
HAL Id: hal-00554573
https://hal.science/hal-00554573

Submitted on 11 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical modelling of the warburg effect in tumour
cords

Sergey Astanin, Luigi Preziosi

To cite this version:
Sergey Astanin, Luigi Preziosi. Mathematical modelling of the warburg effect in tumour cords. Journal
of Theoretical Biology, 2009, 258 (4), pp.578. �10.1016/j.jtbi.2009.01.034�. �hal-00554573�

https://hal.science/hal-00554573
https://hal.archives-ouvertes.fr


www.elsevier.com/locate/yjtbi

Author’s Accepted Manuscript

Mathematical modelling of the warburg effect in
tumour cords

Sergey Astanin, Luigi Preziosi

PII: S0022-5193(09)00044-7
DOI: doi:10.1016/j.jtbi.2009.01.034
Reference: YJTBI5449

To appear in: Journal of Theoretical Biology

Received date: 14 September 2008
Revised date: 22 January 2009
Accepted date: 22 January 2009

Cite this article as: Sergey Astanin and Luigi Preziosi, Mathematical modelling
of the warburg effect in tumour cords, Journal of Theoretical Biology (2009),
doi:10.1016/j.jtbi.2009.01.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2009.01.034


Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Mathematical modelling of the Warburg effect in tumour cords

Sergey Astanin∗ † Luigi Preziosi∗ ‡

January 19, 2009

Abstract

The model proposed here links together two approaches to describe tumours: a continuous medium to describe the movement

and the mechanical properties of the tissue, and a population dynamics approach to represent internal genetic inhomogeneity

and instability of the tumour. In this way one can build models which cover several stages of tumour progression. In this paper

we focus on describing transition from aerobic to purely glycolytic metabolism (the Warburg effect) in tumour cords. From the

mathematical point of view this model leads to a free boundary problem where domains in contact are characterized by different

sets of equations. Accurate stitching of the solution was possible with a modified ghost fluid method. Growth and death of the

cells and uptake of the nutrients are related through ATP production and energy costs of the cellular processes. In the framework

of the bi-population model this allowed to keep the number of model parameters relatively small.

Keywords: tumour growth, tumour metabolism, Warburg effect, mathematical model, ghost fluid method, population dy-
namics

Metabolic processes in normal tissues require oxygen.

Specifically, 6 molecules of oxygen are consumed per oxi-

dated molecule of glucose with the yield of approximately

32 molecules of ATP (Nelson & Cox, 2000) (36 accord-

ing to (Smallbone et al., 2007), 29.85 according to (Rich,
2003)). In many cancers intensive proliferation exceeds avail-

able oxygen supply, which leads to hypoxia. In such hypoxic

conditions cells may rely only on glycolysis, the first step of

glucose oxydation, to cover their energy needs. This pro-

cess gives a smaller amount of ATP, 2 molecules of ATP per

molecule of glucose, but it is possible in hypoxic conditions. In

fact, most tumours are known to rely on glycolytic metabolism

even in non-hypoxic conditions. This effect is known as War-

burg effect or aerobic glycolysis (Warburg, 1956; Kim & Dang,

2006) and is one of the hallmarks of cancer (Hannahan &Wein-

berg, 2000). Glycolytic catabolism has the important side ef-

fect of tissue acidification. Lower pH is toxic to most normal

cells while altered tumour cells are likely to be resistant to it

and achieve another invasion advantage (Gatenby et al., 2006).
In the same time, there are several therapeutic strategies which

allow for targeting tumours with glycolytic metabolism (Kim

& Dang, 2006; Mathupala et al., 2007).
We want to describe phenomenologically the transition of

tumours from normal to glycolytic metabolism in the frame-

work of spatio-temporal model of tumour growth. Well aware

that there are several mechanisms which contribute to the War-

burg effect, we assumed that this switch in metabolism hap-

pens as an all or nothing event, after which cells rely only on

glycolytic metabolism even with adequate oxygen levels. The

switch is assumed to happen in hypoxic conditions.

This problem received a lot of attention from the mathe-

matical modelling community in the recent years. Such works

as (Gatenby et al., 2006; Gatenby et al., 2007; Smallbone
et al., 2008) have pointed to the possibility of the acid-mediated
tumour invasion and studied the role of the cellular adaptiv-

ity in tumour invasion. Their discrete and continuous mod-

els and experiments demonstrate that emergence of the acid-

resistant, glycolytic cell line is an important step towards can-

cer invasiveness. Another recent work is (Gerlee & Anderson,

2008), where the cellular automaton model demonstrates that

an advantage of the glycolytic phenotype may be also con-

ditioned by the density of the matrix. In (Venkatasubrama-

nian et al., 2006) ability of the cells to rely on the glycolytic
metabolism was incorporated in the continuous model of tu-

mour spheroid. In (Bertuzzi et al., 2007) the rigorous analytical
study of a similar model was undertaken, with a proof that the

necrotic core is formed for any sufficiently large spheroid. Both

in (Venkatasubramanian et al., 2006) and in (Bertuzzi et al.,
2007) the switch to glycolytic metabolism is assumed to be

reversible, and the cells return to normal aerobic metabolism

when the hypoxia finishes. However, the shift towards gly-

colytic metabolism is often irreversible in tumours, and they

may remain glycolytic even in the presence of sufficient oxy-

gen (Kim & Dang, 2006). In this case we have to consider at

least two distinct cell lines with different (probably very differ-

ent) metabolic behaviour, because after the switch the cells are

not the same any more.

Having to construct a multi-population model certainly

complicates the numerical method, but it also brings some ad-

vantages of the discrete models in the reign of the continuous
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models. In fact, possible applications of the proposed numeri-

cal approach go far beyond tumour metabolism, and it may be

used to describe other genetic transformations in the course of

tumour evolution.

We also tried to build the model around the idea used

in (Astanin & Tosin, 2007), that the growth in the tissue strictly

depends on the amount of the nutrients consumed (or more pre-

cisely, the quantity of ATP produced). To put it simply, growth

and intensity of the metabolic processes are two sides of the

same medal in this model. Insufficient ATP production, in turn,

limits growth and leads to necrosis.

Another aim of the paper is to understand whether the

metabolic switch gives rise to a spatial stratification in the

bipopulation model. In fact, near the vessels oxygen is more

abundant and cells have no reason to change metabolism there.

This might lead to the conclusion that tumour cords are consti-

tuted by an inner core near the vessel with cells using an aerobic

metabolism, and an outer layer of cells using glycolysis.

Counter intuitively, in the simulations we observed that the

cell line with glycolytic metabolism “wins”, and spreads in the

entire cord, though in a non-homogeneous way. The intensity

of metabolism affects the cord geometry and the moment when

tumour starts suffering from hypoxia. This is due to the fact

that cells which rely on anaerobic glycolysis move also to the

inner layer, spreading in the whole tumour. They may achieve

a significant mass even if aquisition of this trait is a very rare

event.

This paper has the following structure. In the first section

(Bi-population model) we define the equations of the math-
ematical model, paying a particular attention to the coupling

of the multiphase model with the subcellular catabolic mech-

anisms generating the growth, death, and switch terms in the

mass balance equations. The second section (Simulations)
contains some 2D simulation results and their discussion. Ap-

pendices present then a nondimensional model (Appendix A)

and describe a modification to the ghost fluid method which

allows to stitch solutions between two different modelling do-

mains (Appendix B).

