are 

based on the underlying fluid mechanics of the atmosphere. In epidemic modelling 

there is clearly no underlying physics governing the dynamics, so simpler models that 

are known to reflect typical epidemic behaviours have to be used. 

 

Variational data assimilation is an iterative technique in which the difference between 

observations of a system at given time points and the initial states of the model is 

minimised. Assuming that all the model parameters are known, the result of VDA is 

the initial condition that that generate a best-fit of the model to the observations. In 

the next Section we shall show how VDA can also be used to estimate model 

parameters, but in what follows we assume that all model parameters are known to 

make the presentation straightforward. Our presentation is based on that given in 

Huang and Yang (1996). 

 

 

2.1 Model states, observations and cost function 

 

Typically, a dynamical model integrates an initial state of a number of field variables, 

w(i), forward in time. In an epidemic case these fields w(i) could represent the 

numbers of Susceptibles (S), Infectives (I) and Recovered (R) individuals in an SIR 

model, for example. Let us define the initial state of the fields at time 0t =  as 0w , and 

the fields at some future time t to be tw . In most dynamical models there are several 

fields of interest, so, assuming there are three fields: 
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(1)
(2)
(3)

w
w w

w

� �
� �= � �
� �
� �

 (2.1) 

 

The dynamical model, which henceforth we shall call the forward model, connects the 

state of the system at time t with the state at time t+1, i.e. 

 

 ( )1
f f
t tw M w+ =  (2.2) 

 

Where M represents the forward model that takes the current state to the state at the 

next time step, and the superscript f refers to the forward model. 

 

Starting at the initial state 0
f

w , the state of the model at any time t is given by repeated 

application of the forward model, so 

 

 ( )0......
f f
tw M M w=  (2.3) 

 

Usually we also have some observations (usually with uncertainty attached) of the 

system at certain time points, so the objective of the assimilation process is to 

determine the initial conditions that are consistent with these observations. To do this 

we define a cost function given by 

 

 ( ) ( )1
2

Tf o f o
t t t t

t
J w w w w= − −�  (2.4) 

 

Where ( )... T is the transpose operator and 
o
tw are the observations of the fields at a 

given time, t. The summation is over only those time-points where data is available. 

The cost function can be defined in a variety of ways, depending upon the application, 

and the elaborations are discussed in more detail in Huang and Yang (1996) and 

Daley (1991).  
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We now seek a minimisation of J with respect to the initial conditions, i.e. we require  

 

 ( )0 0
f

J w∇ →  (2.5) 

 

We will do this using the adjoint method. The advantage of this method is that it 

generates an exact expression for the cost function gradient which can then be used in 

a computationally efficient minimisation procedure. A simpler alternative would be to 

estimate the cost function gradient by perturbing each of the fields in turn. In practice 

this is computationally intensive (particularly for models with many fields) and it 

often yields an approximation to the gradient that fails to converge to a minimum. 

Whichever method is used, the result is a set of initial conditions for the field 

variables that minimises the cost function, equation 2.4. 

 

The detailed calculations for how the cost function gradient can be calculated from 

the adjoint method, and then minimised, are presented in Appendix A.        

 

 
 

3. Application of VDA to an Epidemic Model  

 

3.1 A basic epidemic model  

 
The foundation of the majority of epidemic models is the Susceptible-Infectious-

Recovered (SIR) compartmental model (Bailey, 1957; Anderson and May 1991). 

Despite its simplicity this basic formulation, cast in either deterministic or stochastic 

form, has provided a wealth of insight into the dynamics of many different 

transmissible diseases in a variety of population types. The structural simplicity and 

ease of parameterisation make the continuous-time SIR model the first point of 

departure when modelling epidemic outbreaks of communicable disease. It is 

straightforward to adapt this model to accommodate refinements, such as adding 

exposed-but-not-infectious compartments, seasonality in contact rate or age structure 

for example. For a population of size N (=S+I+R), the basic SIR model is defined as 

follows: 
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 dS SI
dt

β= −  (3.1) 

 

 dI SI I
dt

β σ= −  (3.2) 

 

 dR I
dt

σ=  (3.3) 

 

where β is the contact rate and 1σ − is the duration of infectiousness. It is 

straightforward to show that the basic reproductive ratio of the pathogen 0R is given 

by 0Sβ σ .  

 
In Section 2 (and Appendix A) the framework of the variational data assimilation 

method was assembled with no reference to any particular model or system of 

interest. Moving from the general to the specific, here we show how the method can 

be used to derive expressions for the cost function gradient for a basic SIR epidemic 

model. In so doing the means by which VDA can be applied to real systems becomes 

clearer.     

 

 

3.2 Derivation of the tangent linear model and adjoint model 

 

The first step is to write down the adjoint model, which is derived via the intermediate 

tangent linear model of the forward model. Equations 3.1-3.3 represent the forward 

model for the epidemic process. From equation 1, we define the S, I and R fields to be 

w(1), w(2) and w(3). 

