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Abstract

The study of animal growth is a longstanding crucial topic of theoretical biology.

In this paper we introduce a new class of stochastic growth models that enjoy two

crucial properties: the growth path of an individual is monotonically increasing and

the mean length at time t follows the classic von Bertalanffy model. Besides the

theoretical development, the models are also tested against a large set of length-

at-age data collected on Atlantic Herring (Clupea harengus): the mean lengths and

variances of the cohorts were directly estimated by least squares. The results show

that the use of subordinators can lead to models enjoying interesting properties, in

particular able to catch some specific features often observed in fish growth data.

The use of subordinators seems to allow for an increased fidelity in the description
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of fish growth, whilst still conforming to the general parameters of the traditional

von Bertalanffy equation.

Key words: Individual-based models, Subordinators, Fish growth, Clupea

harengus, Fisheries

1 Introduction1

The modeling of growth and the analysis of intra-population pattern of size2

variability through time are central topics in animal population biology,3

since the internal size structure of populations can have a decisive influence4

on the population dynamics (DeAngelis et al., 1993; Imsland et al., 1998;5

Uchmanski, 2000; Kendall & Fox, 2002; Fujiwara et al., 2004). In general,6

the von Bertalanffy growth function (VBGF - von Bertalanffy, 1957) is the7

best acknowledged and used relationship to describe the growth of fish and8

other animals. This equation states that the size of an individual increases in9

time according to the equation10

xt = L
∞
(1− e−k(t+t0)) (1.1)

Where L∞ is the extremal length that is attained as time goes to infinity,11

−t0 is the time of conception, at which the size should be 0 and k is a12

parameter that gives the speed of the process: the larger the value of k, the13

quickest the growth. The VBGF is most commonly used as a descriptive14

model of size-at-age data (Essington et al., 2001). Nevertheless, equation15

(1.1) describes the relationship between age and mean length of a16

∗ Corresponding author. Tel.: +390672595974. Fax: +390672595965. E-mail ad-

dress: Tommaso.Russo@Uniroma2.it
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population, whereas the variability among individuals of the same age (e.g.17

the variance or even the distribution of each cohort) is not included.18

The popular assumption of gaussianity (Imsland et al., 1998) is clearly a first19

(rough) approximation in this direction. A natural approach to the problem20

of determining the appropriate form of the probability distribution for a21

population at a given time t is to model first the growth process of the22

individuals (individual based models, IBM). Nowadays, both in ecological23

(Arino et al., 2004), evolutionary (Conover & Munch, 2002; Ernande et al.,24

2004) and management (Caswell, 2001) contexts, one of the challenges of the25

researcher is to model how the size of an individual changes in time and26

deduce from the growth model which kind of probability distribution models27

the size of fish at a given age (Lv & Pitchford, 2007; Fujiwara et al., 2004).28

A suitable model of growth should account for both individual and29

environmental variability. In fish, as in other animals, the first source of30

variability is rooted in the physiological processes and is the net result of two31

opposing processes, catabolism and anabolism (von Bertalanffy, 1938). The32

inter-individual variability in growth is the result of several internal (genetic)33

and external (environmental) factors which affect these physiological34

processes. In fact, while each individual is born with a personal genetic35

architecture which primarily determines his growth profile, a number of36

physical and biological factors, such as water temperature (Sumpter, 1992),37

dissolved oxygen (Brett, 1979), photoperiod (Imsland et al., 2002), and the38

availability of appropriate food sources (Rilling & Houde, 1999), have been39

shown to affect growth rates. In order to take into account these aspects as40

well as individual variability, a class of individually based model (IBM) was41

developed (Lv & Pitchford, 2007; Sainsbury, 1980; Mulligan & Leaman,42
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1992; Wang & Thomas, 2003; Imsland et al., 2002; Wang, 1999;43

Gudmundsson, 2005).44

These models can be classified into two main categories. The first comprises45

those which consider the inter-individual variability as a stochastic factor to46

be added to the general growth curve of the population. The distribution of47

this factor is the same for all the individuals. In the most recent approaches48

of this kind (Gudmundsson, 2005; Lv & Pitchford, 2007; Wang, 1999) some49

individual-based stochastic models of growth are proposed using a stochastic50

differential equations. These models take the general form:51

dLt = f(Lt, t) + α(Lt, t) dB(t) (1.2)