1 Bi-population model
In this paper we develop the approach of earlier works (Am-

brosi & Preziosi, 2002; Astanin & Tosin, 2007; Preziosi &

Tosin, 2008; Astanin & Preziosi, 2008) but, in addition to de-

scribing tissue growth and mechanics, we consider the tran-

sition of tumour cells from one metabolic behaviour to an-

other, and incorporate effects of glycolytic switch in tumour

cells. We carefully consider the implications of altered glucose

metabolism on the energy balance in tumour cells and examine

in detail the spatial effects.

In the previous works we assume that tumour grows in a

host enviroment. The model deals with only two cell popula-

tions, tumour cells with volume ratio φt and host cells with vol-

ume ratio φh initially occupying different domains Ωt(t = 0)
and Ω\Ωt(t = 0).

Two other components of the tissue are considered in addi-

tion to cells: extracellular liquid (with volume ratio φl) and ex-

tracellular matrix (ECM, with volume ratio φm). ECM is rigid,

uniform and does not remodel:

φi +φl = 1−φm = φ∗ ≡ const, i := t,h. (1)

An immediate consequence of this hypothesis is that from the

macroscopic point of view the tissue would behave like a rigid

porous medium, with cells and extracellular liquid moving in-

side a rigid scaffold. Any stress acting on the bulk tissue would

be sustained by the ECM and cells in the core of the tissue

would experience no stress deriving directly from the external

actions. It is possible to relax this hypothesis following for in-

stance (Ambrosi & Preziosi, 2009).

The interface ∂Ωth between tumour and environment is a

material surface moving with the common velocity of the cells

�n · d�xt

dt
=�n ·�vt =�n ·�vh , on ∂Ωth(t) , (2)

which implies that if the two populations occupy initially dif-

ferent interfacing domains, they will always occupy different

interfacing time-dependent domains. However, the two pop-

ulations mechanically and chemically interact with each other.

In the sense that, for instance, the growing tumour will mechan-

ically compress the host tissue and will compete for resources.

In particular, it will induce hypoxia and subsequent death of

the surrounding host tissue. Then at the interface in addition

to imposing continuity of velocity and stress (see (7) and (8)

below), continuity of oxygen and glucose concentrations and

fluxes holds. Treating for the sake of simplicity the ensem-

ble of cells as elastic fluids, neglecting liquid–cell interactions,

we have the following free boundary problem, see (Ambrosi &

Preziosi, 2002) for details:

∂φt

∂ t
+∇ · (φt�vt) = Γt , in Ωt , (3)

�vt =−K∇(φtS(φt)) , in Ωt , (4)

∂φh

∂ t
+∇ · (φh�vh) = Γh , in Ω\Ωt , (5)

�vh =−K∇(φhS(φh)) , in Ω\Ωt , (6)

�vt ·�n =�vh ·�n , on ∂Ωth , (7)

φtS(φt) = φhS(φh) , on ∂Ωth , (8)

where K is the “motility” of the cells or rate of tissue re-

laxation, being inversely proportional to the drag force coef-

ficient between cells and rigid ECM, S(φi) is a scalar func-
tion which describes elastic forces of the compressed tissue

(φi > φ0, φ0 = const), and intercellular adhesion forces in the

stretched tissue (φi < φ0), Γt and Γh are growth/death rates for

tumour and host cells respectively.

In (Astanin & Tosin, 2007) we paid special attention to the

energy balance in cells, supposing that the amount of oxygen

and glucose consumed stays in direct correspondence with the

intensity of tumour proliferation. We have shown that tumour

growth in this model is limited by the formation of the hypoxic

zone and by the availability of oxygen.

In this work we build the model upon the same idea. We

assume that if ATP production is insufficient the cells stagnate
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and die (like in the old model), but also with a certain (small)

probability may irreversibly switch their metabolic behaviour

and survive. This switch corresponds to upregulation of the

glycolysis, and is not present in (Astanin & Tosin, 2007). The

growth also becomes limited by the availability of glucose as

well as oxygen (glucose was assumed to be abundant in the old

model).

So we introduce the second population of tumour cells

which are mechanically identical to the others, but consume

only glucose through glycolysis. We refer to this subpopula-

tion as anaerobic or glycolytic subpopulation, while the ini-
tial oxygen-consuming subpopulation is refferred to as aerobic
one. Transition from the aerobic to the anaerobic population is

supposed to be irreversible. We also assume that cells of the

host always rely on aerobic glucose oxidation.

Let φ1 be the volume fraction of cells with normal aerobic
catabolism, and φ2 be the volume fraction of cells with altered,
anaerobic, catabolism. On the right hand side of the mass bal-

ance equation related to φ1 and φ2 we will distinguish a growth
rate Γ+

i , i = 1,2, a death rate Γ−i , i = 1,2, and a switch rate Γs,

so that

Γ1 = Γ+
1 −Γ−1 −Γs, (9)

and

Γ2 = Γ+
2 −Γ−2 +Γs. (10)

Therefore, for the tumour tissue as a whole

Γt = Γ1+Γ2. (11)

Looking more closely at the two catabolic pathways of

glucose oxydation (shown in Figure 1), full glucose oxida-

tion requires 6 molecules of oxygen per molecule of glucose

and produces an equivalent of approximately 30–32 molecules

of ATP (Nelson & Cox, 2000) (36 according to (Smallbone

et al., 2007) or 29.85 according to the evaluation in (Rich,
2003)). If only glycolysis takes place, the energy yield is much

smaller (only 2 molecules of ATP per molecule of glucose) but

it gives an evolutionary advantage to the cells capable of this

kind of catabolism, because they no longer depend on oxygen

supply.

We have to consider at least two substances: co, the concen-

tration of oxygen, and cg the concentration of glucose. These

substances are often referred to as nutrients, which is not pre-

cise, because of the special role of oxygen in respiration pro-

cess. For our purpose it is important that both of these sub-

stances are critical resources for tissue growth. We refer to all

such chemical substances collectively as nutrients, though they

do not necessarily have nutritional value. We consider that both

nutrients are spread by diffusion with diffusion coefficient of

oxygen Do, and diffusion coefficient of glucose Dg. Lactic acid

concentration may be considered later to take into account of

effects due to the lower pH as done in (Gatenby et al., 2006).
In the model, we represent two pathways as two concurrent

reactions. In aerobic conditions:

Glc+6 O2 −→ 6 CO2+N ATP,

where N is the number of ATP molecules produced during the

complete oxydation of glucose; and in anaerobic conditions:

Glc−→ 2 Lactic acid+2 ATP.

We assume that the rate of ATP production in the former re-

action (in the aerobic population) is proportional to the amount

of cells and the concentration of nutrients:

q(1)
ATP = κ(1)

φ φ1cocg, (12)

and the rate of ATP production in anaerobic population is

q(2)
ATP = κ(2)

φ φ2cg. (13)

We should keep in mind that the reaction rates are not nec-

essarily proportional to the concentrations of oxygen and glu-

cose. This is only a basic assumption, and the structure of the

model will be valid also with different rates of ATP production.