 

To formulate the tangent linear model, we apply the Jacobian in equation A5, giving 

 

 (1) (2) (1) (1) (2)
tl

tl tldw w w w w
dt

β β= − −  (3.4) 

 

 ( )(2) (2) (1) (1) (2)
tl

tl tldw w w w w
dt

β β σ= + −  (3.5) 
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 ( )(3) 2
tl

tldw w
dt

σ=  (3.6) 

 
We can now write the equation for the tangent linear model in matrix form 
 

 

(1) (1)
(2) (2)
(3) (3)
(1) (1)

(2) (2)

(3) (3)

tl tl

tl tl

tl tl

tl tl

tl tl

tl tl

w w
w w
w w
dw dw

Ldt dt
dw dw

dt dt
dw dw

dt dt

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

=� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� � � �
� � � �

 (3.7) 

 
 

where the tangent linear operator is given by 

 

 

( )

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

(2) (1) 0 0 0 0
(2) (1) 0 0 0 0

0 0 0 0 0

L
w w

w w
β β

β β σ
σ

	 

� �
� �
� �

= � �−� �
� �−
� �
 �

 (3.8) 

 
Recalling equation A11, the tangent linear model can be used to derive the adjoint 

model by the transpose operation. Denoting the variable of the adjoint model by 
 ( ) for 1,2,3adw i i = and ( )  for 1, 2,3addw i dt i = the matrix form of the adjoint model 

can be written as 
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(1) (1)
(2) (2)
(3) (3)
(1) (1)

(2) (2)

(3) (3)

ad ad

ad ad

ad ad

ad ad

T

ad ad

ad ad

w w
w w
w w
dw dw

Ldt dt
dw dw

dt dt
dw dw

dt dt

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

=� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� � � �
� � � �

 (3.9) 

 
Where 
 

 

( )
1 0 0 (2) (2) 0
0 1 0 (1) (1)
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

T

w w
w w

L

β β
β β σ σ

−	 

� �−� �
� �

= � �
� �
� �
� �
 �

 (3.10) 

 
The adjoint model can therefore be written as 
 
 (1) (1) (2) (1) (2) (2)ad ad ad adw w w dw dt w dw dtβ β= − +  (3.11) 

 

 
( )(2) (2) (1) (1) (1) (2)

(2) (3)

ad ad ad ad

ad

w w w dw dt w dw dt

w dw dt

β β σ

σ

= − + − +
 (3.12) 

 
 (3) (3)ad adw w=  (3.13) 

 
By integration of equations 3.11-3.13, this model is used to derive the gradient of the 

cost function using equation A10. Recalling from equation A11 that the time ordering 

of the adjoint model is reversed, it is necessary to integrate the adjoint model from 

maxt t= to 0t =  and initialise the model with the difference between the observation 

recorded at a given time t and the value of the forward model at that time i.e. 

( )o
t  

f
tw w− . The gradient of the cost function is the result at time t=0 of a single 

integration of the adjoint model.  
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Using the adjoint method to perform the assimilation is straightforward. The objective 

of the calculation is to use the model and observational data to calculate a plausible 

set of initial conditions for the epidemic model fields S, I and R at some determined 

point prior to the first observational data point (t=0). In practice it is therefore 

necessary to first make an estimate of the initial conditions of S, I and R, i.e. ( )0
f

w  at 

t=0. Using these estimated initial conditions the forward model (equations 3.1 – 3.3) 

is integrated forward in time from the time of the estimated initial conditions to a 

desired time-point beyond the latest data observation (i.e. to the point of furthest 

forecast), say tmax. The adjoint model (equations 3.11 – 3.13) is now integrated 

backward in time from the forecast point tmax to the time when the initial conditions 

were estimated, t=0. (Note: from equations 3.11-3.13 the forward model fields are 

used in the backwards integration of the adjoint model and the values of the 

observational data are used to adjust the adjoint model fields at the time of each 

observation). The values of the three adjoint model fields reported at the end of the 

adjoint model integration are then used to incrementally adjust the initial conditions of 

the forward model (using equation A12). The cost function (equation 2.4) relating the 

forward model to the observations is then calculated.  The forward model is then 

integrated forward in time using the adjusted initial conditions. Once again, the 

adjoint model is integrated backward and the process is repeated until there is a 

minimisation of the cost function, J. At this point the assimilation process stops. The 

result is a set of initial conditions at t=0 that are consistent with the choice of forward 

model and the observational data points. Code that can be used to perform a basic 

VDA on an SIR model is provided in the Supplementary Online Material.  