Here Lt is the size at time t, f(Lt, t) characterizes the deterministic intrinsic52

growth (drift coefficient) of the individual (the same for all individuals);53

α(Lt, t) gives the magnitude of the random fluctuations (diffusion coefficient)54

and B(t) is a standard Brownian motion, or Wiener process, which is55

commonly used to model a variety of background and environmental56

fluctuations in physical, financial and biological contexts, see57

Karlin & Taylor (1981) e.g.58

The stochastic component of these models is intended to account both for59

the environment and the inter-individual variability. It should be stressed,60

however, that (as already remarked in Gudmundsson, 2005) the solution of61

an equation as (1.2) cannot be monotonically increasing and therefore62

appears to be unsuitable to model the evolution of the size of an individual.63

Stochastic models like the one of (1.2) are conversely well suited in order to64

model quantities, as prices in financial markets, that are characterized by an65
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oscillating and therefore non monotonic behaviour. This aspect seems to be66

a drawback for a growth model of several animals like fish. In fact, for fish67

and other vertebrates, the physiological mechanism of growth in length (i.e.68

addition of bone material to the axil unit of the skeleton that is the69

vertebra) leads to a pattern in which the size of an individual is necessarily70

increasing in time (Weatherley & Gill, 1987). Let us point out that there71

exist no Gaussian process which is increasing. Therefore, modeling size72

variability through an individual growth process, can not give rise to a73

Gaussian distribution.74

Closely related to the models (1.2) are those introduced in Gudmundsson75

(2005) where it is the derivative of the growth process that is the solution of76

a stochastic equation. It is possible in this way to obtain a stochastic process77

that is increasing. These models are interesting and deserve to be tried by78

testing against real data. Remark however that the mean size at time t of a79

population following such a model does not follow a VBGF.80

The second category of stochastic models suggested so far comprises81

non-deterministic models in which the individuals of a fish population have82

different parameters of the VBGF. In this way, each individual has its own83

triplet (L
∞
, t0, k), that is retained throughout its life (Sainsbury, 1980).84

Considering the length to age relationship, the length Xt at age t of the i-th85

individual with the parameters triple (Li, t0,i, ki) is given by:86

Xt,i = Li(1− e−ki(t+t0,i)) (1.3)

This model displays a monotonic behaviour and considers the87

inter-individual variability of growth parameters, but does not account for88
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the randomness coming from the environment, which can be seen as a89

limitation of the model.90

Finally, it should be considered that individual growth is a complex energetic91

process. Individual length increases only when enough energy from food is92

available for growth. On the other hand lack of food does not usually lead to93

a reduction in length, because organisms can lose body mass without94

shrinking in length (Kooijman, 2000) also because of the presence of a95

skeleton. Energy may also be allocated to storage for future use, producing96

“memory” in growth dynamics. Individual organisms encounter and ingest97

food, which is then assimilated. Assimilated food is transformed into reserve98

material such as protein and fat. A fixed fraction of the energy from the99

reserve is used for both metabolic maintenance and growth, and the rest is100

used for reproduction. Looking at the length of an individual, we suggest that101

this process determines a pattern in which periods of no growth (determined102

by scant energy inlet) are separated by periods of growth. If the periods of103

growth are short, the growth process could be well described by a model104

allowing for discontinuities, i.e. for instantaneous increases of the length105

(jumps). This idea is consistent with several observations reported for fish in106

general and for the species we are going to study (Hinrichsen et al., 2007).107

In this paper we introduce two classes of stochastic models of growth that108

attempt to overcome the drawbacks pointed out above. The main idea109

developed in this paper is to model the growth process as the solution of a110

stochastic equation of the form111

dXt = (L
∞
−Xt−) dZt

6
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where (Zt)t is a subordinator. These are a class of stochastic processes that112

are strictly increasing and the solution (Xt)t turns out to be increasing also.113

