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Signal transduction in many cellular processes is accompanied by the feature of adaptation, which

allows certain key signalling components to respond to temporal and/or spatial variation of external

signals, independent of the absolute value of the signal. We extend and formulate a more general

module which accounts for robust temporal adaptation and spatial response. In this setting, we

examine various aspects of spatial and temporal signalling, as well as the signalling consequences

and restrictions imposed by virtue of adaptation. This module is able to exhibit a variety of

behaviour in response to temporal, spatial and spatio-temporal inputs. We carefully examine the

roles of various parameters in this module and how they affect signal processing and propagation.

Overall, we demonstrate how a simple module can account for a range downstream responses to a

variety of input signals, and how elucidating the downstream response of many cellular components

in systems with such adaptive signalling can be consequently very non-trivial.
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1 Introduction

Following the advent of molecular biology, an important focal point of biological research has been

elucidating the regulation and interaction of networks of chemicals responsible for various cellular and

genetic processes. This has led to the uncovering of highly complex networks involved in cell signalling in

various important cellular processes (Alberts et al., 2002) , and also the extent to which these vary from

organism to organism. While many aspects of the signalling circuitry in these systems have been

uncovered, there are many other biochemical aspects which remain to be elucidated.

In many of these systems, making the transition from a network interaction diagram to

understanding the signal transduction in a biochemical circuit is a very considerable challenge. While the

lack of complete knowledge of all rate constants is a well recognized issue, there are many other factors

which complicate the problem of elucidating signal propagation in a network, including the role of noise,

history dependence, feedback, spatial variation and complex transport. In these systems there appear to be

key features involved in the signal propagation.

One feature of signalling which is observed in a number of sensory transduction processes is

adaptation, which roughly means that the nature of the response to some signal (spatial or temporal)

somehow adjusts to account for the ambient strength of the signal at steady state. A striking example of

adaptation occurs in bacterial chemotaxis (Berg, 2003) in E. coli. The bacterium E.coli responds to

concentration of surrounding chemicals in a temporal manner and orchestrates its response to allow for it to

move in more favourable directions (higher external concentrations). The response of a key protein

(Che-Y) is necessary for controlling the flagellum in the bacteria to direct its motion. In order for the

bacteria to respond reliably to temporal gradients, it is important for the response to depend on the

temporal gradient as opposed to the absolute value of the external signal. Signal transduction in E.coli does

indeed achieve this goal via a response which is independent of the absolute value of the external signal

over five orders of magnitude (Berg , 2003). This is achieved by virtue of the fact that the key intermediate

reaches a steady state independent of the absolute value of the external signal. This feature is an extremely

important aspect of signalling in this system, and needs to be accounted for in any reliable quantitative

description and understanding of the system. The fact that this adaptation is extremely robust has important

implications for the kind of chemical interactions and signal flow to achieve this in the face of variability in

parameters. A considerable body of modelling efforts is aimed at describing this adaptation process, along

with other response characteristics (Tindall et al., 2008). It is worth pointing that some models. such as

2



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

(Barkai and Leibler, 1997), are able to capture this adaptation process in a robust manner, independent of

parameters (even though other characteristics of the response depend on parameters). A systems

interpretation of the signalling network, and the discussion of an integral control mechanism underlying

this network, responsible for robust adaptation, is discussed in (Yi et al., 2000).

A specific example of adaptive signalling occurs in chemotaxis in Dictyostelium (in response to the

ligand cAMP). Signal transduction occurs through the CAR1 receptor, and regulates phosphoinositide

lipids such as PI(3, 4, 5)P3 (representative of the cell compass response) along with other pathways. From

experiments performed in cells immobilized with latrunculin (which allows for an easier study of signal

transduction at the sensing stage of chemotaxis, decoupling it from cell motion) it was established that a

spatially uniform stimulus of cAMP resulted in a transient response in PI(3, 4, 5)P3 before returning to

basal levels (and this feature was robust). Thus an increase in receptor occupancy still results in a

downstream signalling component recovering to prestimulus levels. It was also established that this

adaptation did not occur at the level of the receptor itself. Importantly in gradient experiments conducted

on the same immobilized cells with the same ligand, the cells responded with a persistent spatially

inhomogeneous response when the stimulus was in the form of a spatial gradient, and here at steady state

the PI(3, 4, 5)P3 response did not recover to basal levels. Thus signal transduction induced by cAMP and

regulating the lipid PI(3, 4, 5)P3 has the property of adaptation in spatially homogeneous stimuli, while

resulting in a non-trivial and non-adaptive sensory response in a gradient stimulus (Parent and

Devreotes, 1999). Both the response of the lipid PI(3, 4, 5)P3 and in fact (as found subsequently) the

enzyme PI3K share this property. Thus this setting provides an example where spatial sensory transduction

in critical (and the chemotactic response relies critically on spatial signalling) and adaptive signal

transduction occurs in response to homogeous stimulation. The adaptive signalling to an important

component of the cell compass allows the cell to respond robustly to ligand gradient signals with different

mean values. Other examples of adaptive signalling and spatial response exist in this system.

A quantitative description of signal transduction in chemotaxis has to account for the above aspect of

signalling. A simple model which accounts for adaptation in a robust way is the local excitation global

inhibition model (LEGI) proposed by Levchenko and Iglesias (Levchenko and Iglesias, 2002). This model

relies on the regulation of a fast excitory pathway and a slower but highly diffusible inhibitory pathway,

regulating a response element. The advantage of this model is that adaptation is achieved in a robust way.

The fact that signal transduction to the response (compass lipid) in the experimental system is not purely

local was convincingly demonstrated experimentally in (Janetopoulos et al., 2004) .Various aspects of
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modelling in eukaryotic chemotaxis are discussed in (Iglesias and Levchenko, 2002; Krishnan and

Iglesias, 2004; Dawes and Edelstein-Keshet, 2007; Iglesias and Devreotes, 2008). The basic module of

adaptation coupled with spatial sensing is used in modelling signalling to various components in

Dictyostelium (Ma et al., 2004; Krishnan and Iglesias, 2007)

In this paper we study a more general framework of an adaptive mechanism involving an activatory

element and an inhibitory element, either or both of which may be diffusible (or non-diffusible). Such a

more general framework has not been examined before. This framework provides a useful setting in which

the relation between adaptation and spatial responses may be investigated. It includes both the LEGI model

(studied in (Levchenko and Iglesias, 2002; Krishnan and Iglesias, 2003; Krishnan and Iglesias, 2008)) as

well as purely temporal adaptation mechanisms ( such as ones similar to the cartoon model in (Othmer and

Schaap, 1998)) as special cases.This framework is worth analyzing for different reasons. Firstly it provides

insights into the nature of adaptive signal processing and connection between temporal and spatial signal

transduction. Secondly, in this system, the existence of signal propagation through diffusible intermediates

implies different possible roles of diffusive intermediates in signalling (activatory, inhibitory or both) in

adaptive regulation of different components. Given the relative simplicity and generic features of the

model, the results here will help elucidate other features of spatial and temporal signal transduction in other

similar systems with adaptive signalling and spatiotemporal signal transduction.

This paper is organized as follows. In the next section, we formulate the module of adaptation

mentioned above. In the following sections, we analyze various aspects of signal processing via this

module: response to temporal stimuli, spatial stimuli and spatio-temporal stimuli. In particular we will

carefully examine and characterize the roles of different parameters in this system, and the role they play in

different aspects of signal transduction. We will use tools from systems dynamics/control to elucidate

different aspects of signal transduction. We will also focus on what extent adaptation restricts the range of

temporal and spatial responses of the module.

2 Model

The model consists of the receptor signal S regulating a response element R∗, located on the cell

membrane. Both the receptor signal and hence any downstream response are in general dependent on

spatial position. For a cell in the shape of a circular disc, the spatial location on the membrane is

parametrized by the angle θ. The reaction from the inactive(R) to the active form of the response (R∗) is
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regulated by the receptor signal by two parallel pathways: an activatory pathway involving an activator A

and an inhibitor I both residing on the membrane (see Fig. 1).