 

In what follows we will show how VDA can be applied to realistic data. In Section 4 

we use VDA to assimilate a forward (SIR) model (with known epidemiological 

parameters) with noisy observations to find an appropriate set of initial conditions, 

and then use those to produce a forecast. In Section 5 we relax the assumption of 

known epidemiological parameters and extend the assimilation method to estimate 

one forward model parameter (in this case 0R ) and initial conditions. Finally, in 

Section 6, we demonstrate the method by applying it to a well-known influenza 

epidemic curve.  
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4. Assimilation Using Model Data 

 

One of the principal motivations for modelling epidemic outbreaks is to use simple 

models to provide insight into the epidemiological characteristics of the outbreak, and 

this can be particularly challenging if the outbreak is due to a novel or poorly 

understood infectious pathogen. In this section we will show how the VDA method 

can be used to meld observations with a dynamic model to provide estimates of initial 

conditions and then to provide predictions of future epidemic behaviour. To illustrate 

the method we will use data generated from a modelled epidemic. Additional errors of 

known magnitude were added to the epidemic curve to simulate fluctuations or errors 

in reporting.  

 

4.1 Data 

 

We assume that we have a communicable disease that confers lifetime immunity 

following infection. Using the SIR equations 3.1-3.3 we define a population 

size 3000N = , a mean period of infectiousness 1σ − of 5 days and a basic reproductive 

ratio 0 4R = . The resulting epidemic curve is shown in Figure 1, and this assumes 

there is no previous exposure to the pathogen in the population and that the infection 

is triggered by the arrival of a single index case.  

 

To simulate stochasticity of transmission and errors in daily reporting we add (or 

subtract) a uniformly distributed random deviate (Press et al., 1992; pp267-273) with 

a fixed maximum percentage error. The raw data that might therefore be available to 

epidemiologists as a consequence of this outbreak are presented in Figure 2. Often the 

infectious cases only begin to be reported some time after the epidemic has taken hold 

and it becomes apparent to public health services that there is an epidemic occurring. 

The time at which the epidemic began will probably be unknown and the case 

reporting may be quite infrequent and almost certainly have errors (particularly in the 

early epidemic phase). In Figure 2 we have assumed that the epidemic was first 

noticed on Day 10 with first case reports on Day 12, followed by reports on Days 14 

and 16. A random error of 16%± is assumed for the case reporting to replicate 

stochastic transmission and reporting error. Note that the data used here represents 
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prevalence of infection, whereas often it is disease incidence that is reported. In 

Section 6 an example of an epidemic where data on disease prevalence was reported 

is analysed. 

 

 

4.2 Estimating initial conditions 

 

The first task is to estimate the values of the model fields around the time of the start 

of the reported epidemic on Day 10. For the purposes of the calculation in this section 

we assume that we know what disease we are dealing with, and that we know the 

values of the epidemiological parameters 0R andσ . Looking at the observed data for 

the number of Infectives in Figure 2 (triangles only), on the basis of a backwards 

linear extrapolation, it might be expected that there are likely to be around 700 

Infectives on Day 10. In most epidemic outbreaks the extent of previous exposure to 

the pathogen is unknown, so we generally don’t have detailed information on the 

precise proportion of Susceptible and Recovered individuals in a population, so we 

have to estimate these. Given that we are in the early stages of the epidemic it is 

plausible to suggest that we might have several hundred Recovered, so we assume 

200. Given that the total population is 3000, we therefore have 3000-700-200 = 2100 

Susceptibles on Day 10. 

 

Using the assimilation scheme described in Section 3 we can now refine these 

estimates to find the set of conditions on Day 10 that are consistent with the SIR 

model and the data observations on Days 12, 14 and 16. The assimilation method 

gives the S, I, and R initial conditions for Day 10 to be 2633, 278 and 187. These 

initial conditions are shown in Figure 3a and are good estimates of the 

epidemiological state of the population on Day 10. Using assimilation we have gone 

from ( ) ( )2100;700;200 2633;278;187
estimate assimilated

→ . Note that the sum of all the 

epidemiological classes is not 3000 for the assimilated state. This is expected as we 

have used data that has error associated with it to make the calculation. The data in 

Figure 2 is just one realisation of a noisy epidemic process. To check that the 

assimilation is robust against different realisations, and ensure that the quality of 

agreement in Figure 3a is not just fortuitous, we repeat the assimilation for three 
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further realisations of the epidemic process also at the 16% error level. This generates 

three different observational data sets on Days 12, 14 and 16 that can then be 

assimilated.  Repeating the assimilation for these data sets generates the initial 

conditions shown in Figure 3b-3d. It can be seen that the assimilation process 

performs well for each realisation and is robust to noise. 