The coefficients κ(1)
φ and κ(2)

φ also reflect inhibition of

metabolism. Here we only consider contact inhibition and take

κ(1)
φ = κ(φ∗ −φ1−φ2) (14)

and

κ(2)
φ = κ2(φ∗ −φ1−φ2) (15)

meaning that metabolism is inhibited when the cells occupy all

the available volume φ∗. If inhibition occurs at cell volume
fraction φ1+φ2 = φ̄ = const, this case requires only rescaling

of volume fractions.

For sake of simplicity it is useful to introduce the ratio k of
glucose oxidation so that

κ(2)
φ = kκ(1)

φ . (16)

Now let us consider the rate of ATP production per cell. In

the aerobic population it is

E(1) = κ(1)
φ cocg, (17)

and in the anaerobic population it is

E(2) = kκ(1)
φ cg. (18)

We suppose that ATP is not accumulated, and the amount of

ATP produced is the amount consumed. As ATP is an energy

carrier molecule, these quantities (E(1) and E(2)) define how

much energy the cells may spend.

We assume that some of this energy is always spent for life

maintenance, and every cell spends ATP with rate θ̂ . The rest
is what is left for growth and proliferation.

We propose that if there is not enought ATP to maintain life,

that is

E(1)− θ̂ < 0 (19)

in the aerobic population, or

E(2)− θ̂ < 0 (20)

in the anaerobic population, then some cells start dying.

We propose that only as many cells survive, as may be fed

with the current rate of ATP production:

φi,surviving

φi
=min

{
E(i)

θ̂
,1

}
, i = 1,2, (21)

3
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Glucose

2 Pyruvate

2 Acetyl-CoA + 2 CO2 2 Lactic acid

4 CO2 + 4 H2O

ΔG′◦ = −2840 kJ/mole
(≈ 30–32 ATP per molecule)

ΔG′◦ = −146 kJ/mole (2 ATP per molecule)

glycolysis

citric
acid
cycle

O2

aerobic conditions anaerobic conditions

Figure 1: Glucose catabolic pathways, based on (Nelson & Cox, 2000). Anaerobic pathway is less energy efficient and in addition

it acidifies the microenvironement.

and the fraction of dying cells is

φi,dying

φi
=

(
1− E(i)

θ̂

)
+

, i = 1,2, (22)

where (·)+ is the positive part of (·).
Given that τ1/2 is the “half-life” of the dying cells, the death

rate in hypoxic conditions is

Γ−i = φi
ln2

τ1/2

(
1− E(i)

θ̂

)
+

, i = 1,2. (23)

Finally, in hypoxic conditions aerobic cells may suddenly

switch to the glycolytic metabolism. We suppose that the rate

of conversion from the aerobic to the anaerobic population is

Γs = νφ1H(θ̂ −E(1)), (24)

where ν is the small conversion rate, and H is Heaviside func-
tion.

If the production of ATP is excessive, some cells may grow

and proliferate, and the growth rate is

Γ+
i = φi

θ̂ ln2
QM

(
E(i)

θ̂
−1
)

+

, i = 1,2, (25)

where QM is the amount of ATP required for the full cell cycle

(G1 growth, DNA synthesis, G2 growth and mitosis).

If we assume that the host tissue consumes oxygen and

glucose like aerobic cells, but it does not proliferate, it can-

not switch to the anaerobic metabolism and consumes only as

much as it needs. Then the normal rate of ATP production in

the host is:

q(h)
ATP = θ̂φh, (26)

and the corresponding death rate is

Γh =−φh
ln2

τ1/2

(
1− E(h)

θ̂

)
+

, (27)

where

E(h) = κ(φ∗ −φh)cocg. (28)

Now let us consider again the rates of ATP production q(1)
ATP,

q(2)
ATP and q(h)

ATP. They are directly related to the rates of oxygen

and glucose consumption in the tissue. In the aerobic popula-

tion the rate of oxygen consumption is

q(1)
o =− 6

N
q(1)

ATP, (29)

and the rate of glucose consumption is

q(1)
g =− 1

N
q(1)

ATP. (30)

Also in the host tissue

q(h)
o =− 6

N
q(h)

ATP, (31)

and

q(h)
g =− 1

N
q(h)

ATP. (32)

4



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

In the anaerobic population oxygen is not consumed and the

rate of glucose consumption is

q(2)
g =−1

2
q(2)

ATP. (33)

So the overall consumption rates for oxygen is:

qo =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
− 6

N
q(1)

ATP, in Ωt ,

− 6
N

q(h)
ATP, in Ω\Ωt ,

(34)

and for glucose it is:

qg =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
− 1

N
q(1)

ATP−
1

2
q(2)

ATP, in Ωt ,

− 1
N

q(h)
ATP, in Ω\Ωt .

(35)

We substitute these reaction terms in the diffusion equa-

tions for oxygen and glucose respectively. Assuming that both

oxygen and glucose may freely diffuse in all components of the

mixture, we have

∂co

∂ t
= DoΔco +qo, (36)

∂cg

∂ t
= DgΔcg +qg. (37)

Summarising, we have the following equations:

∂φ1
∂ t
−K∇ · (φ1∇((φ1+φ2)S(φ1+φ2))) =

+φ1
θ̂ ln2
QM

⎛
⎝κ(1)

φ

θ̂
cocg−1

⎞
⎠

+

−φ1
ln2

τ1/2

⎛
⎝1− κ(1)

φ

θ̂
cocg

⎞
⎠

+

−φ1νH

⎛
⎝1− κ(1)

φ

θ̂
cocg

⎞
⎠ , in Ωt , (38)

∂φ2
∂ t
−K∇ · (φ2∇((φ1+φ2)S(φ1+φ2))) =

+φ2
θ̂ ln2
QM

⎛
⎝k

κ(1)
φ

θ̂
cg−1

⎞
⎠

+

−φ2
ln2

τ1/2

⎛
⎝1− k

κ(1)
φ

θ̂
cg

⎞
⎠

+

+φ1νH

⎛
⎝1− κ(1)

φ

θ̂
cocg

⎞
⎠ , in Ωt , (39)

∂φh

∂ t
−K∇ · (φh∇(φhS(φh))) =

−φh
ln2

τ1/2

(
1− κ(φ∗ −φh)

θ̂
cocg

)
+

, in Ω\Ωt , (40)

�n ·∇((φ1+φ2)S(φ1+φ2)) =�n ·∇(φhS(φh)) , on ∂Ωth , (41)

(φ1+φ2)S(φ1+φ2) = φhS(φh) , on ∂Ωth , (42)

∂co

∂ t
= DoΔco−H(ψ)

(
6

N
κ(1)
φ φ1cocg

)

−H(−ψ)
(
6

N
θ̂φh

)
, in Ω, (43)

∂cg

∂ t
= DgΔcg−H(ψ)

(
1

N
κ(1)
φ φ1cocg +

1

2
kκ(1)

φ φ2cg

)

−H(−ψ)

(
c∗o
6c∗g

αθφh

)
, in Ω, (44)

where ψ > 0 in Ωt , and ψ < 0 in Ω\Ωt . For the sake of sim-

plicity we also assume that

S(φ) = φ −φ0. (45)

In Appendix A we rewrite the model in dimensionless vari-

ables and find that the system is characterised by the dimen-

sionless parameters listed in Table 1.