Both the activator and the inhibitor are activated by the receptor signal in a linear fashion (see

(Levchenko and Iglesias, 2002)). In this model both the activator and inhibitor diffuse on the cell

membrane, in general at different rates (see schematic in Fig. 1(b)). The governing equations are:

∂A

∂t
= kaS − k−aA + kda

∂2A

∂θ2

∂I

∂t
= kiS − k−iI + kdi

∂2I

∂θ2

∂R

∂t
= −kfAR + krIR∗

∂R∗

∂t
= kfAR− krIR∗

(1)

The above module is an input-output system with the input being the receptor occupancy signal (in

dimensionless form) S which can depend on both angle and time, and the (dimensionless) output is R∗.

The activator and inhibitor concentrations in dimensionless form are denoted by A and I . By adding the

last two equations, we see that R + R∗ is constant throughout the dynamics, and we can assume the

variables are suitably non-dimensionalized so that R + R∗ = 1 . This means the last two equations reduce

to

∂R∗

∂t
= kfA(1−R∗)− krIR∗

(2)

From above, the steady state of R∗ is given by

R∗ =
A/I

kr/kf + A/I

(3)

When S is spatially homogeneous and non-zero the steady state concentrations of activator and inhibitor

are given by A = (ka/k−a)S and I = (ki/k−i)S, so that A/I and hence R∗ are independent of S, thus

guaranteeing adaptation in a robust fashion. We shall assume that the initial condition for all variables, for

a given external degree of stimulus (assumed non-zero) correspond to steady state conditions.

We observe that the above model encompasses a range of different behaviour. When kda, kdi = 0 we

have a model of adaptation to all signals, similar to (Othmer and Schaap, 1998) . When kda = 0, kdi >> 1

5



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

we have the original local excitation global inhibition model (formulated in (Levchenko and Iglesias, 2002)

and also studied in (Krishnan and Iglesias, 2003)). When kda >> 1, kdi = 0, we have the local inhibition,

global excitation model. When kda, kdi >> 1, we have a module transduces signals via strongly diffusible

pathways. This is one aspect of the module. The other aspect pertains to which of the activatory and

inhibitory processes is faster and which is slower. We will examine these different cases in detail.

3 Temporal signal processing

In this section, we will examine the kind of temporal signal processing possible from this module. Thus,

the input S here is independent of θ and the signal propagation entirely results from the kinetics of the

reactions. Examining this case in some detail is useful firstly because it gives insights into purely temporal

signal transduction, and secondly it clarifies to what extent diffusion affects the range of signal processing.

As mentioned, the model by construction accounts for perfect adaptation in response to a

homogeneous stimulus. While the steady state is independent of the external (homogeneous) concentration

input, the transient response does depend on the stimulus as well as the kinetic parameters of the network.

Intuitively we expect that whether the response exhibits a transient jump or dip depends on which of the

two pathways, activatory or inhibitory, is regulated faster. A faster activator leads to a transient jump (as in

the LEGI model initially proposed), while a faster inhibitor leads to a transient dip is response before

adapting.

While all the kinetic constants ka, k−a, ki, k−i play a role in transient and steady state responses,

which of the two pathways is faster (slower) is determined by the relative magnitudes of the degradation

constants k−a, k−i. A faster activatory pathway corresponds to k−a > k−i while a faster inhibitory pathway

corresponds to k−i > k−a. This is easily seen as follows: defining scaled variables As, Is as

As = (k−a/ka)A and Is = (k−i/ki)I , we find that the equations for the scaled activator and inhibitor

variables reads

dAs

dt
= k−a(S −As)

dIs

dt
= k−i(S − Is)

(4)

This indicates that the transient response of the scaled variables As, Is is dependent on the kinetic constants

k−a, k−i respectively. Whichever of these constants is higher determines which is the faster responding
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pathway. Whether the response shows a transient jump or a dip depends on which of the two pathways

responds faster. This is seen most transparently in the case where the reactions involving the regulation of

the response (kinetic constants kf, kr) are much faster than the other reactions. In this case the reaction

between R and R∗ is essentially at a quasi-steady state and so

R∗ =
A/I

kr/kf + A/I

(5)

and so a faster activator implies that A/I increases before recovering to basal values, and this is reflected in

a transient jump in response element R∗.

Having established when the response element exhibits a transient jump and when it exhibits a

transient dip, a natural question to ask is if all ranges of concentrations of R∗ can be reached by varying the

receptor occupancy S. Since the receptor directly regulates the activator and inhibitor variables, this

question involves establishing to what extent the input (S) can regulate the activator and inhibitor variables.

The regulation equations for A and I can be cast in the form of a standard linear control system

(Rugh, 1995) dy/dt = Py + Qu, where y is the vector of state variables and u is the vector of control

variables. Here y = [A, I]T , u = S, P = diag(−k−a,−k−i) and Q = [ka, ki]
T . A standard controllability

analysis of this dynamical system indicates that the system is completely controllable (rank of

controllability matrix =2) indicating that the entire range of A, I values are accessible. However the range

of activator and inhibitor values is restricted by the fact that the control input (receptor occupancy) S is

restricted to be positive. In order to find the range of A/I , we directly examine its time derivative:

d/dt(A/I) = (1/I2)(AI(k−i − k−a) + S(kaI − kiA))

(6)

We can immediately conclude that if k−a > k−i then A/I is bounded by ka/ki, since the time derivative of

A/I at the surface A/I = ka/ki is always negative. By exactly analogous reasoning, we can conclude that

when k−i > k−a, then A/I > ka/ki (in (Krishnan and Iglesias, 2008) we show that we can get arbitrarily

close to these bounds). By writing the equation for R∗ as

dR∗

dt
= −(kfA + krI)[R∗ − (A/I)/(kr/kf + A/I)]

(7)

and noting the above bounds for A/I , we immediately have bounds for the response (from similar
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reasoning): when k−a > k−i, we have 0 < R∗ < ka/ki/(kr/kf + ka/ki), and when k−i > k−a then

1 > R∗ > ka/ki/(kr/kf + ka/ki).

Thus in each case we establish non-trivial bounds for the accessible values of R∗, explicitly in terms

of various rate constants. The fact that the input signal S simultaneously regulates both the forward and

reverse pathways in the regulation of R∗ is responsible for these bounds. These bounds are valid for any

admissible (positive) temporal variation of S, and in particular valid also for step inputs.

We thus conclude that in a homogeneous (step) stimulus, if k−a > k−i, a transient jump is observed,

whose maximum amplitude is bounded by ka/ki/(kr/kf + ka/ki), while when k−a < k−i, a transient dip is

observed whose minimum value is bounded by this same factor. When k−a = k−i, then A/I = ka/ki

throughout the dynamics (from the equation for A/I), which implies that starting from a steady (basal)

state, R∗ remains at this basal state. This illustrates the fact that for certain parameter values, a

homogeneous stimulus does not elicit any response, even if it is time varying. Fig. 2 shows simulations of

different responses to homogeneous stimulation.

While the above analysis gives basic insights into which way the response will change in

homogeneous stimulation, it does not give any information on the amplitude of the (transient) variation in a

homogeneous stimulus of given magnitude. While simulating the network is very straightforward,

understanding the amplitude of the response and how it depends on the magnitude of the stimulus is not so

straightforward. Some basic analysis was performed in (Krishnan and Iglesias, 2008) by examining the

case where the conversion between R and R∗ is much faster than the regulation of activation and inhibition

regulation by the receptor input signal. This allowed for an explicit description of different characteristics

of the transient response in homogeneous stimulation.