 

In Figure 3, there was an implicit assumption that there was little previous exposure to 

the pathogen, so the numbers in the Recovered class were low at the start of the 

epidemic. This assumption matched the epidemiological dynamics that were 

represented in the underlying data. For an infection such as chickenpox in humans, for 

example, it is possible that the population may already contain significant numbers in 

the Recovered class and it might be expected that there are significant numbers of 

Recovered individuals in the population. If we now estimate that there are, say, 1500 

Recovered, 700 Infected and 800 Susceptibles on Day 10, the VDA initial conditions 

again identify the state ( ) ( )800;700;1500 2633;278;187
estimate assimilated

→ . This result 

suggests that the assimilation is robust to the estimate of the initial conditions. To test 

the sensitivity of the assimilation to this estimate the assimilation was repeated for 

several different initial conditions for each of the observational data sets underlying 

Figures 3a-3b. The results are show in Table 1. For each data set the result of the 

assimilation using the initial estimate in the first column is shown and it can be seen 

that the assimilation iterates to the same set of initial conditions regardless of the 

choice of the first estimate of the initial conditions. More exhaustive testing (not 

shown) has not revealed any counter-examples. There are four separate realisations of 

the underlying epidemic process represented in Table 1, so each realisation has a 

slightly different assimilated set of initial conditions. This is inevitable as each data 

set has different numbers of Infectives at Days 12, 14 and 16 due to the noise; 

however, for each of the realisations the results are comparable and they also compare 

favourably with the (noise free) state of the epidemic at Day 10. Table 2 shows how 

the assimilation from a given initial estimate performs under varying levels of noise. 

As the noise increases, the assimilation becomes inevitably less precise, but 

nevertheless within the error bounds of the true epidemic state on Day 10.    
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So far we have used three observations of the epidemic on Days 12, 14 and 16, to 

estimate the initial epidemiological conditions on Day 10. It is possible attempt the 

same type of calculation using just a single observation of the epidemic. Let us 

assume that we have a single observation of the number of Infectives on Day 14 to be 

the 964 recorded in Figure 2. For two very different estimated initial conditions, using 

this single observation, we obtain: 

( ) ( )2100;700;200 2391;294;245
estimate assimilated

→  and 

( ) ( )1500;700;800 2363;297;250
estimate assimilated

→ .  

The assimilated initial conditions are comparable with those in the calculation for 

Figure 3a where, using three days data we found, 

( ) ( )2100;700;200 2633;278;187
estimate assimilated

→ . Therefore, using only a single 

observation of the number of infectives (and very different estimates for the prior 

exposure of the population) we see that it is possible to assimilate to plausible initial 

conditions for Day 10.  

 

A closely related issue to that of estimating initial conditions is estimating when an 

epidemic started. Returning to the three observations of the number of infectives in 

Figure 2 it is not obvious when the epidemic began, as we simply have three data 

points each separated by two days. Estimating when the epidemic began is equivalent 

to finding the time at which the assimilated calculation for initial number of infectives 

is close to unity. The assimilation calculation for Day 10 can be repeated for Days 8, 

6, 4 and 2. The result for the initial number of Infectives at each of these days is 

shown in Figure 4. It is clear that the assimilation method is able to determine the start 

of the epidemic to within a day or so. It should be remembered that the continuous 

model used here for the forward model (i.e. that permits non-integer numbers of 

individuals in the S, I and R compartments) may not be good approximations to 

epidemic dynamics when the number of infectives is small or the host population is 

small. Stochastic effects can play a significant role in such circumstances, and this can 

be an issue when estimating the start-time of an epidemic.    
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4.3 Epidemic forecasts 

 

In most epidemiological analyses of disease outbreaks a particularly valuable insight 

that modelling can deliver is the ability to make projections or forecasts of the future 

development of the epidemic. These predictions can be useful in assisting the 

formulation of disease intervention strategies.  

 

Returning to the data set in Figure 2, the task is to use the dynamical model and the 

available data in order to provide a forecast. There are a number of different ways in 

which assimilation can be used continuously in real-time to provide continually 

updated forecasts as data continues to become available (Bouttier and Courtier, 1999). 

Here, for the purposes of illustrating the application, we show a basic single-step 

forecast.  

 

By assimilating the data and model from Day 12 when the first observation is 

available and onwards, the output of VDA will be the initial conditions that are 

consistent with the choice of forward model (i.e. the SIR model in this case) and the 

observed data. The initial conditions for Day 12 go as 

( ) ( )2000;800;200 2066;663;368
estimate assimilated

→ , and the forecast the results is shown 

in Figure 5, and the agreement between the forecast and the underlying epidemic 

process that generated the data is good.            

 

For a more prolonged epidemic outbreak, a continual process of assimilation could be 

used whereby recent data is assimilated with the forward model to continually update 

the forecast in a sequential fashion (Bouttier and Courtier, 1999). Work is currently 

underway to demonstrate this using real data.  