We would like to highlight that the model parameters still

have physiological meaning and depend on measurable quan-

tities. The growth rate is proportional to the intensity of

metabolic processes κ and is inversely proportional to the cost
of the whole cell cycle QM (probably measurable but to our

awareness not known). The death rate depends not only on

the intensity of metabolism, but also on the cost of mainte-

nance (θ̂ ), and tolerance of the cells to the extreme conditions
(“half-life” τ1/2 of the dying cells). The same κ affects both the
consumption rates of the nutrients and the growth/death rates of

the cells.

The proposed approach of incorporating tumour

metabolism in the model is different from the approach taken

in (Venkatasubramanian et al., 2006; Bertuzzi et al., 2007).
Those works essentially assume that cells use glycolytic

metabolism as a fallback in hypoxic conditions and return

to normal metabolism when the level of oxygen increases. So

the same cells use two metabolic pathways depending on the

current conditions, there are no memory effects in the sys-

tem. In contrast, in this model a new population of cells is

born, with a different and sustainable behaviour. We think

that such a modelling approach has an advantage as it allows

more straightforward translation of genetic transformations in

tumour into modelling entities (cell populations), and is not

limited to metabolic switch only. A similar approach can also

be used for reversible epigenetic transformations and in particu-

lar for the inclusion of epigenetic factors in metabolic switches.

Here in the description of the Warburg effect we consider only

irreversible transitions to the glycolytic metabolism, which are

in fact observed experimentally (Kim & Dang, 2006).
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2 Simulations
In some previous works we have already studied some as-

pects of the growth of tumour cords (Astanin & Tosin, 2007;

Preziosi & Tosin, 2008; Astanin & Preziosi, 2008) in particu-

lar in the case of mono-population models where growth only

depends on oxygen supply. This form of growth results in a

long cylindrical tumour mass arranged around a blood vessel,

which forms the axis of the cord. Cells mostly proliferate near

the axis and the tip of the cord. The hypoxic zone is formed

in the outer rim of the cord. We will see here that also the bi-

population cord grows similarly to the mono-population one,

and therefore we study its growth in a similar geometry.

We consider two geometrical settings in this section. Both

simulate the growth of the cord in a two-dimensional domain

along the blood vessel. The first setting focuses on the part of

the cord with stationary radius far away from its tip (Fig. 2 a).

This setting is similar to known uni-dimensional simulations of

tumour cords (Bertuzzi & Gandolfi, 2000; Bertuzzi et al., 2002;
Bertuzzi et al., 2003; Bertuzzi et al., 2005). The second setting
focuses on the axial evolution and on the tip of the expanding

cord (Fig. 2 b).

In all simulations we neglected consumption of oxygen and

glucose by the host tissue (26), thus disabling also the death

term (27) in the equation for the host cells.

One may note, that we have actually two different model for

two domains, and even the number of variables in two domains

do not coincide. We discuss boundary conditions between two

domains below. To impose these boundary conditions numeri-

cally, we used a custom modification of the ghost fluid method.

This modification is described in Appendix B.

Both numerical simulations share the same code for the nu-

merical method. The source code was published under an open

source license (GPL) at http://code.google.com/p/
cord/.

Typical values of model parameters used in the simulations

are given in Table 1. Estimates for some of the model parame-

ters may be found in (Venkatasubramanian et al., 2006). Stress-
free volume fraction of cells φ0 = 0.75 was estimated from π/4
area coverage of the 2D plane with fixed size circles. Choice of

the time and spatial scales is discussed in Appendix A.

2.1 Boundary conditions
There are five boundaries in the model: the four exterior bound-

aries ∂ΩW , ∂ΩE , ∂ΩS, ∂ΩN of the model domain Ω, and
the boundary between Ωt and Ω \Ωt , or tumour–host inter-

face ∂Ωth (Fig. 2).

We distinguish three roles of an exterior boundary:

• a boundary coinciding with a blood vessel,
• a remote boundary,
• a symmetry axis.
For boundaries coinciding with a vessel, we assume that

the cells do not penetrate the wall of the vessel, and nutrient

supply is always sufficient to maintain the constant concentra-

tions c0o, c
0
g. So, for�x at vascular boundaries, we have:⎧⎨

⎩
∂ (φS(φ))

∂�n
(�x, t) = 0,

ck(�x, t) = c0k , k = o,g
(46)

where�n is a unit exterior normal ofΩ. These boundaries are the
only source of oxygen for the region of tissue in consideration.

These boundary conditions are written under the assumption

that oxygen diffusion through the blood vessel wall is fast with

respect to the growth of tumour. A more elaborate approach

to describe tumour–vessel interaction is suggested in (Breward

et al., 2001).
For remote boundaries we assume that they stay undis-

turbed by the growth and the flux of nutrients through them

is zero. For�x at remote boundaries, then⎧⎨
⎩
S(φ)(�x, t) = 0,

∂ck

∂�n
(�x, t) = 0, k = o,g

(47)

In some simulations we also assume growth to be symmet-

rical with respect to one of the domain boundaries, and for that

boundary ⎧⎪⎨
⎪⎩

∂φS(φ)
∂�n

(�x, t) = 0,

∂ck

∂�n
(�x, t) = 0, k = o,g

(48)

The tumour–host interface ∂Ωth coincides with the material

boundary of tumour cells fractions and moves with the veloc-

ity of the cells�v. Stress and velocity are continuous across the
tumour–host interface ∂Ωth. If the function S(φ) is the same
for both tissues then the condition above implies continuity of

φ1+φ2 and φh. Conditions on the free boundary are defined in

non-dimensional form equations (51), (53–55).

We describe our way to impose these boundary conditions

numerically in Appendix B. This is not trivial because we need

to interface the solutions in two domains where the number of

variables do not coincide. However, the fact that the stresses

and the velocities of the components and of the interface de-

pend on the sum of the variables makes the problem well for-

mulated and allows to extend the ghost fluid method as dis-

cussed in Appendix B.

2.2 Body of the cord and effects of the model pa-
rameters

In order to put in evidence some characteristics of the glycolytic

switch, let us initially consider the simplified initial configura-

tion, shown in Figure 2 a. This corresponds to starting with a

long cord, with all cells using aerobic pathway, and focusing

on its central region. Even though the central region cannot

expand along the vessel but may only adjust its width and its

structure may change according to the local condition. This

configuration is essentially one-dimensional, but it allows bet-

ter understanding of the various model parameters and their ef-

fects.
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Figure 2: Simulation domain and boundary conditions for the body of the cord (a) and for the tip of the cord (b)

Nondimensional Definition Description Value

S̃(φ̃) S(φ̃φ∗)/φ∗ partial stress in the tissue S= φ −φ0
φ̃0 φ̃0φ∗ stress-free packing density 0.75

K̃ Kφ 2∗ /Do cells’ motility (rate of tissue relaxation) 0.01

γ̃ — growth rate 1.0

ε̃ QM/(θ̂ τ1/2) death rate 0.8

ν̃ νQM/(κφ∗c∗oc∗g ln2) aerobic-to-anaerobic conversion rate 0.01

θ̃ θ̂/(κφ∗c∗oc∗g) upkeep cost per cell 0.15

α̃ 6QMφ∗/(Nc∗o ln2) oxygen uptake rate 200

D̃o — oxygen diffusion coefficient 1.0

D̃g Dg/Do glucose diffusion coefficient 0.1

k̃ k/c∗o relative rate of glycolytic metabolism 2.0, 4.0

L̃ (64) characteristic length 1.0

T̃ (63) characteristic time 1.0

c̃o co/c∗o scaled oxygen concentration —

c̃g cg/c∗g scaled glucose concentration —

φ̃i φi/φ∗ scaled volume fraction of the i-th population —

Table 1: Typical values of the model parameters for the simulations of the metabolic switch in the tumour. See also model

definition in Section 1 and non-dimensionalization of the model in Appendix A.