These models enjoy a certain number of desirable features, namely114

• they take into account both the individual and environmental sources of115

randomness;116

• they are increasing.117

• the mean size at time t follows a VBGF.118

In §2 we make a quick review on the topics of subordinators upon which our119

models are built. In §3 and §4 some models are developed, attempting to120

answer to the points exposed above. Finally in §6 we apply the proposed121

models to a large set of length-at-age data of Atlantic herring Clupea122

harengus, presented in §5.123

2 Subordinators124

A subordinator is a stochastic process (Zt)t such that125

• Z0 = 0;126

• its paths are right continuous and increasing almost surely;127

• has independent and stationary increments.128

This means in particular that the distribution of Zt+h − Zt is independent of129

t for every h ≥ 0 and that Zt − Zs and Zv − Zu are independent r.v.’s for130

u < v ≤ s < t. Also the increments Zt+h − Zt must be stationary, in the131

sense that their distribution depends on h only and not on t. The132

characterization of such processes (that are particular instances of Lévy133

processes) has received much attention in time and it is characterized in134
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terms of the Laplace transform of Zt. It is immediate that if135

Mt(θ) = E(e−θZt), θ ≥ 0 (2.4)

then M is of the form136

Mt(θ) = etφ(θ) (2.5)

where the exponent φ is characterized by the Lévy-Khintchin formula (see,137

for the subjects developed in this section and in the next ones138

Cont & Tankov 2004 and Sato 1999 e.g.). More precisely, the139

Lévy-Khintchin formula for subordinators states that140

φ(θ) = −θγ +
∫ +∞

0
(e−θx − 1) ν(dx)

where γ ≥ 0 and ν, the Lévy measure, is a positive measure on R
+ such that141

∫ +∞

0

x

1 + x
ν(dx) < +∞ (2.6)

Intuitively a subordinator increases as the superposition of a deterministic142

evolution t → γt and of a stochastic process which only makes jumps. These143

are made at times governed by a Poisson process. More precisely, if144

0 < a < b, then ν([a, b]) is the intensity of the Poisson process of the jumps145

whose size is larger than a and smaller than b. This means that if t is the146

(random) time at which the jump occurs, then the path has, at t, a left limit147

Xt− and a right limit Xt+ that are different, with Xt− < Xt+. For our148

purposes we shall therefore be much interested in subordinators whose Lévy149

measure is large to near 0 and gives a small mass only away from 0. The150

resulting process would hence be characterized by many very small jumps.151
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As every Lévy process, the independence and stationarity properties of the152

increments implies that if Zt has a finite mean, then153

E(Zt) = μt

for some real number μ and if it has a finite variance then154

Var(Zt) = σ2t

for some σ2 ≥ 0.155

It is not possible for a general Lévy measure to compute explicitly the156

Laplace transform and/or the density at time t of the associated157

subordinator. The next examples introduce some families of subordinators of158

interest for which these feature can be determined.159

• the Gamma process, where the distribution of Zt follows a Γ(αt, λ)160

distribution. Recall that such a distribution has a density161

f(x) =
λαt

Γ(αt)
xαt−1e−λx, x > 0

and f(x) = 0 for x ≤ 0. Of course the increment Zt − Zs, having the same162

distribution as Zt−s, has a Γ(α(t− s), λ) distribution. Its Laplace transform is163

Mt(θ) =
(

λ

λ+ θ

)αt

(2.7)

so that φ(θ) = −α log λ
λ+θ

. From well-known properties of the Γ(αt, λ)164

distribution the statistical indices of interest of a Gamma process are:165

mean = αt/λ, variance = αt/λ2, skewness = 2/
√

αt and kurtosis =166

9



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

3 + 6/(αt).167

Here the Lévy measure is168

ν(dy) =
α

y
e−λy dy.

This process therefore gives a high intensity to small jumps (see Fig 1).169

• The inverse Gaussian processes, where Zt is defined as the first time at170

which a process of the form
√

ρBs + bs crosses level t. Here (Bt)t denotes a171

standard Brownian motion and ρ, b > 0. Its density at time t is, for x > 0,172

ft(x) =
tebt/ρ

(2πρ)1/2x3/2
exp

(
− b2

2ρ
x− t2

2ρx

)
.