 

 

5. Parameter Estimation 

 

In the development and application of VDA to an epidemiological context we have 

heretofore assumed that all the parameters of the forward model are known. In the SIR 

forward model this amounts to knowing the basic reproductive ratio, 0R  of the 
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pathogen and the average period of infectiousness,σ . Often these quantities are 

known or can be estimated. This is particularly true when the outbreak is triggered by 

a known pathogen, such as measles or chickenpox in humans, for example (Fraser, 

2007). However, in many cases of interest, when an unknown or novel pathogen is 

implicated (e.g. SARS, pandemic influenza, smallpox) whilst it is often possible to get 

estimates for the within-host parameters (such as period of infectiousness or 

incubation period) it can be much more difficult to estimate the reproductive ratio 

(Ferrari et al., 2005; Gani and Leach, 2001; Ferguson et al., 2003; Anderson et al., 

2004). In this Section we show how VDA can be used to provide an estimate of the 

basic reproductive ratio 0R . 

 

Looking at the data in Figure 2, there are two difficulties with estimating 0R ; there are 

large uncertainties in the recorded data and the epidemic was well under way by the 

time data started being recorded. A widely used method to estimate 0R is to look at 

the phase of exponential increase in the number of Infectives during the early stage of 

the outbreak and calculate the basic reproductive ratio from 1
0 1R rσ −= + , where r is 

the rate of increase of infectives (Appendix B). Applying this exponential analysis to 

our raw data (i.e. the triangles on Figure 2, and recalling that it was based on an 

underlying epidemic process with 0R = 4) we find 0R = 1.8, i.e. a significant 

underestimate. Repeating this but now using data from the underlying model epidemic 

process (i.e. fitting an exponential to the data points, but now without any added 

noise) we find 0R = 2.3, indicating that there are too many Infectives around to allow 

this approach to be mathematically valid - in this case we have been alerted to the 

epidemic too late. 

 

An alternative strategy is to use VDA to compare the quality of fits of models with 

different values of 0R . The assimilation process produces a set of initial conditions for 

the forward model that minimises the cost function given by equation 2.4. It is the 

quality of this fit, as reflected by the asymptotic value of the cost function after much 

iteration, which can be used to estimate 0R . Within the forward model (equations 3.1-

3.3) we are free to specify the values of the parameters. Assuming that observations of 

infectious cases has provided an estimate for the mean duration of infectiousness 
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( 1σ − ) we can undertake assimilation of the forward model and the data using models 

with different contact rates ( β ), i.e. different values of 0R . 

 

Let us assume that our initial estimate for 0R = 6. It is straightforward to use the 

forward model and the data in Figure 2 to assimilate to a set of initial conditions. As 

before, we assimilate to Day 10 from an initial condition estimate 

of ( )2100;700;200
estimate

. Figure 6 shows the value of the cost function for an 

increasing number of iteration cycles (n). It can be seen that the cost function iterates 

to a stable asymptotic value. This asymptotic value reflects the quality of the 

assimilation of the model and the data, and in this case it is 139324. It is 

straightforward to repeat this for a number of different values of 0R in the forward 

model. A plot of the asymptotic value of the cost function as a function of 0R in the 

forward model is shown in Figure 7a. There is a minimum in the vicinity of 0 3.5R � , 

suggesting that this value gives the best quality assimilation of data and forward 

model. Given the paucity of available data points and the error levels in recording the 

number of Infectives, the estimate for 0R is good. In practice it would be appropriate 

to use this value of 0R for assimilation and forecasting purposes.  

 

For the purposes of comparison, an estimate of 0R was made using the same data from 

Figure 2 (i.e. the sequence of three observations on alternate days of the numbers of 

infectives, as denoted by the triangles),  but this time using a standard least squares 

fitting method for fitting dynamical models and data. This was done using the 

Berkeley Madonna analysis package, which is a widely-used data analysis and 

graphing package for dynamical systems modelling. The details of the procedure that 

was used are presented in Appendix C. Fitting the three data points this way (using a 

partially constrained fit, see Appendix C) yielded a value of 0 2.3R � , which is a poor 

estimate. Figure 7b shows the comparison between the fit using data assimilation 

(black line) with the estimated 0R  of 3.5 and the fit using the standard least squares 

method (grey line). The dots on Day 10 and Day 22 are the number of infectives of 

the underlying epidemic process. It can be seen that as well as giving a better estimate 

for 0R  the assimilation method gives a better estimate of the initial conditions (Day 
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10) and a better forecast of the future number of infectives (Day 22). In order to 

present a detailed comparison of the performance of the two methods we have 

concentrated on analysing one realisation of the noisy process underlying the 

epidemic data (data from Figure 2). However, the method performs equally well for 

other realisations (not shown) and, as discussed in Section 4, the assimilation result 

shown here is insensitive to the estimate of initial conditions.      

 

To test the robustness of the estimate of 0R as the error in the prevalence reporting 

changes, the fitting exercise was repeated for a number of different error levels. The 

results are shown in Figure 8. Even up to 50% error in reporting, there is still a 

discernible minimum giving an estimate of 0R of ~3.  