Simulations were run on a narrow rectangular domain

[0,0.01]× [0,1] with finite difference grid 5×500. Initially the
tumour–host interface was positioned at y = 0.01. The same 2D
code was used in these simulations as in the subsequent ones,

but we studied growth only in one dimension along the y-axis.
Referring to Appendix A for the deduction of the dimen-

sionless model and to Table 1 for the definition of the dimen-

sionless quantities, we focus on the effect of the parameters

related to metabolism.

Figure 3 shows a parametric study of the model. In each

series of simulations only one parameter was changed while

the others were fixed on the values from Table 1. The first two

columns of the figure show how percentage of the glycolytic

cells

p = 100 ·
∫

φ2dx
/∫

(φ1+φ2)dx

changes in the tumour for various values of α̃ , k̃ and ν̃ . For
the sake of clarity we omit the tildes from now on. The right

column shows how these parameters affect the stationary width

of the cord.

The parameter α is the oxygen consumption rate and re-

flects the general intensity of metabolic processes. We observed

that tumour cords with more intensive metabolism suffer from

hypoxia earlier (Figure 3 a), are smaller (Figure 3 c) and have

lower fraction of glycolytic cells (Figure 3 b).

It is interesting to note that the stationary cord thickness
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Figure 3: Percent of anaerobic cells p = 100 ·∫ φ2 d�x/∫ (φ1+φ2)d�x and stationary thickness of the bi-population tumour cord w∞
for various values of model parameters. We observed, that for long simulation times anaerobic cells spread through the whole

tumour, but never completely extinguish the original aerobic population. The left column (a, d, g) shows emergence of the anaer-

obic population with time. We observe that the onset of anaerobic switch is independent of k (d). The middle column (b, e, h)
shows the final volume fraction of the anaerobic cells p∞ as a function of model parameters. Slow oxygen uptake (low α) delays
emergence of the anaerobic cells (a), but favours them in the long run (b). Relative rate of the anaerobic metabolism k determines
composition of the tumour, cells with faster metabolism dominate (d, e). Metabolic switch from aerobic to anaerobic metabolism

does happen even for very low conversion rates ν (“mutation rate”), and the significant number of cells is converted even for
very low ν (h). We may also observe an approximate dependence like w∞ ∝ 1/ 3

√
α for the thickness of the cord. Cords where

anaerobic metabolism is faster are smaller (f). This fact may be explained by higher fraction of anaerobic cells, and shorter dif-

fusion distance of glucose with respect to that of oxygen. Probably for the same reason cords with faster transition to anaerobic

metabolism are smaller (i). Curves are automatically fitted and serve for visual aid only.

depends on the rate of oxygen consumption approximately as

w∞ ∝ 1/ 3
√
α .

Now let us consider the effects of two parameters specific

for the bi-population model. They are ν , the conversion rate
from aerobic to anaerobic metabolism, and k, the relative rate
of the anaerobic metabolism with respect to aerobic one.

These parameters have a clear physiological meaning: ν
is related to the mutation rate and the genetic instability (the

higher it is, the more probable the mutation is), and k is related
to the time required for a molecule of glucose to pass through

all the catabolic reactions’ chain. While we do not have defini-

tive real-world estimations for these parameters at this moment,

we expect ν to be small and k > 1, because the anaerobic path-

way is much shorter than the aerobic one.

Simulation results for various values of the parameter k are
presented in Figure 3 d, e, f (the second row). It appears that k
is one of the most important parameters in the model. It has de-

cisive influence on what population (metabolic pathway) dom-

inates in the tumour. If glycolysis is faster (k > 1) than normal

metabolism, the glycolytic cells may compose up to 85% of the
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tumour mass. On the opposite, if pure glycolytic metabolism

were for some reason slower (k < 1), then glycolytic cells are

only a marginal fraction of the tumour mass (as low as 5% in

the simulations).

This difference in composition of the tumour may explain

slightly different sizes of the cord for various values of k (Fig-
ure 3 f).

Figures 3 g, h, i represent simulations with various values

of the parameter ν . Even with very small ν the tumour is suc-
cessfully converting to glycolysis. However, the value of ν is
affecting the steepness of the initial exponential stage of growth

of the anaerobic subpopulation, and the duration of this pe-

riod (Fig. 3 g). In the extreme case, this conversion may be

even so fast, that a further correction may happen (see the re-

sults for ν = 0.2 in Fig. 3 g, the upper curve is not monotonous).
Smaller ν means that more tumour cells will die immedi-

ately due to hypoxia, while larger ν means that more cells may
quickly adapt to anaerobic catabolism and survive. Their quan-

tity is still limited by availability of glucose.

An open question is whether in the long term just one sub-

population (clone) remains or both subpopulations will coexist

forever. If both subpopulations remain then what will be the

ratio between them? Figures 3 b, e, h suggest that both popula-

tion coexist, and the ratio does depend on the conversion rate ν ,
as well as other model parameters. Interestingly, even for very

low conversion rates ν the anaerobic population plays signifi-
cant role in the tumour.

To sum up, population with faster metabolism “wins”, in-

tensity of metabolism affects cord geometry and the moment

when the tumour starts suffering from hypoxia, anaerobic pop-

ulation may achieve significant mass even with very low con-

version rates.

2.3 Tip of the cord and spatial dynamics
Now let us consider the full-featured two-dimensional simula-

tion of the cord growth in the configuration presented in Fig-

ure 2 b. We considered growth of a single cord in the do-

main [0,1]× [0,0.5]. In the simulations the relative rate of

the anaerobic glucose catabolism k was taken to be k = 2.0.
This value reflects the assumption, that the anaerobic pathway

is shorter and faster in tumour cells than the complete aero-

bic oxidation of glucose. The other model parameters were as

in Table 1.

We focus our attention on the energy supply level per cell,

which is e1 = E(1) − θ for the aerobic population, and e2 =
E(2)− θ for the anaerobic population. When these quantities
become negative, the cells suffer from energy starvation, which

leads to death or to metabolic switch. When these quantities

are positive, the cells may proliferate (see Figure 4).

We shall refer to the isolines e1 ≡ 0 and e2 ≡ 0 as starvation
limits for the aerobic and anaerobic population respectively.

The results are presented in Figure 5. Qualitatively the

growth is very similar to the growth of a genetically homoge-

neous cord (Astanin & Tosin, 2007), with the radial size of the

cord limited by diffusion distance of the nutrients (including

glucose in this case). The dynamics, however, shows relevant

differences involving two sub-populations.

