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Abstract

The pennate planktonic diatom Pseudo-nitzschia delicatissima is very common

in temperate marine waters and often responsible for blooms. Due to its sur-

rounding rigid silicate frustrule the diatom undergoes successive size reduction

as its vegetative reproduction cycle proceeds. Since a long time the life cycle

of diatoms has raised scientific interest and some years ago extensive samples

of Pseudo-nitzschia have been taken from coastal waters. Mating and cell size

reduction experiments were carried out and served us as a data basis for a

probabilistic model of cell size reduction.

We applied a homogenous non-stationary continuous-time Markov chain to

model the development of individual diatoms from an initial size of about 80

μm until cell death which occured when the size reached its low at about 18μm.

In contrast to conventional curve fitting models we are capable of calculating

confidence intervals for estimates of the population ages as well as integrate the

process of auxospore formation into the model. We thus propose a unique way

to describe the stationary size distribution in a diatom population in terms of

cell division and auxospore formation probabilities of its individuals.

∗Corresponding author

Preprint submitted to Elsevier December 19, 2008
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Introduction

Pseudo-nitzschia delicatissima (Cleve) Heiden is a chain-forming pennate

planktonic diatom which is often found in abundance in temperate marine wa-

ters. Surrounded by a rigid silicate frustrule which provides mechanical pro-

tection against predators [1], the diatom undergoes progressive size reduction

as its vegetative reproduction cycle proceeds. The original cell size is usually

restored by entering a phase of sexual reproduction upon formation of an aux-

ospore, which is not surrounded by a silicate shell and thus capable of expansion

[2, 3]. Besides the intriguing nature of the process of diatom reproduction in

itself, it has been shown that the diatom cell size plays an important part in

community analyses [4]. The silicate shell itself is another focus of research with

potential applications in modern technology and nanosciences [5]. Until now,

most mathematical analyses of the processes involved have focused on linear

models incorporating covariates [6] or were content with estimating single char-

acteristics like average division rates or maximum size reduction rates [7, 8, 9].

Without doubt all these studies have given significant insights into the cryptic

life cycle of diatoms. Still, to our knowledge no model has yet been proposed

which is capable of modelling the size reduction of individual cells stochasti-

cally and thus might reveal the immanent mechanics of size distributions within

a population.

In 2005, carried out mating experiments on three Pseudo-nitzschia deli-

catissima samples taken from the Gulf of Naples (Mediterranean Sea, Italy).

Progenies of the original samples were grown in monoclonal cultures to prevent

any sexual reproduction, and their continuous reduction in cell size was mea-

sured over a time period of 265 days using light microscopy [7]. The observerd

cell sizes ranged from 80μm apical axis length down to 18μm after 265 days,

until the cells finally died (for an illustration of the original dataset, see Fig. 1).

In order to achieve this desired individual modeling of size reduction, we

combined the data collected by Amato and co-workers [7] with a modeling ap-

proach based on Markov chains (MCs). Markov chains are a family of memory-
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less stochastic processes in which individuals assume certain states, and can

move from one state to another with a given probability. Any object can only

be in one state at any given point in time, and the transition probability to

reach the next state only depends on the current state of the object (Markov

property). In the homogenous case, transition probabilities additionally do not

change over time [10].

Random processes comparable to these have been successfully used earlier

and in similar settings. One is the stochastic description of the Polymerase

Chain Reaction (PCR) which was modelled by Weiss and von Haeseler [11]

using a randomly bifurcating tree or branching process to describe the step-wise

doubling of the amplified DNA molecules under a certain error rate. To also

model the mutations which can occur during the error prone replication process,

the authors superimposed a Poisson process with an estimated mutation rate.

This approach of modeling the PCR was successfully applied and extended by

the authors [12] and other researchers [13, 14] as well.

We show here how an individual stochastic model of the cell division and

sexual reproduction cycle of a diatom can lead to interesting insights about the

size distribution in the population under study. The model is trained and verified

on distributions of three independently sampled populations. We describe and

validate the reliability of our results by back-estimation of the population ages

and formalize the integration of additional covariates like changing climatic

conditions or spore stages for spore forming species.

Material and Methods

Markov chains

A Markov chain X is a random process, i.e. a family Xt : t ∈ T of random

variables indexed by some set T . If T = R we call X a continuous-time random

process. X takes values in a usually discrete state space S such that every Xt

is a discrete random variable that takes one of |S| possible values [10].