In (Krishnan and Iglesias, 2008) it was shown that for a module subject to a change in external

stimulus from level S0 to level S at t = 0, the condition for an extremum in A/I (and hence R∗, assuming

large kf, kr) is

(k−i − k−ae
(k
−i−k

−a)t)(1 + βe−k
−it) = −βk−i(e

−k
−at − e−k

−it)

where δ := S0/S and β := δ − 1.

This transcendental equation can be solved numerically for the t value at which an extremum occurs.

We see from above that it depends only on k−a, k−i and δ. Explicit analytical expressions and insight can

be obtained for specific parameters. For example, when k−a = 2k−i, the point of of maximum deviation

from the basal state can be solved explicitly, by effectively transforming the above equation into a quadratic
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equation by setting z := exp(−k−it). The solution for z turns out to be (Krishnan and Iglesias, 2008)

z =
1

δ1/2 + 1

This indicates that the magnitude of the variable A/I at the time of maximum amplitude as well as

the corresponding response are given by

A/I = γ +
γ(1− δ1/2)

(1 + δ1/2)

R∗ = 1−
kr/kf

kr/kf + 2γ/(1 + δ1/2)
(8)

where γ = kak−i/kik−a. This depends on kr/kf,γ and δ = S0/S. In particular, from the above

expressions, we can conclude that for a large step input (S0 << S) we see that A/I approaches

2γ = ka/ki which is the upper bound of A/I as derived above and correspondingly R∗ approaches its

upper bound of ka/ki/(kr/kf + ka/ki). Likewise, in the case of a step decrease to nearly zero stimulus

S << S0, we find that A/I (and hence R∗) approaches the lower bound of 0.

In an exactly analogous way, for the case of a slower activator when k−a = k−i/2, we see that in the

case of a homogeneous stimulus the value of A/I , when S0 << S, approaches the lower bound of 0 (and

likewise for R∗), and in the case of decrease in stimulus, with S0 >> S, A/I approaches its upper bound

of ka/ki (with the corresponding upper bound for R∗). These results point to the more general fact that in

the case of high stimulus, A/I approaches its upper or lower bound, according as whether k−a > k−i or

k−i > k−a.

4 Steady state spatial signal processing

The previous section focused on how the mechanism involved in adaptation placed important restrictions in

the range of temporal signalling. The counteracting activatory and inhibitory steps combine to restrict the

range of output signal in a non-trivial way. Further, we also saw that the relative magnitudes of the kinetic

constants k−a, k−i, determined whether the response exhibited a transient jump or a transient depression

before eventually returning to prestimulus levels. While the analysis gives insight into purely temporal

signal processing, the response of this module to spatially inhomogeneous signals is of considerable

interest, and this is what we discuss next.

We start by examining the steady state response to a static external gradient (linear external

concentration field –usually referred to as a linear gradient) which translates to a signal S(θ) = a + bcosθ,
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where |b| < |a|. The steady state response for A and I is easily obtained via a Fourier series expansion:

setting A = A0 + A1cosθ, I = I0 + I1cosθ, we find that at steady state:

A0 = (ka/k−a)a

A1 = (ka/(k−a + kda))b

I0 = (ki/k−i)a

I1 = (ki/(k−i + kdi))b

R∗ =
A/I

kr/kf + A/I

(9)

We are now in a position to carefully examine the range of responses which can be obtained from

this module, and which parameters affect these responses. For the response to act as cell compass and point

essentially at the position of maximum concentration, the case of non-diffusing A, and highly diffusible I

(kda = 0, kdi >> 1) was suggested leading to the well know Local Excitation Global Inhibition (LEGI)

model. We first start by examining the response, and analyze the range of parameters for which a resposne

analogous to a cell compass is obtained for such a simple static gradient. The dependence of R∗ with A/I

indicates that the maxima and minima of A/I correspond to those of R∗ at steady state. From above the

dependence of A/I on position is given by

A/I =
(ka/k−a)a + (ka/(k−a + kda))bcosθ

(ki/k−i)a + (ki/(k−i + kdi))bcosθ

(10)

By recognizing that the expression for A/I can be simplified as

A/I = A1/I1 − (1/I1)(A0I1 − I0A1)/(I0 + I1cosθ)

(11)

we see that the critical determinant of the maxima and minima of A/I is the term A0I1 −A1I0. In the case

of a constant gradient, this term is obtained as

A0I1 −A1I0 = abkaki[1/k−a(k−i + kdi)− 1/k−i(k−a + kda)]

(12)

We note from this, that the sign of the term does not–reassuringly – depend on the mean value or strength

of the gradient of the external signal. It is however determined by the relative size of kdi/k−i and kda/k−a.

10
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Thus we see that when kdi/k−i > kda/k−a, then the maxima of the response at steady state for such a signal

coincide with that of the external signal, while, when kdi/k−i > kda/k−a, the maxima of the external signal

correspond to the minima of the internal response (and vice versa). Thus what this implies is that it is not

the relative maginitudes of the diffusivities per se which is the determinant of the nature of the steady state

response, but the relative magnitude of the diffusivities scaled by the corresponding degradation constant.

It immediately follows from above that when kda = 0 (local activator), any diffusing inhibitor will

necessarily give rise to a response whose steady state maximum matches that of the input for such a signal.

This is a characteristic of the LEGI model. On the other hand if the inhibitor is non diffusing, while the

activator diffuses, the maxima and minima of the response are opposite to that of the input signal.

We can draw various inferences from the result above for the case where both the activator and

inhibitor diffuse, i.e. kda, kdi > 0. Firstly we note that the above condition compares the diffusivities of

each species scaled by their degradation constants. In particular, it implies that even if the diffusities of

both the activator and inhibitor are equal, a compass response analogues to chemoattractant gradient

sensing is possible. In fact, even if the activator is more quickly diffusing than the inhibitor, such a

response is possible. In general the difference in the magnitude of these two terms determines how strong

the compass response is.

The above conclusion also suggests that in order to have a response from such a module tracking

(essentially) the minimum of the external signal, it is necessary for the opposite inequality

kda/k−a > kdi/k−i to hold good. In particular such a response can also occur with activator and inhibitor

having equal (non-zero) diffusion coefficients, if the inhibitor degradation constant is faster than that of the

activator.

The special case kda/k−a = kdi/k−i represents a set of parameter values which acts as a transition

between these two cases. In this case, we find that for a gradient as above, the steady state response

exhibits no spatial response at all, and is constant everywhere. This is indicative of a completely

non-existent compass response to such a gradient at steady state. Different kinds of responses to steady

state signals are seen in Fig. (3).

A special case of our network is one where both the activator and inhibitor are completely

non-diffusible. This corresponds to the case where kda = kdi = 0. Thus for this purely local signal

transduction ( a local excitation local inhibition model), the condition kda/k−a = kdi/k−i is trivially

satisfied. Thus, not surprisingly, adaptation to homogeneous signals also implies adaptation to linear

gradients and in fact adaptation to any spatial signals, since signal processing is purely local.
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4.1 Steady state responses to gradients and responses to homogeneous stimulation

From the above and the previous section, we were able to determine the characteristics of the response in

homogeneous stimulus as well as a constant gradient, and also the parameters which determine the

response. For a homogeneous stimulus, the response exhbits a transient jump (H1) if k−a > k−i (faster

activator) and a transient depression (H2) if k−a < k−i (faster inhibitor). No response (H3) in a

homogeneous stimulus is observed if k−a = k−i. For the steady state response in a linear gradient, a

response tracking the maximum of the external signal (SS1) is observed if kda/k−a < kdi/k−i, and a

response tracking the minimum of the external signal (SS2) is observed when kda/k−a > kdi/k−i. A

spatially uniform compass response (SS3) is observed when kda/k−a = kdi/k−i.