 

There are other, more refined, methods for estimating 0R from data and this 

comparison does not imply a definitive advantage in using assimilation for parameter 

estimation. However, it does indicate that VDA is capable of estimating parameters 

with some accuracy, and is a useful way of combining observations with a basic 

model to provide such estimates.  

 

 

6. Application to an Outbreak of Influenza 

 

In order to illustrate how assimilation might be used in a real application we apply the 

method to data recorded during an outbreak of influenza in a boarding school 

(Anonymous, 1978). Following initiation of the epidemic, disease prevalence (as 

reflected by the number of cases confined to hospital) was recorded over a two week 

period in a closed population of 763 individuals. Here we will use data assimilation 

with an SIR model to estimate the basic reproductive ratio. This analysis is not 

intended to be detailed or exhaustive; rather, the motivation is to show how the 

method could be used in practice and to show that plausible results are obtained. 

Future work will address applications of assimilation to empirical data sets.  

 

On Days 2, 3 and 4 of the epidemic the reported number of infectives was 6, 25 and 

76. The numbers of recovered individuals are not recorded, so we assume that on 
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these Days the numbers were 3, 12 and 40. The resulting numbers of susceptibles are, 

therefore, 754, 726 and 647. For the forward model we use an SIR model (equations 

3.1 – 3.3) with 10.5 daysσ −=  (i.e. assuming a 2 day infectious period). Given the 

small scale of the outbreak in a closed community we do not ascribe any errors to the 

data reporting.  

 

Using the techniques described in Section 5 we can assimilate from an initial estimate 

to set of initial conditions that are consistent with the model and data, whilst using the 

asymptotics of the cost function as a means of estimating 0R . Our estimate for the 

initial conditions for (S; I; R) are (755; 5; 3) and we assume that the epidemic begins 

two days before Day 2. Assimilation using the model and assumptions just stated 

gives a basic reproductive ratio 0 3.5R � with initial conditions on Day 0 of (762; 1; 

2). Figure 9 shows a comparison of the forecast for the epidemic based on this 

assimilation using the data for Days 2, 3 and 4. In this example, because the errors in 

reporting are minimal, due to small reported case numbers, a least squares approach 

gives comparable results. In practice the assimilation would continue as more data 

arrived. Each day a new forecast would be produced using the most recent data. 

 

 

 

7. Conclusions 

 

Some of the most challenging epidemiological modelling applications take place in 

real-time with a need to meld data and simple epidemic model structures to provide 

forecasts and parameter estimations. When intervention measures are applied during 

an outbreak the underlying dynamics of the epidemic inevitably changes. Behavioural 

changes that are a response to an epidemic in the population can also generate 

significant dynamical changes. As a consequence, only the limited amount of 

relatively recent data is relevant when attempting to estimate epidemiological 

parameters or provide forecasts. Here we have shown how VDA can be used to 

efficiently combine models and imperfectly reported data to provide robust single-

step forecasts and parameter estimates. It is a technique that has not, hitherto, been 

used in epidemic modelling and the results demonstrated here are encouraging and 
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indicate that it is worthy of further investigation. Though we have not shown it here, it 

is straightforward to weight the cost function to allow for variation in the observation 

error as the epidemic progresses.           

 

The purpose of this paper is to introduce this method and show how it can be used to 

perform some basic modelling tasks that are motivated by real-time outbreak analysis. 

It should be noted that recently Wearing et al. (2005) noted the influence of specific 

model assumptions when estimating epidemic parameters. Therefore, in any 

application of assimilation to real scenarios it would be advisable to pay attention to 

the form of the forward model and its impact on parameter estimation and forecasting.  

 

The present discussion has been confined to simple non-spatial epidemic models. A 

basic SIR model with two epidemiological parameters is assumed to govern the 

dynamics, and when trying to estimate one parameter ( 0R ) the other (σ ) is assumed 

to be known. In many cases of interest more complex epidemic models are required 

and it will be of interest to investigate to what extent assimilation can estimate a 

parameter such as 0R  in those cases. Also in many applications of assimilation to 

forecasting there is acknowledgment of the spatial component to modelling and data 

gathering. Future work will investigate more detailed application of VDA to real data 

sets also using more complex epidemiological models.  



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

  21

Appendix A 

 

1. Cost function gradient from the adjoint model 

 

We now show how the cost function gradient can be derived from the adjoint model. 

This is done by considering perturbations to the cost function with respect to the 

initial state and with respect to a future state. 