The transition rates (in the continuous-time case) from one state to another

3



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

are given in the |S| × |S| rate matrix Q, such that

πt = π0 etQ,

where πt is the state distribution at time point t and π0 is the starting distri-

bution of the chain. [10].

Fisher Information and the variance of the MLE

The definition of the Fisher Information from a sample of n observations

and any PDF f is based upon the score

s(X ; θ) =
∂

∂θ
log f(X ; θ) (1)

of an observation. The information is then given by

I(θ) = −E

(
∂ s(X ; θ)

∂θ

)

= −Eθ

(
∂2 log f(X ; θ)

∂θ2

)

= −

∫ (
∂2 log f(X ; θ)

∂θ2

)
f(x; θ)dx (2)

From the additivity of the information for independent samples it follows,

that

In(θ) = nI1(θ) = nI(θ). (3)

(for proofs see e.g. [15, 16]).

Computation of the variance of the maximum likelihood estimator (MLE) is

based on its property of asymptotic normality, i.e.

(θ̂n − θ)

se
� N(0, 1),

where se is given by the inverse Fisher Information [16]

se ≈
√

1/In(θ).
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Gaussian Mixture Models

Gaussian Mixture Models are a method for unsupervised clustering of datasets.

Several normal density distributions with different means and variances are

mixed and fitted to the original dataset until the approximated density resem-

bles the original as closely as possible. The memberships of individual data

points to one of the gaussian distributions form the cluster predictions. Opti-

mization of the fit is usually achieved bei evaluation of the Bayesian Information

Criterion (BIC) for an Expectation Maximization (EM) fitted model. Mixture

Model estimation of the diatom datasets was performed using the “mclust” R

library [17, 18].

Results

From the original work of we received three independently sampled Pseudo-

nitzschia populations, named F1-5 (Fig. 1), F1-13 and F1-14. Population F1-5

served as a training dataset throughout the analyses, whereas populations F1-13

and F1-14 were used for validation purposes only.

The Markov chain applied for the modelling of size reduction in P. delicatis-

sima populations is a state-discrete continuous-time homogenous Markov chain.

It consists of a fixed number of states or cell size classes. The population devel-

ops continuously over time and as such mitosis — and therefore a size reduction

step — can occur at any given point in time for any of the individuals. The

probability of a state transition, i.e. one or a certain number of cell divisions,

to occur does not change over time and only depends on the size of the cell.

In our initial model we assumed that cells die once they have reached the

lowest size class and no covariates were included. With natural size reduction

per generation being typically very low (< 1.5 μm gen−1, [7]) and cell sizes

measured with a high variation from 18 to 80 μm this would have led to more

than 40 different states. As the measurements in the experimental datasets were

only taken about once every week with longer breaks between days 70 and 139

and after day 153, the samples were not fine-grained enough to identify those 40
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state transitions. We therefore chose to reduce the number of states to an still

informative number by maximum likelihood estimation of a gaussian mixture

model.

Data discretization

In order to find an appropriate number of states which still reflect the gradual

stepwise reduction of cell size and thus allow for an accurate modelling but are

easy to handle, we applied a gaussian mixture model (see Fig. 2) to find the

most likely number of size categories and their respective limits (Table 1). See

material and methods for details.

To prevent overfitting, we evaluated the Bayesian Information Criterion

(BIC) for ML estimates with different numbers of clusters (Fig. 3). We found

that the original size distributions are fitted best by seven categories having dif-

ferent variances and assigned each measurement to one of the seven size classes,

which themselves each covered a size range between 5.5 and 17.5 μm. For the

discretized data, see table 2.

Estimation of an initial rate matrix

In order to find the optimal rate matrix for our training population, we

chose to first setup an initial rate matrix by estimation of the holding times

of the states using the linear regression model (Fig. 1) applied earlier. After-

wards this initial rate matrix was further optimized by numerical optimization

of the corresponding MLE for the Markov chain given the training data. The

first approximation step was merely included to improve the condition of the

optimization problem and to increase convergence speed.

Holding times can serve as estimators for the initial rate matrix Q. The

holding time for state i is exponentially distributed with a mean equal to 1/qii,

where qii is the i’th main diagonal entry of the rate matrix Q. We put further

constraints on the rate matrix by modelling the system as a pure birth process

with a n× n rate matrix
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Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

−q12 q12 0

. . .
. . .