From the above pieces of information, and noting the different parameters involved in each case, we

can infer some interesting conclusions. The way this module responds to temporal inputs (such as step

inputs) and the steady state response in constant gradients, is essentially independent. Thus it is possible to

have any combination of homogeneous response H1/H2/H3 and any combination of steady state response

in constant gradients (SS1/SS2/SS3). This indicates that the presence of such a module can lead to rather

subtle spatial and temporal signal transduction by itself, and that one should be very careful about inferring

spatial or temporal response from one another. In fact it also indicates that it is possible to have no

temporal response in homogeneous stimulus, with a robust steady state compass response (SS1/SS2). It

also indicates the possibility of a temporal response (H1/H2) with“adaptation” to linear gradients, as well

as the possibility of no response in either homogeneous stimuli or at steady state to constant gradients. Figs

1 and 2 taken together, illustrate the different combinations of temporal and steady state spatial responses

which can be attained (the temporal and spatial response for the case k−a = k−i is not shown).

In particular a local excitation global inhibition model in the paper (Levchenko and Iglesias, 2002)

corresponds to the combination of H1/SS1. The local inhibition global excitation model (LIGE)

corresponds to SS2. A purely temporal adaptive signal processing corresponds to SS3, and can be regarded

as a local excitation local inhibition model. Finally, a highly diffusible activator and inhibitor could provide

any combination of responses, but a weak compass response is expected.

The role of the diffusivities of the activator and inhibitor in signalling can be further examined. We

note that for a faster activator (H1) with highly diffusible inhibitor and non-diffusible activator (SS1), the
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steady state of activator and inhibitor in a constant gradient are, respectively,

A = (ka/k−a)(a + bcosθ)

I = (ki/k−i)a + [ki/(k−i + kdi)]bcosθ

(13)

From here we see that the maximum of A/I (and hence the response) corresponds to

kak−i/k−aki(1 + b/a) when the inhibitor is highly diffusible kdi >> 1. We note also that in homogeneous

stimulation of any kind, A/I is constrained to lie in the range (0, ka/ki). By examining the maximum of

the steady state of the gradient response, we see that if k−a/k−i < 2, then for suitably strong gradients, it is

possible for the maximum of the steady state response to exceed the absolute bounds established in

temporal signalling. If we consider the case of local activator and diffusible inhibitor as above, with the

difference that that the inhibitor is faster than the activator, then examining the minimum of the gradient

response, we see that it can also fall below the lower bound set in temporal signalling. In fact in this case

we have k−i > k−a and kdi >> 1, and the minimum of the response for a strong gradient (b=a) is

essentially zero, clearly below the lower bound in temporal signalling of ka/ki. In this case, a sufficiently

strong gradient is guaranteed to lead to a steady state response, which locally goes beyond the bounds set in

temporal signalling. In each case, this further underscores the additional aspects brought to signalling by

virtue of the diffusion of the inhibitor, and demonstrates in a precise way how this plays a role in exapnding

the range of signalling.

Parallel conclusions can be drawn in the case of a highly diffusible activator and non-diffusible

inhibitor. In that case, the steady state of activator and inhibitor are

A = (ka/k−a)a + (ka/(k−a + kda))bcosθ

I = (ki/k−i)a + (ki/k−i)bcosθ

(14)

When the diffusion of the activator is very high, then A/I approaches kak−i/k−aki[a/(a + bcosθ)]. Here

again we see that for the case of a faster activator, it is possible for the maximum of the gradient response

(located at the minimum of the external signal) to exceed the temporal bound of ka/ki. An exactly

analogous conclusion can be made in the case of a slow activator, where the lower bound of ka/ki can be

crossed by the minimum of the gradient response.
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5 Observability of the module

Before we proceed to examine spatio-temporal signal processing in this module, we examine an issue

pertaining to the input-output response. If one considers the receptor occupancy signal S as the input to the

module and the response R∗ as the output, a natural question arises as to whether this output (and its

temporal variation) contains sufficient information from which to infer the state variables. In particular, a

natural question is whether it is possible for different state variable values (A, I,R∗) for any admissible

variation of inputs to give rise to the same observed output R∗? If this were the case, the system with the

output R∗ would be regarded as unobservable with respect to the input.

We will show that for two systems exhibiting the same output (as a function of time) for any

admissible temporal variation of inputs necessarily have the same state variables. We first examine the

spatially homogeneous case. We suppose we have two systems (1 and 2) which at some instant have state

variables (A1(0), I1(0), R
∗(0)) and (A2(0), I2(0), R

∗(0)). Suppose they have the same output R∗(t) for

any admissible variation of input. Then since the R∗ (and hence derivatives) of the two state trajectories are

equal, it follows from the equality of rate of change of R∗ in the two cases that

kf(1−R∗)(A1 −A2) = krR
∗(I1 − I2)

(15)

or in other words, assuming, without loss of generality that I1 �= I2 that

(A1 −A2)/(I1 − I2) = krR
∗/kf(1−R∗)

(16)

However the evolution of A1−A2 can be directly tracked by subtracting the activator equations for the two

trajectories, and likewise for I1 − I2:

d(A1 −A2)/dt = −k−a(A1 −A2)

d(I1 − I2)/dt = −k−i(I1 − I2)

(17)

which reveals that whatever the variation of S, the difference in the two cases varies as:

A1 −A2 = (A1(0)−A2(0))exp(−k−at)

I1 − I2 = (I1(0)− I2(0))exp(−k−it)

(18)

14
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Thus we see that

(A1 −A2)/(I1 − I2) = (A1(0)−A2(0))/(I1(0)− I2(0))exp((k−i − k−a)t)

(19)

independent of the regulating signal! Now if k−a �= k−i, we find that that by varying S, we can change the

R∗ variation, which will cause the ratio of difference in activators and inhibitors (which is a function of

R∗) to generically differ for general input signals from the exponential variation of the formula above. This

means that the only way in which two different systems give the same output for any admissible signals is

if I1(0) = I2(0) and A1(0) = A2(0), which means that the two systems have identical state variables.

When k−a = k−i, we find from above that (A1−A2)/(I1 − I2) = (A1(0)−A2(0))/(I1(0)− I2(0))

a constant. However in this case, R∗ is a constant in the dynamics, and hence any variation of input doesnt

change the output. Thus it is indeed possible for two different systems with different state variables to give

the exact same output and the system in this case is unobservable.

The above argument can be essentially extended for the case of input signals with spatial and

temporal variation. Here again, we can demonstrate that if two different systems yield the same output for

all admissible variation of the input S (assumed smoothly varying), they should have the same state

variables. Using the exact same notation as above (except that in this case all input and state variables have

spatial variation as well), just as before the requirement that the output (R∗) of the two systems is equal

implies that

(A1 −A2)/(I1 − I2) = krR
∗/kf(1−R∗)

(20)

as a function of space and time. The evolution of the difference (A1 −A2 and I1 − I2) satisfies

d(A1 −A2)/dt = −k−a(A1 −A2)− kda
∂2(A1 −A2)

∂θ2

d(I1 − I2)/dt = −k−i(I1 − I2)− kdi
∂2(I1 − I2)

∂θ2

(21)

Both these equations can be easily solved by a Fourier series decomposition. The evolution of the

differences A1 −A2 and I1 − I2 depends only on their initial values and system parameters and not on the

input signal. In any case, we can see that by varying the input signal S(θ, t), the R∗ will in general vary

and not correspond to the value imposed above. This is, in fact, true even when k−a = k−i. Thus if two

15



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

systems have exactly the same output for all admissible variation of input, they must necessarily have the

same state variable values.

6 Spatiotemporal signal transduction

In the previous sections, we examined how the module responds to purely temporal signals, including the

extent to which the opposing pathways act to restrict the range of the output. By examining the steady state

response to a static linear gradient we showed that the output can involve either a response whose

maximum is coincident with the maximum of the input or one whose maximum is co-incident with the

minimum of the input. The fact that varying various parameters allowed for any combination of response in

homogeneous stimulation (a jump, depression or no response) and response in a gradient was also

demonstrated.