 

Taking the initial state first, denote a small change to the initial state as 
,

0
f tl

w . This 

results in a change to the cost function 

 

 ( ) ( ) ( ),
0 0 0 0
f f f tl f

J w J w w J wδ = + −  (A1) 

 

Taking the limit 
,

0 0
f tl

w → , gives 

 

 ( ) ( ) ,
0 0 0

Tf f f tl
J w J w wδ 	 
= ∇� � �

 (A2) 

 

Using the definition of the cost function in equation 2.4, we can now differentiate the 

cost function with respect to a future state 
f
tw  giving 

 

 ( ) ( ) ,
0

Tf f o f tl
t t t

t
J w w w wδ = −�  (A3) 

 

Equating equation A2 and A3 gives 

 

 ( ) ( ), ,
0 0

T Tf f tl f o f tl
t t t

t
J w w w w w	 
∇ = −� � � �  (A4) 

 

Equation A4 gives us the gradient of the cost function, but we need to know how the 

perturbation of the initial state ( ),
0
f tl

w  is related to the perturbation at the future 
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state ( ),f tl
tw . Recall from equation 2.2 that the forward model connects the fields at 

adjacent time steps, so perturbations to those fields are connected as follows 

 

 
( ), ,

1

f
tf tl f tl

t tf
t

M w
w w

w
+

∂
=

∂
 (A5) 

 

Equation A5 can be written  

 

 ( ) ,
1

f f f tl
t t tw L w w+ =  (A6) 

 

Where ( )f
tL w  is called the tangent linear operator of the forward model. In the same 

way as equations 2.1 and 2.2, we can make the desired connection between the 

perturbation of the initial state and the perturbation at the future state 

 

 ( ) ( ) ( ) ( ), ,
1 2 1 0 0........

f tl f f f f f tl
t t tw L w L w L w L w w− −=  (A7) 

 

which can be more economically written as  

 

 
, ,

0
f tl f tl
t tw L w=  (A8) 

 

Substituting this in equation A4 gives 

 

 ( ) ( ), ,
0 0 0

T Tf f tl f o f tl
t t t

t
J w w w w L w	 
∇ = −� � � �  (A9) 

 

that is 

 

 ( ) ( )0
f f oT

t tt
t

J w L w w∇ = −�  (A10) 
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We have now reached our objective, namely, an exact expression for the gradient of 

the cost function with respect to the initial conditions in terms of the transpose of the 

tangent linear model and the system observations,
o
tw . 

 

The transpose of the tangent linear operator, T
tL  is known as the adjoint operator and 

can be represented 

 

 ( ) ( ) ( ) ( )0 1 2 1........
f f f fT T T T T

t ttL L w L w L w L w− −=  (A11) 

 

Note that the ordering of the time index is reversed in the adjoint operator. To 

calculate the gradient of the cost function using the r.h.s. of equation A10 it is 

necessary to integrate the adjoint model from maxt t= to 0t = using the difference 

between the forward model and the observation fields as initial conditions. 

 

 

2. A minimisation algorithm 

 

Now that we have an expression for the gradient of the cost function with respect to 

the initial conditions, it can be used to iterate an initial estimate for 0
f

w to the initial 

conditions that minimise the cost function. This can be done in the following 

straightforward way 

 

 ( ), 1 , ,
0 0 0
f n f n f n

w w J wα
+

= − ∇  (A12) 

 

Where n is the number of iterations and α is a parameter selected to achieve an 

efficient convergence. For large n the gradient of the cost function ( ),
0 0
f n

J w∇ → and 

the optimum initial condition is reached. In this simple minimisation scheme the 

choice of α determines the speed (and possibility) of convergence to the optimum 
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initial conditions, and care must be taken to inspect the cost function to ensure that 

convergence has occurred. 

 

Other, more sophisticated, minimisation algorithms could be used and some 

possibilities are discussed in Huang and Yang (1996). 

 

 

Appendix B 

 

From equation 3.2, dI SI I
dt

β σ= − . At the start of an epidemic the number of 

susceptibles 0S S� so we can write the time evolution of the number of infectives as 

( )0
dI S I
dt

β σ= − . This has the solution ( )0
0

S tI I e β σ−= . So the rate of growth of the 

number of infectives, r, is 0r Sβ σ= − . From Section 3.1 we saw 0 0R Sβ σ= ,so 

0r R σ σ= − . Re-arranging this gives 1
0 1R rσ −= + . 

 

Appendix C 

 

The off-the-shelf package used a least-squares fitting algorithm. The package was set 

up to do least-squares fitting of the three data points in Figure 7b. It is possible to 

constrain the values of the initial conditions of the search, i.e. the user can set limits 

on the likely values of S, I and R at the beginning of the epidemic (i.e. t=0 is Day 10).  

 

Three separate constraint regimes were tested for the least-squares fit.. 

i) Unconstrained: Here we allowed the initial conditions of  S, I and R  to be 

any value between 0 and 3000. This resulted in an estimate of 0 2.3R � . 