−qn−1 n qn−1 n

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

(qij > 0 for all i, j), thus allowing only transitions from one state to the next

“smaller” state with no increase in size or skipping of states allowed, corre-

sponding to the biological intuition that cell division occurs successively. The

inverse regression function of the first model (marked in red in figure 1)

x = y
1

b e−
a
b (5)

was used to estimate the holding times using the previously determined state

size bounds. The resulting holding times reached from 2.99 days for the second

state to 168.7 days for the sixth state (see table 3). The same rate with opposite

sign was then used as the transition rate into the successive state thereby keeping

the generator matrix consistent.

Finding the optimal Q

After initialization of the rate matrix with sensible starting values the transi-

tion rates of the MC were improved by numerical optimization of the likelihood,

to find the set of parameters that most likely could generate the measured ex-

perimental data.

Therefore, let K be the number of states of the Markov chain, L be the

number of datasets (i.e. the number of distinct points in time at which mea-

surements occured) and N be the (constant) number of observations per mea-

surement. Aditionally, let the vector t of length L hold the actual times at

which the measurement occured (in days).

Then

πtj
= π0 etjQ

describes the state distribution after tj days. xij ∈ {1 . . .K}, i ∈ {1 . . .N}, j ∈

{1 . . . L} is the observed state of the individual i at time point j, and the like-
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lihood of the parameters t and Q given the data is

L(Q) =
N∏

i=1

L∏
j=1

[
πtj

]
xij

=

N∏
i=1

L∏
j=1

[
π0 etjQ

]
xij

.

For simplicity we define nij as the number of individuals in state i at time point

j. Substituting n for x in the likelihood and taking the logarithm yields

L(Q) =

L∑
j=1

K∑
i=1

nij log
(
π0 etjQ

)
i
. (6)

The desired argmaxQ L(Q) was then found numerically by a modified version

of the quasi-Newton BFGS algorithm (L-BFGS-B, [19]) using the R software

package [20].

Model evaluation

First evaluations of the predicted size distributions against the measured

showed, that the initial rate matrix using the holding times as approximations

for the division rates was sensible. With a MSE of 0.3913 (log-likelihood -

395.47) between the relative state frequencies of the experimental and predicted

data this could be improved by the numerical optimization procedure which

reduced the MSE to 0.3144 (log-likelihood -352.33). To further test our model,

we estimated the population age t from each time slice of the original dataset

using the optimized rate matrix Q with the MLE (Eq. 6) and compared it to

the exact times of the experiments (Figure 4). Not surprisingly, the training

dataset could be estimated very precisely for the training dataset (blue). The

two other strains seemed to be only roughly comparable in terms of their size

development (red and green solid line). This could be for two reasons, either the

F1-13 and F1-14 populations indeed developed a unique size reduction dynamic

which differs significantly from our training population or they simply evolve

faster but not different in principle than the F1-5 model. In order to remove

any such linear growth effect we estimated rate calibration factors (RCF) for the
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F1-13 and F1-14 populations to normalize the time line of the three different

Markov chains. This was achieved by a linear model on the estimated times

for each of the two additional populations against the estimated times of the

training set. The slope of the resulting two regression lines was then used as a

linear factor for the time estimates (dotted green and red lines in figure 4).

The RCF compensated for the different overall growth rates but time esti-

mations after normalization still showed some major differences. Between days

0 and 35 growth rates were generally overestimated for both F1-13 and F1-14

populations. Day 35 yielded again a very precise estimate of the population age

for all three populations whereas for later measurements the age was again over-

estimated for the F1-14 and underestimated for the F1-13 population (Figure

4).

Confidence intervals

After computation of the optimal rate matrix it was now possible to deter-

mine the variance of the ML estimator using the Fisher Information in order

to compute confidence bounds for the time estimation.

In the concrete case of our Markov chain we have a family of distributions

parametrized over t

πt(i) =
(
π0 etQ

)
i
,

which give the probability to be in state i at time point t. The log-likelihood of

one observation and therefore the score function (compare eq. 1) is given as

s(i; t) =
∂

∂t
log f(i; t)

=
∂

∂t
log

(
π0 etQ

)
i

=

(
π0 Q etQ

)
i

(π0 etQ)i

.
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Accordingly, by eq. (2) the information of one observation is given through

I1(t) = I(t)

= −E

[
∂

∂t

(
π0 Q etQ

)
i

(π0 etQ)i

]

= −E

[(
π0 Q2 etQ

)
i

(
π0 etQ

)−1

i
+

(
π0 Q etQ

)
i

(
−π0 etQ

)−2

i

(
π0 Q etQ

)
i

]