While the above studies provide basic insight into how the module processes spatial and temporal

signals, a basic question which arises is how the module responds to signals with simultaneous spatial and

temporal variation. We examine these issues in this section. The questions which we address are: to what

extent does adaptation affect the range of spatio-temporal signalling? Does the intuition obtained for

response in a static gradient carry through for spatio-temporal signalling? What are the roles of the

diffusivities of the activator and inhibitor?

In order to examine spatiotemporal signal processing in this module and make a useful comparison

with the previous cases, we consider the response of the module to a temporally varying linear gradient –

i.e. a linear gradient whose characteristics (mean value) and gradient can be varied temporally. Thus the

receptor occupancy input is S(θ, t) = S0(t) + S1(t)cos(θ), where the magnitude of S1 is always less than

or equal to S0 (and S0 is always positive). We focus on the case where S1 is always greater than or equal to

zero, thereby not allowing a reversal in the gradient. In the network, the signal S regulates the output R∗

only via its regulation of the activating and inhibitory pathways. By expanding the activator and inhibitor

concentration profiles in Fourier modes, we have A(θ, t) = A0(t) + A1(t)cos(θ) and

I(t) = I0(t) + I1(t)cos(θ), we can easily write down evolution equations for the Fourier components:
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dA0

dt
= kaS0 − k−aA0

dA1

dt
= kaS1 − (k−a + kda)A0

dI0

dt
= kiS0 − k−iI0

dI1

dt
= kiS1 − (k−i + kdi)I1

(22)

This represents a linear control system (Rugh , 1995), with the control inputs given by S0 and S1.

The linear control system can be written in standard control engineering format dx/dt = Px + Qu, where

x is the vector of state variables and u is the vector of control inputs. In the present case

x = [A0, A1, I0, I1]
T , u = [S0, S1]

T P = diag(−k−a,−(k−a + kda),−k−i,−(k−i + kdi)) and Q = is a 4

x 2 matrix with columns [ka, ki, 0, 0]
T , [0, 0, ka, ki]

T , u = [S0, S1]
T . Again a standard controllability

analysis of this linear control system can be performed, and the rank of the controllability Gramian

[P |Qp|Q2P |Q3P ] is found to be 4, indicating that the system is completely controllable. However the

extent of accessibility of the state space is restricted by the restriction on the control inputs (positivity of S0

and magnitude of S1 less than or equal to S0).

In order to examine the instantaneous spatial maxima and minima of the response, it is instructive to

consider the case where the reactions regulating the response (rate constants kr, kf) are much faster than the

regulation of the activator and the inhibitor. This allows us to infer important information about the

response, by examining the ratio of activator and inhibitor concentrations.

In order to do this, we note the following. We consider the case where S1 is always non-negative.

This means that the direction of the gradient is not changed, although the steepness may be altered.

A/I = (A0 + A1cosθ)/(I0 + I1cosθ) and hence the maximum of A/I is either at θ = 0 or θ = π.

Furthermore, the maximum is at θ = 0 (co-incident with the maximum of the external signal) if

A1/A0 > I1/I0 and at θ = π if A1/A0 < I1/I0. Now we proceed to examine when the above inequalities

hold good.

Case (i) k−a + kda < k−i + kdi and k−a > k−i. By examining the expressions for A0, I0 and their

regulation by a common controller S0, we can directly use our insight from purely temporal signalling (see

earlier section) to conclude that A0/I0 < ka/ki. In this case similarly examining the regulation of the pair

of variables A1, I1 by controller S1 we conclude that A1/I1 > ka/ki (the“deactivating” constant for A1 is

17



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

less than that of I1). Thus we find that A1/I1 > A0/I0 always and hence the A/I has a maximum always

co-incident with the external signal. This thus corresponds to the case where the compass is able to track a

temporally varying linear gradient with fidelity and provide a response whose maximum corresponding to

that of the external signal.

Case (ii) k−a + kda > k−i + kdi and k−a > k−i. By examining the expressions for A0, I0 and their

regulation by a common controller S0, we conclude that A0/I0 < ka/ki. In this case from the regulation of

the pair of variables A1, I1 by controller S1 we find that A1/I1 < ka/ki. Thus we are unable to conclude

anything about the relative magnitudes of A0/I0 and A1/I1, In fact we can construct simple examples

where the difference between A0/I0 and A1/I1 changes sign during the dynamics (see below), and in this

case, the maximum of the compass response is not guaranteed to be coincident with the maximum of the

external signal.

The conditions above imply that for k−a > k−i (fast activator), the contrast between diffusivities has

to be sufficient to ensure that the maximum of the cell compass response is co-incident with the external

signal in a linear gradient: kdi − kda > k−a − k−i. It is interesting to compare this with the condition for the

response maximum to be co-incident with the external signal maximum in a static linear gradient derived

previously: kdi/k−i > kda/k−a

From the two inequalities, it is easy to see that (for all positive kinetic constants and diffusivities)

that if kda + k−a < kdi + k−i, then kdi/k−i > kda/k−a, when k−a > k−i. To see this (Fig. 4) we examine

the two lines kda + k−a = kdi + k−i and kdi/k−i = kda/k−a. In the kda − kdi space the second line is a line

of slope less than 1 passing through the origin, whereas the first line is a line of slope 1, with a positive

y-intercept, and hence they do not intersect in the positive quadrant. It immediately follows that the

condition kda + k−a < kdi + k−i implies kdi/k−i > kda/k−a, but not the other way around. In other words,

the module which guarantees the tracking of maximum of linear gradients whose characteristics vary in

time has a smaller parameter range that that where the static response tracks the maximum of the external

signal.

Case (iii) k−a + kda > k−i + kdi and k−a < k−i. By examining the regulation of A0, I0 by a

common controller S0 (and similarly regulation of A1, I1 by S1) we conclude that A0/I0 > ka/ki and

A1/I1 < ka/ki. Thus we find that A1/I1 < A0/I0 and hence the A/I has a minimum always co-incident

with the maximum of the external signal. This thus corresponds to the case where the compass provide a

response whose maximum tracks the minimum of the external signal in a temporally varying linear gradient

Case (iv) k−a + kda < k−i + kdi and k−a < k−i. By examining the regulation of A0, I0 by a
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common controller S0 (and likewise for regulation of A1, I1 by S1) we conclude that A0/I0 > ka/ki and

A1/I1 > ka/ki. Here again, just as above, we are unable to conclude anything about the relative

magnitudes of A1/I1 and A0/I0 and hence cannot conclude that the compass tracks the minimum.

Again just as above we find that the range of parameters for the maximum of the module to track the

minimum of the external signal in a temporally varying linear gradient is less that that for a corresponding

static gradient.

The previous results can be summarized in the two schematic graphs in Fig. 4 showing the

diffusivity parameter space. In Fig. 4 (a) (which corresponds to k−a > k−i) in the positive quadrant, we see

that the region above line 1 corresponds to the region where the maximum of the response corresponds to

that of the external signal even for a temporally varying linear gradient, while the parameter region

between the two lines corresponds to one where static responses are tracked with the response maximum

co-incident with that of the external signal, without this property being preserved when the gradient is

varied temporally. The region below line 2 is one where the response to static linear gradients is one where

the maximum of the response is co-incident with the minimum of the external signal. Here again, in

spatio-temporally varying signals, the instantaneous maximum of the internal response can either be

coincident with the maximum or the minimum of the external signal. Fig 4(b) shows a similar picture for

the case where k−i > k−a, where an essentially similar picture to Fig 4(a) is seen. There is a region of

parameter space (below line 1) where the maximum of the response corresponds to the minimum of the

external signal in both static and temporally varying linear gradients, and a larger region in parameter space

(below line 2), where the maximum of the response tracks the minimum of the external signal for static

gradients. This indicates how the response to spatiotemporally varying signals even with simple spatial

profiles can be quite subtle and depend in a rather delicate manner on the various parameters.