∂ΩN

∂Ω
E

e1 = 0 (for aerobic)

e2 = 0 (for anaerobic)

φ1 ↑, φ2 ↑
φ1 ↓, φ2 ↑

φ1 ↓, φ2 ↓ 3

2

1

∂Ωth

∂Ω
W

∂ΩS: vessel

Ω\Ωt

Ωt

x

y

Figure 4: Energy deficit limits, growth (↑) and death (↓)
in two populations. There are three distinct zones.
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Figure 7: Length of the bi-population cord as a function

of time. Expansion velocity slightly increases after the

transition to the glycolytic metabolism.

Initially the cord is composed of aerobic cells only (Fig. 5 a)

and intensively grows, until some cells start suffering from hy-

poxia (Fig. 5 b). Hypoxic region is coloured on the plots, and

the starvation limit for the aerobic population is shown with a

point-and-dashed red line. However, as soon as anaerobic cells

appear, we should also consider another starvation limit, above

which also anaerobic cells suffer (dashed blue line, Fig. 5 c,d).

We would like to note, that the positions of the starvation

limits do not coincide. Moreover, with k > 1, the position of

the starvation limit for anaerobic cells is further from the vessel

than the position of the starvation limit for the aerobic cells.

Figure 4 schematizes the positions of the starvation lim-

its. There are three distinct zones. In the first zone 1 near

the blood vessel both populations have enough energy supply,

and can proliferate. The aerobic population (φ1) suffers from
hypoxia in the second 2 and in the third 3 zones. However,

anaerobic population (φ2) suffers only in the third zone. This
means that in the zone 2 anaerobic cells have a clear advantage

over those using an aerobic metabolism.

One may expect that anaerobic cells would occupy zones 2

and 3 , while the aerobic cells would stay in the zone 1 .

However, we did not observe this in the simulations. In-

stead, while the anaerobic cells initially emerge only in the

hypoxic region (Fig. 6 a), later they spread throughout the tu-

mour (Fig. 6 b).
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(d) t = 149

Figure 5: Bi-populational tumour cord growth, starvation limits, colour/darkness shows negative part of e1 = E(1)−θ (deficit of
ATP for aerobic cells, i.e. severity of hypoxia)
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Figure 6: Volume fraction of anaerobic cells and tissue velocity

We attribute this fact to the broken equilibrium in the tis-

sue when the anaerobic population suddenly emerges. In our

model, the cells move as a whole, with the same velocity (51),

which depends on the gradient of the total volume fraction of

cells ∇(φ1 + φ2). When the anaerobic cells appear, they do
not feel their proliferation constraints initially, and grow much

faster than their aerobic neighbours. However, the local condi-

tions for the neighbour aerobic cells do not change or even be-

come more severe, because the supply of glucose also reduces.

This means that given two parts of the tissue in contact, one

with anaerobic cells, and the other with only aerobic cells, the

total volume fraction of cells will be higher in the tissue with

the anaerobic cells, and this will lead to flow of the cells from

the region with anaerobic cells into the region without them.

This effect is clearly visible in Figure 6 a, where the cells in re-

gion 2 , as defined in Figure 4, expand almost radially. Velocity

of the axial expansion slightly increases (Fig. 7).

Interestingly, a similar spreading of the glycolytic cells was

described in the models based on cellular automata (Smallbone

et al., 2007; Gatenby et al., 2007). And in fact, those models
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share some common properties with the model presented here:

cells die when ATP production is insufficient, and cells divide

only if ATP is produced in excess. In both cases glycolytic cells

have an advantage. These models in (Smallbone et al., 2007;
Gatenby et al., 2007), however, do not take into account flow of
the tissue, but consider acidity induced cell death, so the direct

comparison of the results is not possible.

3 Concluding Remarks
In our model we described emergence of one of the hallmarks

of cancer, the ability of the tumour to rely exclusively on gly-

colytic metabolism. In the model we assumed that some cells

may spontaneously acquire this property in hypoxic conditions.

We focused on the transition of the tumour from one type of

metabolism to the other on a model of a growing tumour cord.

In this model we managed to build a reasonable link be-

tween the deduction of growth–death processes and consump-

tion of the nutrients. In bi-population model, this approach al-

lowed to naturally describe alternative metabolic pathways and

different regions of energy starvation for different cell popula-

tions.

We believe that the proper description of the cancer devel-

opment requires taking into account of both spatial phenomena

in the tissue and evolution of the tumour cells themselves. This

means that the cell lines with different behaviour and attributes

may emerge during tumour development, and their emergence

should be addressed by tumour growth models. The incorpo-

ration of population dynamics with different sub-cellular be-

haviours into continuous models is one of the ways to achieve

that.

However, even dealing with two cell lines in such models

poses already many technical difficulties. In our case we were

able to solve them. Our modification of the ghost fluid method

allows to stitch solutions between two porous media domains

when the number of the components in those domains do not

coincide, using the fact that the velocities of the components

and of the boundary between the domains depend on the sum

of the variables. Applicability and reliability of this method

needs to be studied.

We described how the parameters related to metabolism af-

fect the composition and width of the cord. It is interesting

to notice that the width of the cord seems to go like the in-

verse of the cubic root of the oxygen uptake coefficient α . We
also showed that the metabolic switch induces a tip-core het-

erogeneity rather than an axysymmetric stratification, as also

described phenomenologically. This is due to the fact that the

anaerobic population has its proliferation limits offset, grows

relatively faster and invades the entire cord. The inclusion of

epigenetic factors of the metabolic transition would probably

induce a slight radial stratification that would be stronger if

only epigenetic factors are considered. This issue, however,

deserves further investigation.

The presented model may certainly benefit from some other

extensions. Firstly, switch to glycolytic metabolism implies

acidification of the environment. Ability to sustain its toxi-

city is known as another very important hallmark of cancer,

and is fundamental in acidity mediated invasion. Secondly, ap-

pearance of anchorage-independent and invasive cells are other

phenomena which may greatly extend the applicability of the

model. Using qualitatively accurate model parameters in the

simulation is another priority.

A Model non-dimensionalization
Following Section 1 we may write the complete model:

∂φ1
∂ t

+∇ · (φ1�vt) = Γ+
1 +Γ−1 −Γs , in Ωt , (49)

∂φ2
∂ t

+∇ · (φ2�vt) = Γ+
2 +Γ−2 +Γs , in Ωt , (50)

�vt =−K∇((φ1+φ2)S(φ1+φ2)) , in Ωt , (51)

∂φh

∂ t
+∇ · (φh�vh) = Γ−h , in Ω\Ωt , (52)

�vh =−K∇(φhS(φh)) , in Ω\Ωt , (53)

�vt ·�n =�vh ·�n , on ∂Ωth , (54)

(φ1+φ2)S(φ1+φ2) = φhS(φh) , on ∂Ωth , (55)

∂co

∂ t
= DoΔco +qo , in Ω, (56)

∂cg

∂ t
= DgΔcg +qg , in Ω. (57)

Now let us expand the reaction terms and rewrite the model

in dimensionless variables. We use tildes to distinguish them

from the non-scaled variables.