= −E

[(
π0 Q2 etQ

)
i

(π0 etQ)i

−

(
π0 Q etQ

)2

i

(π0 etQ)
2

i

]

= −

K∑
i=1

[((
π0 Q2 etQ

)
i

(π0 etQ)i

−

(
π0 Q etQ

)2

i

(π0 etQ)
2

i

)(
π0 etQ

)
i

]

= −

K∑
i=1

((
π0 Q2 etQ

)
i
−

(
π0 Q etQ

)2

i

(π0 etQ)i

)
. (7)

Therefore by the additivity of the score (see eq. 3) the overall information

is

In(t) =

K∑
i=1

Nij

((
π0 Q2 etQ

)
i
−

(
π0 Q etQ

)2

i

(π0 etQ)i

)
, (8)

where Nij is the number of observations in state i at time point j.

Since the MLE is asymptotically normal, the approximate 95% confidence

bound for the time estimates is given by

t̂± 1.96
√

1/In(t). (9)

For the confidence bounds of the time estimates of the diatom populations

see table 4.

Model extension

Besides the probabilistic assessment of the significance of estimates, the ma-

jor advantage of individual stochastic modeling of diatom state transitions is

the possibility to also include the state of sexual reproduction into the model.

Even though no direct experimental data on the probability of entering the

size-recreating state of sexual reproduction was available, at least some rough

estimates could be taken from the literature. These data were merely used to

illustrate the principle approach of integrating this factor: It is generally ac-

cepted that smaller cells have a higher probability of entering the sexual phase,
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typically when they reach about 30%-40% of their maximum cell size [3]. Yet,

more recent reports have stressed, that auxospore formation can occur over al-

most the whole range of cell sizes, somewhere between 20%-90% of the initial

cell size [21, 7]. In general, sex is rare in diatoms and can reach frequencies of

about 4% in blooms [22] or be as low as 0.1 % as reported in A. subarctica and

F. kerguelensis [23, 24].

To illustrate the possibility of integrating sex phases into our model we

proceeded as follows: The number of states was extended to 8, the 8th stage

representing auxospore formation. For simplicity, a transition into the sex phase

was only possible from stages 6 and 7 (apical axis length < 24μm, i.e. within

the preferable 30%-40% range), with a higher rate from stage 7 and both rates

adjusted such that the auxospore stage probability in the stationary distribution

of the chain never exceeded 4%.

The stationary distribution introduced by the sexual phase had its modus

at state 5, with an expected mean state of 3.8 (not considering the sex state).

For a detailed view of the distribution and the convergence of the chain into

this distribution over time, see figure 5.

Even though we lacked the necessary experimental data to verify our results,

the chosen rate matrix yielded a holding rate of −0.5 for the sex state 8. This

means that according to our model, the length of the sexual phase should be

exponentially distributed with a mean length of 2 days, a result which is in line

with mating experiments in Pseudo-nitzschia [21].

Discussion and conclusions

The intruiging life cycle of diatoms has always drawn the attention of many

researchers. But even though various experimental projects have been carried

out, most of the published articles have been solely descriptional. The number

of mathematically oriented works on the subject is still low, with most of the

available papers focusing on estimating single characteristics of diatoms, typi-

cally division rates or size reduction per generation under differing photoperi-

ods, nutrient status, salinities or water temperatures. This is typically achieved
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by applying straightforward statistical methods, like linear regression. In this

manner, the project presented here has several advantages: (i) Modelling di-

atom size reduction as an individual-based stochastic process is certainly closer

to biological reality than a regression line on the e.g. median of cell sizes of a

population. (ii) We are able to integrate the auxospore formation process into

the model without changing the model paradigm. This has the immediate effect

that cell state transitions can be modeled, even when the size distribution has

reached stationarity and the mean cell size is constant, i.e. where standard lin-

ear models of size reduction fail. (iii) The stochastic nature of the process gives

us the opportunity to compute statistical properties, like confidence bounds, for

all model parameters, i.e. the rate matrix, time estimates, mean size reduction,

etc.

As a drawback we must note, that the fitting of the Markov chain, even with

a reduced number of states, where one state transition accounts for more than

one cell division, requires several precise measurements of the size reduction

process. Preferably, measurements should be taken on an individual basis, i.e.

in our case the division rates of individual diatoms in a population should be

measured, something which is certainly difficult to achieve. Fitting the Markov

chain only by means of its marginals as in our example is suboptimal, but

feasible. To increase model accuracy, more measurements per time interval

would be desirable, especially if we aim at a more fine-grained model, where

one state transition accounts for one cell devision.