Bounds on response We finally turn to the issue of whether, like in the case of purely temporal

signalling, we can establish non-trivial bounds for the response of the module. In case (i), we have

k−a > k−i and k−a + kda < k−i + kdi. Here, the maximum of the response is at θ = 0 and the value of A/I

here equals A0 + A1/I0 + I1. Since A1 < A0 and I1 > 0, the response here is always less than 2A0/I0

which, further, is always less than 2ka/ki. This thus forms an upper bound for A/I and hence an upper

bound for R∗ = 2ka/ki/(kr/kf + 2ka/ki). In this case the lower bound for R∗ is 0, as seen from purely

homegenous regulation.

In case (ii) k−a > k−i but k−a + kda > k−i + kdi. In this case, we still have a bound for
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A0 + A1/I0 + I1 equalling ka/ki (since A0/I0 < ka/ki and A1/I1 < ka/ki). However, we can no longer

guarantee that the maximum is at θ = 0. Furthermore, one cannot find a bound for the value of A/I at the

other location of its possible maximum (θ = π) independent of the diffusivities. In fact it is easy to see that

if the inhibitor is completely non-diffusible, then for gradients where S0 = S1, then I0 = I1, and hence the

A/I goes to infinity (resulting in response element concentration taking the value 1 here). Nevertheless as

before, we can also assert a lower bound for A/I of 0, and also claim an upper bound for A/I (and a

corresponding one for R∗) of ka/ki at the location θ = 0.

Case (iii) occurs when k−a < k−i and k−a + kda < k−i + kdi. Here A0/I0 > ka/ki and

A1/I1 > ka/ki. Here again it is immediate to see that A0 + A1/I0 + I1 > ka/ki. However, just as in case

(ii) we cannot guarantee that the minimum of A/I is at θ = 0. In fact here, in the case of a completely

non-diffusible activator, A/I can reach the value 0 at θ = π when S0 = S1. Hence there are cases where

R∗ may attain a value 0. Nevertheless, one can assert that the upperbound for R∗ is 1, and also a lower

bound for R∗ at θ = 0 of ka/ki.

Case (iv) k−a < k−i and k−a + kda > k−i + kdi. Here we have A0/I0 > ka/ki and A1/I1 < ka/ki.

Here the minimum of the response occurs at θ = 0 and the corresponding value of A/I given by

A0 + A1/I0 + I1 is always greater than A0/2I0 (since A1 > 0 and I1 < I0), and hence A/I is always

greater than ka/2ki. Thus in this case, we have a lower bound for R∗ =ka/2ki/(kr/kf + ka/2ki). The upper

bound for R∗ is 1 as is seen in the case of purely homogeneous signalling (S1 = 0).

7 Response to spatial and temporal signals

We now discuss the response of this module to imposed homogeneous and gradient signals, in light of the

results presented in the previous section extending some of the insights obtained there. Again, we base our

analytical insights on the case where the reactions regulating R∗ are much faster than those regulating A, I .

In particular we will analyze what happens when the module is subjected to either a gradient, or

homogeneous stimulation superimposed on a pre-existing gradient or simultaneous increases in the

strength of the gradient and mean value of external concentration field.

The essential insights into the behaviour of the module are presented in Fig. 4 The essential insight

is that the dynamical subsystem involved in regulating the variables A0, I0 and A1, I1 are similar in

structure. Further, both result in the adaptation of the variable A/I in step changes of the input. The steady

state value of A0/I0 when subject to a non-zero input S0 is kak−i/kik−a, while the steady state value of
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A1/I1 when subject to a constant input S1 equals ka(k−i + kdi)/ki(k−a + kda).

We first consider the case when k−a > k−i (see Fig. 5). Further suppose k−a/kda > k−i/kdi. Note

that this corresponds to the case where the maximum of the response in a static linear gradient is

co-incident with the external signal maximum. Note from above that this precisely corresponds to the case

where the steady state value of A1/I1 ( which is independent of the stimulus S1) is greater than the steady

state of A0/I0 (which is independent of the stimulus S0). Now we can consider two cases as before: (a)

k−a + kda < k−i + kdi This implies that the steady state value of A1/I1 is greater than ka/ki and thus as

mentioned before the value of A1/I1 is always constrained to be above ka/ki while that of A0/I0 is

constrained to be below ka/ki. Thus the vertical “trajectories” of these two quantities never cross the same

horizontal line at the same time. Thus the maximum of the response is coincident with the maximum of the

external signal for any combination of step changes in S0 and S1. (b) k−a + kda > k−i + kdi. This means

the steady state values of A0/I0 and A1/I1 are both below ka/ki. By looking at Fig. 5(b) we can now see

conditions where the maximum of the response is not coincident with the instantaneous maximum of the

external signal. This corresponds to the crossing of the trajectories of A0/I0 and A1/I1 past the same

horizontal line at some instant. This immediately suggests scenarios in which this could happen. These

include

(i)The case where the module is subject to a basal value of S0 and S1. A step increase in S0 of

sufficient magnitude, keeping S1 fixed, will result in the value of A0/I0 increasing transiently past the

steady state of A1/I1 (note that an upper bound for A0/I0 is ka/ki and this is approached as the size of the

step increases becomes very large). Thus for a change in S0 the module will transiently, for a period of

time, exhibit a response whose maximum is at the instantaneous minimum of the external signal. This is

demonstrated in Fig. 6

(ii) The same as (i) except that there is a step increase in both S0 and S1. A jump of sufficient

magnitude in S0 can still lead to the same scenario as before.

(iii) The same as (ii) except that there is a step increase in S0 and step decrease in S1.

(iv) Keeping S0 fixed, a step decrease in S1 can lead to this. Note however that keeping S0 fixed, a

step increase in S1 will never achieve this scenario.

It is worth pointing out also in the case of (ii) that this condition can be achieved even if the basal

value of S1 is zero. This is because, when S1 is increased, A1/I1 decreases from ka/ki to reach its eventual

steady state value.

Now suppose that k−a/kda < k−i/kdi (Fig. 5(c)). This corresponds to a response where the
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maximum of the response coincides with the minimum of the external signal. Here the value of the basal

level of A1/I1 is less than that of A0/I0. Note that it necessarily follows that k−a + kda > k−i + kdi. Here

again a crossing can occur for example when S0 is decreased keeping S1 fixed, but also by keeping S0

fixed (for suitable values of S0) and increasing S1 sufficiently. Thus transiently, for a period of time, the

response of the module can exhibit a maximum co-localized with the maximum of the external signal. This

is also eveident by inspecting Fig. 5(c).

The case when k−a < k−i can be analyzed in exactly the same way (by interchanging the role of

activator and inhibitor), and is briefly discussed below. First we consider k−a/kda < k−i/kdi. The basal

level of A0/I0 in fixed S0 is greater than that of A1/I1 in fixed S1

Here we can examine the following scenarios:

(a) k−a + kda > k−i + kdi. Here A0/I0 is always greater than ka/ki while A1/I1 is always less than

this value, and no simultaneous crossing can occur. Hence even in dynamic variation of mean value and

gradients the maximum of the response is coincident with the minimum of the external signal.

(b) k−a + kda < k−i + kdi. Here exactly as in previously examined cases a crossing can occur, either

by a sufficient step increase in S0 keeping S1 fixed, a sufficient increase in S0 along with a step increase (or

decrease) in S1, and even keeping S0 fixed and decreasing S1.

If k−a/kda > k−i/kdi, then this corresponds to the case where the response in a static gradient has a

maximum co-incident with that of the external signal in a linear gradient. This means that the basal value

of A0/I0 for fixed non-zero S0 is lower than that of the basal value of A1/I1 for fixed non-zero S1. Here a

crossing scenario can occur again decreasing S0 keeping S1 fixed, but also by keeping S0 fixed and

increasing S1 sufficiently.