The method gave an estimate for the initial conditions of 

0 0 03000, 535, 141t t tS I R= = == = = . 

ii) Partially Constrained: We set the following constraint on the initial 

conditions 0 0 00 3000,0 3000,0 1000t t tS I R= = =< < < < < < , and this gave an 
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estimate of 0 2.3R �  . The estimate of the initial conditions was calculated 

to be 0 0 03000, 526, 170t t tS I R= = == = = . 

iii) Constrained: We set the following constraint on the initial conditions to 

be 0 0 01500 3000,200 1000,0 500t t tS I R= = =< < < < < < , and this gave an 

estimate of 0 2.3R �  . The estimate of the initial conditions was calculated 

to be 0 0 03000, 525, 166t t tS I R= = == = = . 

 

VDA gave an estimate of 0 3.5R �  (the underlying epidemic process that generated 

the data had 0 4R = ). The estimate of the initial conditions from assimilation 

was 0 0 02653, 370, 135t t tS I R= = == = = . 
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Tables 

 

Table 1: The final assimilated state is shown for a variety of different starting 

conditions for the noisy (16%) observational data on Days 12, 14 and 16 from Figures 

3a-3d. The assimilated state is that for Day 10. For comparison, the epidemic state 

from the underlying model on Day 10 is ( )2555;325;120 . 

 

Starting State Assimilated State 

3a                  (2100;700;200) (2633;278;187) 

(800;700;1500) (2633;278;187) 

(100;1000;1900) (2633;278;187) 

(500;2000;950) (2633;278;187) 

  

3b                 (100;700;1200) (2558;338;67) 

(1800;700;500) (2558;338;67) 

(100;1900;1000) (2558;338;67) 

(150;1200;850) (2558;338;67) 

  

3c                 (2500;300;200) (2798;312;71) 

(1000;400;1600) (2798;312;71) 

(200;200;2600) (2798;312;71) 

(30;1500;1470) (2798;312;71) 

  

3d                 (2000;500;500) (2530;317;106) 

(400;1200;1400) (2530;317;106) 

(100;300;2600) (2530;317;106) 

(70;2900;30) (2530;317;106) 

 

  

 

 

 

 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

  28

Table 2: as the noise level on the observational data decreases the assimilated state is 

closer to the underlying model state at Day 10. 

 

Noise Level Starting State Assimilated State 

1% (2100;700;200) (2557;323;125) 

4% (2100;700;200) (2572;314;137) 

9% (2100;700;200) (2598;299;158) 

16% (2100;700;200) (2633;278;187) 

25% (2100;700;200) (2677;253;223) 
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Figure Captions 

 

Figure 1: Time series for the first 40 days of the simulated epidemic using an SIR 

model. The pathogen (with 0 4R = ) is introduced by a single Infective at Day 0, and 

the peak number of Infectives occurs around Day 15. Susceptibles (squares), 

Infectives (triangles) and Recovered (circles). 

 

Figure 2: To simulate realistic epidemic conditions, it is assumed that the outbreak is 

first noticed on Day 10 with data on the numbers of Infectives recorded on Days 12, 

14 and 16 (triangle). The data is generated by introducing a random error ( )16%± on 

the underlying epidemic process (circles). 

 

Figure 3a: The dots represent the results of the assimilation to estimate the values of 

S, I and R (square, triangle, circle) at Day 10. The result is close to the underlying 

epidemic process (as shown by the lines; long dashed (S), solid (I), short dashed (R)). 

Figure 3b-3d: same as Figure 3a for three different realisation of the noisy epidemic 

process showing the performance of the assimilation for different observational data 

sets (not shown) for Days 12 to 16. 

 

Figure 4: Using the data points for Days 12, 14 and 16 (triangles) an estimate is made 

of when the epidemic was initiated. Assimilation indicates (grey dots) that the 

epidemic began around just over 10 days before the first recorded data point, i.e. 

around Day 1. 

 

Figure 5: Using the three recorded data points (triangles) a forecast is made of the 

future number of infectives (thick line). The time series for the underlying model is 

shown for comparison (thin grey line).  

 

Figure 6: Cost function (log scale) over 3000 iteration cycles for an assumed 0 6R = . 

 

Figure 7a: Asymptotic value of the cost functions as a function of 0R obtained using 

the three data points on Day 12, 14 and 16 with 16%±  error in prevalence reporting. 

This suggests that the basic reproductive ratio for the epidemic is between 3.5 and 4.  
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Figure 7b: Comparison of the results from assimilation (black line) and Berkeley 

Madonna package least squares fit (grey line). Also shown (dots) are the number of 

infectives from the underlying epidemic process (with 16%±  error) that is used to 

generate the data.    

 

Figure 8: Repeat of Figure 7a, though in this case the prevalence reporting error is 

increasing from 1%± to 50%± . As the reporting error increases the estimate of 

0R starts to gradually decrease, but nevertheless continues to provide a reasonable 

estimate. 

 

Figure 9: Result of data assimilation (solid line) using and SIR model and three data 

points (Day 2, 3 and 4; triangles) from an outbreak of influenza.
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