Given the maximum available volume fraction of cells is φ∗,
we rescale cells’ volume fractions as

φi = φ̃iφ∗, i := 1,2,h, (58)

and for concentration scales c∗o and c∗g of oxygen and glucose
respectively (mass or moles per volume) we have:

co = c̃oc∗o, (59)

cg = c̃gc∗g. (60)

We also define the scaled S̃ as

S̃(φ̃) =
S(φ̃φ∗)
φ∗

, (61)

and define dimensionless κ̃φ as

κ̃φ (φ̃1, φ̃2) =
κ(1)
φ (φ̃1φ∗, φ̃2φ∗)

φ∗κ
= 1− φ̃1− φ̃2. (62)

We choose as time scale:

T =
QM

κφ∗c∗oc∗g ln2
, (63)

and as spatial scale:

L =

√
QMDo

κφ∗c∗oc∗g ln2
. (64)
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Then the equations may be rewritten as

∂ φ̃1
∂ t̃
− K̃∇̃ · (φ̃1∇̃((φ̃1+ φ̃2)S̃(φ̃1+ φ̃2))

)
=

+ φ̃1
(
κ̃φ c̃oc̃g− θ̃

)
+− ε̃ φ̃1

(
θ̃ − κ̃φ c̃oc̃g

)
+

− ν̃ φ̃1H
(
θ̃ − κ̃φ c̃oc̃g

)
, in Ωt , (65)

∂ φ̃2
∂ t̃
− K̃∇̃ · (φ̃2∇̃((φ̃1+ φ̃2)S̃(φ̃1+ φ̃2))

)
=

+ φ̃2
(
k̃κ̃φ c̃g− θ̃

)
+− ε̃ φ̃2

(
θ̃ − k̃κ̃φ c̃g

)
+

+ ν̃ φ̃1H
(
θ̃ − κ̃φ c̃oc̃g

)
, in Ωt , (66)

∂ φ̃h

∂ t̃
− K̃∇̃ · (φ̃h∇̃(φ̃hS̃(φ̃h))

)
=

− ε̃ φ̃h
(
θ̃ − (1− φ̃h)c̃oc̃g

)
+ , in Ω\Ωt , (67)

�n · ∇̃((φ̃1+ φ̃2)S̃(φ̃1+ φ̃2)
)
=�n · ∇̃(φ̃hS̃(φ̃h)

)
, on ∂Ωth , (68)

(φ̃1+ φ̃2)S̃(φ̃1+ φ̃2) = φ̃hS̃(φ̃h) , on ∂Ωth , (69)

∂ c̃o

∂ t̃
= Δ̃c̃o−H(ψ)

(
α̃κ̃φ φ̃1c̃oc̃g

)
−H(−ψ)

(
α̃θ̃ φ̃h

)
, in Ω, (70)

∂ c̃g

∂ t̃
= D̃gΔ̃c̃g−H(ψ)c̃ogα̃κ̃φ

(
φ̃1c̃o +

N
2

k̃φ̃2
)

c̃g

−H(−ψ)
(
c̃ogα̃θ̃ φ̃h

)
, in Ω, (71)

where ψ > 0 in Ωt , and ψ < 0 in Ω\Ωt . For the sake of sim-

plicity we also assume that

S̃(φ̃) = φ̃ − φ̃0, (72)

and the dimensionless coefficients are defined as follows:

• cell motility
K̃ = TKφ 2∗ /L2 = Kφ 2∗ /Do,

• death rate
ε̃ = Tφ∗c∗oc∗gκ ln2/θ̂ τ1/2 = QM/(θ̂ τ1/2),

• conversion rate
ν̃ = νQM/(κφ∗c∗oc∗g ln2),

• upkeep cost per cell
θ̃ = θ̂/(κφ∗c∗oc∗g),

• oxygen uptake rate
α̃ = 6Tφ 2∗ c∗gκ/N = 6QMφ∗/(Nc∗o ln2),

• relative rate of glycolysis
k̃ = k/c∗o,

• glucose diffusion coefficient
D̃g = DgT/L2 = Dg/Do,

• ratio between absolute concentrations
c̃og = c∗o

6c∗g
.

Once the model is defined, we omit tildes in (38–44) every-

where in the paper, except for Table 1.

B Modified ghost fluid method
In our model we have to deal with a free boundary separating

two domains, where each of the phase variables is defines in

only one domain.

There is a technique to solve similar kind of problem

with moving interface and discontinuities, where the level set

method is used in conjunction with the ghost fluid method (Fed-

kiw et al., 1999; Fedkiw & Liu, 2002; Nguyen et al., 2002;
Macklin & Lowengrub, 2006).

The level set method (Sethian & Osher, 1989) is used to

distinguish between the domains. It consists in introducing an

additional variable ψ that is initially positive in one domain and
negative in the other. The ghost fluid method consists in extrap-

olating each variable in the neighbour domain across the inter-

face in a way which enforces the conditions on the interface. If

I is continuous across the interface, then it may be extrapolated
in the neighbour domain with

∂ I
∂ t
±�n ·∇I = 0. (73)

Just a few time steps are typically sufficient as only values of I
near the interface are required. They are used to extrapolate the

variable of interest φi in the neighbour domain.

∂Ωthtumour host

φ1+φ2

φ2

φ1

φh

Figure 8: Cell packing density near the tumour–host in-

terface. Neither variable is defined in the complement

domain.

The standard single-phase solvers may be used to solve

the equations for both phases separately, using extrapolated

“ghost” phase from the other domain. Then the actual non-

continuous solution may be reconstructed in each of the do-

mains using the values of one of the variables.

However, most known applications of the ghost fluid

method deal with one variable per domain and use the same

equation in both domains. In our model we have to evaluate
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two variables in one domain and one in the other, and the equa-

tions are different in different domains.

In particular, it is not trivial to enforce the conditions on the

tumour–host interface, because neither variable is continuous

across the interface (Fig. 8) nor even defined in the complement

domain.

We propose an extension of the ghost fluid method for this

particular case when the number of phases in the liquid on one

side of the interface is different from the number of phases on

the other side.

Let us note, that the method should maintain not only the

continuity of stress but also the continuity of the velocity of the

interface, which both depend on the combination of the phase

variables φ1+φ2 through (51), (53–55), but each phase is gov-
erned by a separate equation. It is important to apply restric-

tions on the interphase ratios to satisfy the requirements above

when extrapolating the phase variables in the ghost domain.

Let us assume that there are two phases on one side of the

interface, and one phase on the other.

Now we can rewrite the continuity requirements in a much

simpler form:

(φ1+φ2)|T = φh|H , (74)

�n ·∇(φ1+φ2)|T = �n ·∇φh|H , (75)

where |T and |H denote values on different sides of the inter-

face.

Referring to Figure 9, let us consider a point�x on the inter-
face and the line normal to the interface. Let us assume that the

initial configuration is conforming, i.e. the conditions above

are satisfied.

∂Ωthtumour host

φ̄h = φ1 +φ2

φ1

φ2

φh

r = φ1/(φ1+φ2)
r̄

φ̄1 = r̄φh

φ̄2 = (1− r̄)φh

Figure 9: Extrapolating component densities across the

tumour–host interface. Interphase ratio r = φ1/(φ1 +
φ2) is extrapolated continuously (73) and the stresses
φhS(φh) and (φ1+φ2)S(φ1+φ2) are preserved. Extrap-
olated values shown with dotted lines.