7.1 Responses to other signals

In this subsection, we briefly consider the response of the module to other signals. We first consider the

response of the module to symmetric signals (symmetric with respect to a particular axis, in this case

x = 0). Thus we examine an input signal of the form S = S0(t) + S2(t)cos(2x). Just as before, we can

obtain the activator and inhibitor responses by decomposing them into Fourier series:

A = A0 + A2cos(2x), I = I0 + I2cos(2x). This results in the different equations for the Fourier modes

22



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

exactly as before:

dA0

dt
= kaS0 − k−aA0

dA2

dt
= kaS2 − (k−a + 4kda)A2

dI0

dt
= kiS0 − k−iI0

dI2

dt
= kaS2 − (k−a + 4kdi)I2

(23)

This determines the evolution of the Fourier modes. We notice that the structure of these equations is very

similar to that of the case of a linear gradient, except that here the factor 4 appears along with the diffusion

coefficients in the equations for the evolution of A2, I2.

When the inputs S0, S2 are constant, at steady state, the ratio of activator to inibitor is given by

A

I
=

(ka/k−aS0 + ka/(k−a + 4kda)S2cos(2x))

(ki/k−iS0 + ki/(k−i + 4kdi)S2cos(2x))

(24)

From this one can immediately deduce conditions under which the maximum of the internal

response coincides with that of the external signal. For specificity, we consider the case k−a > k−i. Other

cases are analyzed exactly as before. The condition that the maximum of A/I coincides with the maximum

of the external signal (θ = 0, π) is given by

4kda/k−a > 4kdi/k−i

(25)

This leads to exactly the same condition as that when the input is a linear gradient. Thus a range of

parameters which leads to a response maximum coincident with signal maximum in a linear gradient, also

leads to the same situation in this case of this bi-modal signal. If this inequality is violated, then the

response has a maximum co-localized with the minima of the input signal (θ = π/2, 3π/2).

If we examine the case where both S0 and S2 vary with time, and examine the condition for the

response maximum to be co-localized with the instantaneous maximum, we find the required condition to

be

k−a + 4kda < k−i + 4kdi

(26)
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This is a less conservative requirement (for the difference in diffusion coefficients of inhibitor and

activator) than the corresponding case for a linear gradient. Thus if the corresponding situation was

guaranteed in the case of linear gradient, it would also be guaranteed for such a signal, but not the other

way around. Thus we can augment the diagrams presented earlier, by including this extra line. We thus

obtain 4 regimes (see Fig. 7): in the first we have dynamic tracking of the maximum for both linear and

bi-modal signals, in the second, we have dynamic tracking of bi-modal but not linear signals, in the third

we have no guarantee of dynamic tracking for linear or bi-modal signals but guaranteed static tracking, and

in regime 4, the maximum of the response is not even co-localized with the input signal maximum even in

static response. The lack of dynamic tracking in regime 3 to bi-modal signals can also be obtained by

imposing step changes of S0 and/or S2 similar to the previous section. Similar diagrams can be obtained

for other parameter regions.

The above results have implications for the response of the module to a combination of linear

gradients and bi-modal signals, but we do not discuss that here.

8 Conclusions

Adaptation, the process by which levels of key signalling intermediates are reset or readjusted according to

levels of external stimuli (or other upstream signalling components) is observed in widespread contexts in

cellular signalling, especially in sensory signal transduction (Fain et al., 2001). This allows the response of

the cell/signalling pathway to “filter out” background levels of the external stimulus, allowing the pathway

to produce a response which depends on key characteristics of the stimulus (temporal gradient, spatial

gradient) independent of the background signal strength. Examples of this process abound and include

bacterial and eukaryotic chemotaxis. In these cases, the capability of a cell to respond to gradients in a

sensitive way, over wide ranges of absolute levels of stimuli is critical. Adaptation in these systems has

been found to be robust over wide ranges of absolute levels of external stimuli. From a modelling and

systems perspective, adaptation is an important feature of signal propagation through biochemical

pathways. It is of interest to examine what network structures, interactions and characteristics allow for

such a feature. An important aspect is the robustness of adaptation and whether or not models can capture

the adaptation property independent of parameter values.

In this paper we examined a module of adaptation, which generalizes a model developed (Levchenko

and Iglesias, 2002) to capture robust perfect adaptation in eukaryotic chemotaxis in Dictyostelium. Here
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we consider a more general version of that module, where we allow both the activator and inhibitor to be

diffusible, and also for the regulation of either of these entities to be faster. This is useful for various

reasons. Firstly it is useful in understanding signalling and adaptation to both specific “frontness” and

“backness” components of the chemotaxing cell. It provides important insights into how different kinds of

temporal adaptive and spatial behaviour may be captured. Secondly it provides a unified perspective from

which key features of the activating and inhibiting pathways (reaction rates, diffusivities) can be

understood, by varying parameters. Analyzing this framework provides insights into the extent to which

temporal and spatial responses may be correlated. Finally, this setting is very useful for understanding how

the adaptive behaviour arising from the interplay of two counteracting pathways can also lead to

restrictions into the range of signalling and downstream response. The rather generic features of the

module involving counteracting pathways involved in spatial and temporal signal transduction indicate that

many insights obtained here may be relevant for other systems with adaptive signal processing.

Our aim was to carefully characterize spatial and temporal signal processing and input-output

properties of this module. The transient response of the module when subject to a homogeneous step

change in input involves an increase above basal levels if the degradation rate constant for the activator

(k−a) is greater than that of the inhibitor (k−i) and involves a decrease in the opposite case. If the

degradation rate constants are equal, the module exhibits no change in spatially homogeneous stimulation.

The common regulation of opposing reactions by the external signal results in a non-trivial upper bound for

the response in the case k−a > k−i and a non-trivial lower bound when k−a < k−i.

We then examined the response of the module to simple static signals such as a linear gradient. In

such a static gradient the response of the module has maximum co-incident with the maximum of the

external signal if kda/k−a < kdi/k−i, where kda, kdi are the diffusivities of the activator and inhibitor. Such

behaviour is representative of a frontness component in chemoattraction (with adaptive signalling). On the

other hand in the case of the opposite inequality the maximum of the response is always co-incident with

the minimum of such an external signal. This behaviour is representative of a frontness component in

chemorepulsion or a backness component in chemoattraction. The difference in the magnitudes of these

two quantities is proportional to the amplitude of the output. If the two quantities are equal, no gradient

response is elicited in a linear gradient.

We showed that by a suitable choice of degradation constants and diffusivities, it is possible to have

any combination of responses to homogeneous stimulation (increase, decrease, no response) transiently,

and any combination of static response in a linear gradient (co-aligned maxima, counter-aligned maxima,
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no gradient response). We show that in certain cases, response values in a gradient even at steady state can

exceed the bounds of those achievable in temporal signalling. Thus one should be very careful in trying to

correlate homogeneous and gradient responses in systems with such adaptive behaviour. This is important

in trying to understand the dynamics of different signalling components in such processes and emphasizes

the need to carefully experimentally monitor the response of these components to a variety of stimuli.

An analysis of how the module processed spatiotemporal signals such as linear gradients whose

gradient strengths could change with time reveals that the dynamic variation of the gradient strength could

result in a response whose maximum can“switch” from being aligned to the maximum to being aligned to

the minimum of the external signal if the inequality kda + k−a < kdi + k−i is violated. It should be noted

that this inequality provides a stronger constraint, than the inequality for the static linear gradient above,

kda/k−a < kdi/k−i. It should be emphasized that while the strength of the gradient in the above analysis

was varied, the direction of the gradient was not varied. Obviously if the direction of the gradient is

abruptly changed, there would necessarily be some time lag before the maximum of the response could

track that of the signal, if at all. The above studies were further reinforced with studies of module response

to a combination of homogeneous and gradient signals as well as bi-modal inputs. In certain parameter

regimes we also established bounds on the response in spatially and temporally varying signals. Finally we

also examined the issue of observability of the module. We showed that in purely temporal signals as long

as k−a �= k−i, then the system was observable in the sense that if two different systems exhibited the same

output for all variations of the input, they necessarily had to have the same state variable values.