It depends on the positive parameters b, ρ. Its Laplace transform at time t is173

Mt(θ) = exp
(
−t

(√
b2

ρ2 +
2θ
ρ
− b

ρ

))
,

from which one can derive the expression of the statistical indices of interest:174

mean = t/b, variance = ρt/b3, skewness = 3
√

ρ/(tb) and kurtosis =175

3 + 15ρ/(tb).176

The Lévy measure is177

ν(dy) =
1√
2πρy3

e−
1

2ρ
b2y dy. (2.8)

We stress that both the Gamma and the inverse Gaussian process have a178

Lévy measure that gives much weight to small jumps and that decreases fast179

at infinity.180

10



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

• The α-stable process, 0 < α < 1 whose Laplace transform is181

Mt(θ) = e−cθαt .

For these processes an explicit expression for the density does not exist,182

unless α = 1
2
. In this case, for c =

√
2, the density is, for x > 0,183

f(x) =
t

(2π)1/2x3/2
e−

t2

2x .

Notice that, as x→ +∞ the density decreases very slowly and, in particular,184

both expectation and variance are infinite. Also the Lévy measure decreases185

very slowly at infinity, therefore allowing very large jumps. We shall see that186

this model is not well suited for the growth phenomena of interest and we187

mention it only for reasons of completeness.188

To the previous examples one should add the deterministic increasing189

process: Zt = γt. Recall also that the sum of independent subordinators is a190

subordinator itself.191

3 Modeling by time change192

A first growth model using subordinators can be obtained by time change.193

We simply consider that the size of the fish Xt at time t is given by194

Xt = ZAt

11
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where Z is the subordinator and A is the von Bertalanffy type function195

At = (1− e−k(t+t0)).

If the subordinator Zt has finite mean, then for some real number μ196

E(Xt) = μ (1− e−k(t+t0))

and the means follow therefore a VBGF, where μ plays the role of L∞ (recall197

that μ = E(Z1)).198

If in particular Z is a Gamma process, then μ = α
λ
. It is also immediate that,199

if Zt has finite variance,200

Var(Xt) = σ2 (1− e−k(t+t0)) (3.9)

for some σ2 > 0 (σ2 = α
λ2 if Z is a Gamma process). Recall that the variance201

is always increasing in t. This fact makes that the models obtained by time202

change of a subordinator are rather rigid and are in particular unable to203

account for a non monotonic behaviour of the variance, as is often observed204

in data.205
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4 Modeling by Doléans exponential206

A more interesting model of growth is given by the process (Xt)t which is207

obtained as the solution of the stochastic equation208

dXt = (L
∞
−Xt−) dZt

X
−t0 = 0

(4.10)

where (Zt)t is a subordinator. Here −t0 denotes the time of conception, at209

which the size must be considered equal to 0. If the subordinator Z has a210

drift γ equal to 0, the solution of (4.10) is a process that remains constant211

between the jumps of Z, whereas it has an increment of size212

(L
∞
−Xt−)ΔZt

whenever Z has a jump of size ΔZt. The quantity Xt− denotes the value of213

X just before the jump that occurs at time t. If we define Yt = L
∞
−Xt,214

then Y is the solution of215

dYt = −Yt− dZt

Y
−t0 = L

∞
.

(4.11)

Therefore Y is equal to the Doléans exponential of the Lévy process −Z216

multiplied by L
∞
. The Doléans exponential of the Lévy process is a subject217

that has received much attention and it is possible to derive an explicit218

solution of (4.11), at least if one makes the assumption that the process Z219

cannot make jumps larger than 1 (which is a quite reasonable assumption, in220
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our case). Under this assumption the solution of (4.11) is221

Yt = L
∞
e−Z̃t+t0 (4.12)

where Z̃ is another subordinator whose Lévy measure ν̃ and drift γ̃ are222

obtained from ν and γ in an explicit way. More precisely ν̃ is the image of ν223

through the application x→ log(1 + x) and γ̃ = γ. The solution of (4.10) is224

therefore225

Xt = L
∞
(1− e−Z̃t+t0 ). (4.13)

It is easy to compute the mean E(Xt), as the quantity E(e
−Z̃t+t0 ) is the226

Laplace transform at θ = 1 of the r.v. Zt+t0 , which is easy to compute thanks227

to (2.4) and (2.5):228

E(Xt) = L
∞
(1− e−(t+t0)φ̃(1)). (4.14)