But even with our relatively reduced sets of experimental data we success-

fully fitted the model and were able to estimate population ages for the F1-13

test population. In order to comment on the differences between measured and

estimated ages for the F1-14 population, additional measurements would be

essential. Fitting the Markov chain on a variety of populations taken under

comparable experimental or environmental conditions would give us the oppor-

tunity to see whether our rate matrix is general.

Nevertheless, our proposed principle of modeling diatom size development

is advantageous. An accurate model is not only capable of modeling typical
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size distributions, but also able to detect divergence from the stationary distri-

bution of the chain, even when other characteristics like mean cell size remain

constant. This might be important for the detection of abnormal population

developments, like blooms, or for their modeling. In summary, the description

of the size distribution of a population by means of cell divisions of individual

diatoms is novel. The advantages more than make up for the increased demand

for experimental data and might give valuable insights into the development of

the single cell as well as population wide effects like blooms or oscillary size dis-

tributions due to seasonal effects. It is the first integrated model of the complete

life cycle of a diatom and as such a valuable tool for both bio-mathematicians

and diatom researchers alike and a basis for further development of diatom size

reduction models.
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Figure legends

Figure 1: Original data showing the decrease in cell size over time. The blue and red lines are
fitted linear regression models with only the predictor (blue) or both predictor and outcome
log-transformed (red). The inverted regression function of model 1 (red) was later used for
approximation of the holding times. Both models showed a high goodness-of-fit with a R2 of
0.92 and an overall p-value < 2.2e-16.

Figure 2: Combined density distribution of the seven scaled normal densities with means given
in the figure legend. These seven clusters were used to divide the original size range into seven
discrete categories, each represented by a state in the Markov chain.

Figure 3: Results of the mixture model fitting process. The number of clusters in the data
is evaluated against the Bayesian Information Criterion (BIC) for both a variable variance
(dashed red) and constant variance (solid black) model. Note, that in both cases seven
clusters provide the best fit to the original data density.

Figure 4: Plot of estimated population ages against the residuals (estimated - real) for the
original dataset (blue, F1-15) and the two test datasets (F113, red and F114, green). The
graph shows time estimates both with (dotted) and without (solid) timeline normalization
through rate calibration.

Figure 5: Convergence of the MC into the stationary distribution over time from an initial
state distribution of π0 = (1, 0, 0, 0, 0, 0, 0, 0).
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Tables

State 1 State 2 State 3 State 4 State 5 State 6 State 7

80.0 74.5 57.0 48.0 37.5 21.0 14.0

Table 1: Lower bounds of the states found by MLE mixture model fitting (in μm).

days 16 29 35 42 49 60 70 139

State 1 1 0 0 0 0 0 0 0
State 2 0 0.487 0.128 0 0 0 0 0
State 3 0 0.436 0.667 0.641 0.231 0.077 0.026 0
State 4 0 0.051 0.154 0.256 0.564 0.436 0.103 0
State 5 0 0.026 0.051 0.077 0.179 0.41 0.769 0
State 6 0 0 0 0.026 0.026 0.077 0.103 1
State 7 0 0 0 0 0 0 0 0

days 146 153 188 265

State 1 0 0 0 0
State 2 0 0 0 0
State 3 0 0 0 0
State 4 0 0 0 0
State 5 0 0 0 0
State 6 1 1 0.949 0
State 7 0 0 0.051 1

Table 2: Relative state frequencies in the original dataset, after discretization.

State 1 State 2 State 3 State 4 State 5 State 6

5.077451 2.994306 15.589484 14.984200 31.949934 168.739609

Table 3: Holding times (in days) of the states found by MLE mixture model fitting. Note
that the last state (7) was also the death state and thus has an infinite holding time.
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real 0 13 19 26 33 44
estimate 0.500 10.522 16.852 22.507 31.255 41.400

lower 0.042 7.783 12.918 17.544 24.781 33.267
upper 0.958 13.260 20.785 27.470 37.728 49.533

real 54 123 130 137 172 249
estimate 53.082 136.284 136.284 136.284 144.350 300.000

lower 43.058 105.290 105.289 105.289 110.204 197.434
upper 63.107 167.279 167.279 167.279 178.495 402.566

Table 4: Lower and upper 95% confidence bounds of the time estimates of the F15 Population.
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