The above analysis provides a unified perspective from which to get some basic insights into spatial

and temporal signal processing with adaptation. While the basic module is relevant to signalling in

Dictyostelium, the basic nature of the module– involving a dynamic interplay between an activatory and an

inhibitory process to ensure adaptation– implies that important insights can be transferred to other adaptive

processes. The subtlety of spatial and temporal processing even in such a simple module has been

demonstrated. The feature of adaptive signalling has important and non-trivial implications for how spatial

and temporal signals are processed in such networks. The study above suggests that by changing different

parameters (even just kinetic parameters) it is possible to alter the response to some or all of the

inputs-temporal, spatial and spatiotemporal. This has important implications. It means that inhibiting some

pathway involved in adaptive signalling, can have completely different effects on signal transduction from

what may naively be expected. It also suggests that other external or internal chemical factors could

themselves modulate or completely alter the signal transduction in very subtle ways in different contexts.
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The simplicity of the module, as well as the insights resulting from the above study, point to potential

applications of this study in synthetic biology. The feature of adaptation being of central importance in

various biological sensing processes, it is very conceivable that this very same property could be employed

intelligently in synthetic biological circuits involving spatial sensing. The results in the above study would

provide the basis for designing artifical adaptive signalling circuitry with spatial signal processing.

While the studies here characterize the response of such a module to relatively simple inputs, further

work must be done to understand the response of such a module to complex inputs. This is needed to better

understand the role of adaptation in spatial and temporal signal transduction. Typically signal processing in

many such systems also involve thresholds, saturation and feedback, to name a few elements. These

elements could serve to strongly amplify or accentuate the differences in static/dynamic behaviour observed

here, or interact with the adaptive signalling in a very non-trivial way. We will systematically examine the

roles of these elements subsequently. In fact in such cases, the range and subtlety in the overall behaviour

could have its origin in the range of dynamic behaviour analyzed here. The coupling of such adaptive

behaviour with downstream signalling can also be examined carefully. More generally the consequences of

having adaptive signal processing as part of information propagation is worth examining carefully.

In summary, it is worth stating that while the obvious biochemical complexity involved in cellular

signal transduction is well known, the complexity in signal propagation through biochemical circuits

should not be underestimated. The roles of signal processing become apparent in processes such as

adaptation and analysis from a systems perspective coupled with biochemical and experimental

investigations provide a way of unravelling (and potentially also artificially constructing) interesting signal

processing realized by natural biochemical circuits with important consequences.
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Fig. 1. Schematic of model network (a) The reaction network depicting the regulation of an activator A

and an inhibitor I by the external signal, both of which regulate in parallel, the conversion between

R and R∗. The response element R∗ is the output of the module. (b) The wiring diagram of (a)

contains no spatial information. The schematic in (b) indicates that the signal transduction to the

elements A and I could have very different spatial characteristics. This is another aspect of the

parallel (and opposing) regulation of the response element by the activator and the inhibitor. (c) The

model is postulated on the membrane of a cell, idealized as a circular disc. This results in the model

being postulated on a one-dimensional domain, with periodic boundary conditions.

Fig. 2. Processing of purely temporal signals. The module responds to homogeneous stimulation with

either a transient jump (when k−a > k−i) seen in (a) or with a transient dip (when k−i > k−a) seen in

(b), before returning to basal levels. Parameter values for (a) are

ka = k−a = 1.0, ki = k−i = 0.2, kr = 2, kf = 2. This response is independent of the diffusivities.

Stimulation is changed from a basal value of S = 0.2 to S = 2.

Fig. 3. Steady state response to gradients This figure shows the responses of the module to a linear

gradient S(θ) = 2.0 + 1.0cosθ. The response is plotted as a function of position θ (which varies

from 0 to 2π). Case (a) corresponds to faster activator, and more strongly diffusible inhibitor

ka = k−a = 1.0, ki = k−i = 0.2, kr = 2, kf = 2, kda = 0.1, kdi = 1.0. Case (b) corresponds to faster

activator, and more strongly diffusible activator

ka = k−a = 1.0, ki = k−i = 0.2, kr = 2, kf = 2, kda = 1.0, kdi = 0.1. Case (c) corresponds to faster

inhibitor, and more strongly diffusible inhibitor

ka = k−a = 0.2, ki = k−i = 1.0, kr = 2, kf = 2, kda = 0.1, kdi = 1.0. Case (d) corresponds to faster

inhibitor, and more strongly diffusible activator

ka = k−a = 0.2, ki = k−i = 1.0, kr = 2, kf = 2, kda = 1.0, kdi = 0.1. Cases (a) and (c) result in a

response co-incident with the maximum of the external signal, while cases (b) and (d) result in a

response whose maximum is co-incident with the minimum of the external signal. Case (e)

represents a situation where a homogeneous response is seen in response to a linear gradient (see

text). Parameter values are ka = k−a = 1.0, ki = k−i = 0.2, kr = 2, kf = 2, kda = 0.5, kdi = 0.1.

Fig. 4. Regions in diffusivity space corresponding to differing responses to linear gradients Case (a)

shows the case of a faster activator k−a > k−i. Line 2: kda/k−a = kdi/k−i separates two regions with

different steady state responses of the module to linear gradients. Line 1: kdi + k−i = kda + k−a
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separates two regions with different behaviour to linear gradients whose characteristics may vary in

time. Case (b) shows these same lines for the case of a faster inhibitor k−i > k−a.

Fig. 5. Different scenarios corresponding to steady states of A0/I0 and A1/I1 (see text) This figure

examines the case of a faster activator k−a > k−i. The relative positions of steady states of A0/I0

(full line) and A1/I1 (dotted line) which are both independent of mean value and gradient strength of

a linear gradient, relative to ka/ki (dashed line), which is an upper bound of A0/I0 in any temporally

varying linear gradient or homogeneous signal. Changes in mean value or strength of gradient

involve transient changes in A0/I0 and A1/I1 from their basal values, and may be viewed as vertical

trajectories parametrized by time. Case (a), corresponds to k−a + kda < kdi + k−i. In response to any

temporally varying linear gradient, the value of A0/I0 moves vertically relative to its basal level, but

is always less than ka/ki. The value of A1/I1 changes vertically but always remains above ka/ki.

Thus at no instant of time can the “trajectories” of these two cross the same horizontal line. This

implies than there can be no transient reversal of orientation in temporally varying linear gradients

(see text). In cases (b) and (c), these steady state values lie on the same side of ka/ki and hence

situations can occur where these quantities can temporally cross the same horizontal line at some

instant of time, signalling a reversal in orientation of maximum of the response. See text for more

details.

Fig. 6. Temporary reversal of maximum/minimum of response in temporally varying linear gradient

A cell initially at a steady state response to a basal gradient of S = 0.2 + 0.2cosθ is subject to a

homogeneous stimulation superimposed upon a gradient, leading to it being subject to a signal

S(θ) = 2 + 0.2cosθ at t=0. The final steady state response is shown in (a) with a response whose

maximum co-incides with that of the external signal. However at at intermediate time t = 2, the

response is one, whose maximum co-incides with the minimum of the external signal. A plot of the

response of the cell at θ = 0 (dash-dotted line) and θ = π (full line) which are the locations of the

cell in contact with the maximum and minimum of the external signal clearly demonstrates the

crossing of these trajectories in time.

Fig. 7. Regions in diffusivity space corresponding to differing responses to bi-modal inputs This

figure shows the line kdi + k−i/4 = kda + k−a/4 (dashed line) which separates regions of diffusivity

space into regions with different responses to temporally varying bi-modal signals. This is

superimposed on Fig. 4. The line which separates different steady state response to bi-modal signals,
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is still the line ka/k−a = kdi/k−i.
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