We introduce a phase ratio variable

r =
φ1

φ1+φ2
. (76)

A bar above the variable denotes extrapolated (ghost) val-

ues. An upper index 0 denotes values on the interface:

φ 0 := (φ1+φ2)|T = φh|H , (77)

r0 := r|T . (78)

We do not need to extrapolate the stress explicitly as it is

uniquely identified by the sum of the phase variables when the

function S is the same in tumour and host: St(φ) = Sh(φ). We
use (73) to extrapolate r in the host domain. Practically, we ad-
vect the value of the phase ratio on the interface into the neigh-

bouring domain, and it is approximately equal to the value on

the interface:

r̄(�x+ ε�n)|H = r0+O(|ε|) (79)

Then we define extrapolated (ghost) values of φ1 and φ2 in
the host domain as

φ̄1 := r̄φh and φ̄2 := (1− r̄)φh, (80)

while φh in the tumour domain is defined as

φ̄h := φ1+φ2. (81)

Evidently, equation (73) transports the value on the inter-

face along the normal to the interface into the other domain.

This naturally raises the question how to extrapolate the values

near the concave points of the interface where the normals to

the interface intersect.

x

y
y = f(x)

(x,y)

(x0,y0)

(x1,y1)

Figure 10: Extrapolation near the concave points of the

interface.

Referring to Figure 10, let the interface be defined locally

as y = f(x), the normal to the interface be (−f′(x),1)T . Let us
consider two points of the interface: �x0 = (x0,y0),�x1 = (x1,y1),
and the point�x = (x,y) at the intersection of the normals to the
interface. We may express y as

y = y0− x− x0
f′(x0)

, (82)

and as

y = y1− x− x1
f′(x1)

. (83)

Then

y1− y0 =
(

1

f′(x1)
− 1

f′(x0)

)
x− x1

f′(x1)
+

x0
f′(x0)

, (84)
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and

x =
f′(x1)f′(x0)(y1− y0)+ f′(x0)x1− f′(x1)x0

f′(x0)− f′(x1) . (85)

Substituting

f′(x1) = f′(x0)+ f′′(x0)(Δx)+o((Δx)), (86)

where

Δx = x1− x0, (87)

we have at the zero-th order

x≈ x0− [1+(f′(x0))2]f′(x0)
f′′(x0)

= x0− f′(x0)
κ(x0)

√
1+(f′(x0))2

,

(88)

and

y≈ y0− [1+(f′(x0))2]
f′′(x0)

= y0− 1

κ(x0)
√
1+(f′(x0))2

, (89)

where κ(x0) is the curvature of the interface in point�x0.
Numerically we need at least one grid point at each of the

segments (�x0,�x) and (�x1,�x) to avoid uncertainty in the solution
of (73). This gives an estimation of the maximal spatial step of

the numerical grid:

hx ≤ 1

2

f′(x0)
κ(x0)

√
1+(f′(x0))2

, (90)

hy ≤ 1

2

1

κ(x0)
√
1+(f′(x0))2

. (91)

With our choice of ghost values the extrapolated phase vari-

ables are continuous, and the total density in both domain is

preserved as well as the stress. However, it is easily seen that

gradients of φi and φ̄i are not continuous. On the side of the

host domain

�n ·∇φ̄1|H =�n ·∇(r0φh)|H = r0�n ·∇φh|H =

r0�n ·∇(φ1+φ2)|T , (92)

while on the side of the tumour domain

�n ·∇φ1|T = ((φ1+φ2)�n ·∇r+ r�n ·∇(φ1+φ2))|T =

φ 0�n∇r+�n∇φ1|H . (93)

This gives the jump of the φ1 gradient across the interface:

�n · (∇φ1|T −∇φ1|H) = φ 0�n ·∇r|T . (94)

In the same way, for φ2 we have

�n · (∇φ2|T −∇φ2|H) = φ 0�n ·∇r|T . (95)

Fortunately, we do not need values of ∇φ1 and ∇φ2 sepa-
rately, but only ∇(φ1 + φ2), which determines the velocity of
the interface (51), (53–55). With this choice of φ̄1, φ̄2 and φ̄ ,
the velocity of the tissue is continuous across the interface.

Evidently, for a monophase domain r ≡ 1. This practically
means that for two monophase domains with the same S we

do not have to do anything: r ≡ 1 everywhere, and the ghost
variables coincide with the real variables.

This approach may be generalized for two domains A and B
with SA(φ) �= SB(φ) and greater number of subphases, when all
phases move with the same velocity, and velocity and stresses

depend on the sum of the phase variables. Given n the number
of phases in the domain A, and m be the number of phases in

the domain B, the algorithm to define “ghost” variables is repre-
sented in Table 2. Once this procedure is defined the construc-

tion of the complete numerical method is relatively straightfor-

ward (Table 3).

� Given:

� domain A, components u1, . . .un,

� stress function SA(u1+ . . .+un);
� domain B, components v1, . . .vm,

� stress function SB(v1+ . . .+ vm);

1 for�x ∈ A � In domain A
do

2 � evaluate the sum of components sA = ∑A ui
sA ← u1+ . . .+un

3 � evaluate the stress T
T ← SA(sA)

4 � evaluate the “ghost” value s̄B
s̄B ← x, such that sASA(sA) = xSB(x)

5 � and phase ratios of each component ri = ui/sA
for i← 1 to n

do ri ← ui/sA
6 for�x ∈ B � Do the same in domain B

do
sB ← v1+ . . .+ vm
T ← SB(sB)
s̄A ← x, such that xSA(x) = sBSB(sB)
for j← 1 to m

do r j ← v j/sB
7 � Extrapolate phase ratios

� in the complement domains

for i← 1 to n
do r̄i ← solution of (73) in B

for j← 1 to m
do r̄ j ← solution of (73) in A

8 � Define “ghost” values of each component

� in the complement domains

for�x ∈ A
do for j← 1 to m

do v̄ j ← r̄ j s̄B
for�x ∈ B

do for i← 1 to n
do ūi ← r̄is̄A

Table 2: Multiphase ghost fluid method: defining “ghost” vari-

ables in the complement domains.
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1 while t < T
2 do
3 � define the “ghost” variables φ̄1, φ̄2, φ̄h

� in complement domains

(see Fig. 2 and Table 2)

4 � re-define model variables globally

φi ←
{
φi, �x ∈Ωt ,

φ̄i, �x ∈Ω\Ωt
for i = 1,2

φh ←
{
φ̄h, �x ∈Ωt ,

φh, �x ∈Ω\Ωt

5 � evaluate solutions of φ1, φ2, φh, co, cg in Ω
� after time step δ t
φi ← φi(t +δ t,φ1,φ2,φh,co,cg), i = 1,2,h
cg ← cg(t +δ t,φ1,φ2,φh,co,cg)
co ← co(t +δ t,φ1,φ2,φh,cg)

6 � reconstruct total density variable globally

φ ←
{
φ1+φ2, �x ∈Ωt ,

φh, �x ∈Ω\Ωt

7 � evaluate collective velocity

�v←−K∇(φS(φ))
8 � update the solution for the level set function ψ

� (position of ∂Ωth)

ψ ← ψ(t +δ t)
t ← t +δ t

Table 3: Numerical method with multiphase ghost fluid method
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