Hence also for this model whatever the subordinator that is chosen (provided229

its Lévy measure vanishes outside ]0, 1]), the mean of the solution of (4.10)230

follows a von Bertalanffy-type equation.231

Note 4.1 Recall that the VBGF (1.1) is the solution of equation (4.10)232

when Z is the deterministic subordinator Zt = kt. Therefore (4.10) appears233

as a natural stochastic extension of the VBGF.234

Remark also that some models already present in the literature are235

particular instances of (4.10). It is the case of the model (3.4) of236

Lv & Pitchford (2007) where the authors actually consider Zt = rt+ σBt.237

We point out again that the solution to (4.10) in this case does not have238

paths which are monotonically increasing.239
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The solution (4.13) however has a drawback as a growth model because240

Xt → L
∞
as t → +∞ (unless Zt ≡ 0). This implies that Var(Xt)→ 0 as241

t → +∞, which is not realistic, as it would imply that all individuals should242

reach the same limiting size as t increases. In order to overcome this problem243

it seems natural to assume that the extremal size L
∞
is itself a random244

variable, thus accounting for the individual variability. In this way the two245

sources of randomness, L
∞
and (Zt)t, appearing in equation (4.10) have the246

meaning of modeling the random individual variability and the247

environmental randomness respectively. It is therefore natural to assume248

that L
∞
and (Zt)t are independent. In this case formula (4.14) remains valid249

if one replaces L
∞
by E(L

∞
). Therefore the expectation E(Xt) still follows a250

von Bertalanffy-type pattern as in (4.14), but with L
∞
replaced by E(L

∞
).251

Similarly it is easy to compute the variance which is given by252

Var(Xt) = Var(1− e−Z̃t+t0 )E[L2
∞
] + Var(L2

∞
)E[1− e−Z̃t+t0 ]2 =

=
(
e−(t+t0)φ̃(2) − e−2(t+t0)φ̃(1)

)
E[L2

∞
] + Var(L2

∞
)
(
1− e−(t+t0)φ̃(1)

)2
.

(4.15)

Notice that Var(Xt) appears as the sum of two terms. As both φ̃(1) and φ̃(2)253

are positive, the first term vanishes at −t0 and at +∞ and it easy to see that254

(unless Zt ≡ 0) it increases at first and then decreases. The second one255

conversely is increasing in t. Therefore the variance of Xt, according to256

different values of the parameters, can exhibit two possible behaviours:257

• increasing or258

• first increasing and then decreasing.259

See Figure 2 for an illustration of this typical behaviour.260
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The non monotonic behaviour of the variance is an interesting feature that is261

enjoyed also by some of the models proposed by Gudmundsson, 2005 and262

Lv & Pitchford, 2007. This is not surprising as the computation above only263

makes use of the fact that (Xt)t is the solution of equation (4.10) with a264

driving process (Zt)t which is a Lévy process, possibly a Brownian motion as265

it happens to be the case for the models of the authors above.266

Note 4.2 In §6 we adapt the models of this section and of §3 to a267

population of herrings. It is fair however to point out a limitation that arises268

when trying to model real populations with processes driven by269

subordinators. Recall that the driving subordinator is meant to model the270

randomness of the growth process arising from the environment. The271

assumption of independence and stationarity of the increments of the272

subordinator implies the assumption that the environment remains stable273

and stationary in time, which is a feature that can be expected to hold in274

real world only for a short span of time, as the effect of season and of other275

sources of modification of the natural habitat should introduce a276

time-dependent effect. It is clear however that more realistic models would277

be far more complicated and, possibly, intractable in practice. The same278

observation, by the way, applies to the VBGF, which is an equation that is279

derived under the assumption of stationarity of the environment.280

In the rest of this section we give more details in two particular cases,281

making assumptions on Z that imply that Z̃ is either a Gamma or an inverse282

Gaussian process.283
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Assume that the Lévy measure ν of Z has a density h with respect to the284

Lebesgue measure. h must be ≥ 0, must vanish on [1,+∞[ and be such that285

∫ 1

0
yh(y)dy < +∞

Then −Z has a drift = −γ and a Lévy measure ν given by the density286

h(y) = h(−y)

The image of the measure h(y) dy by y → log(1 + y) is287

h̃(y) = e−yh(1− e−y)

Example 4.3 (The Gamma process) Let us assume that288

h(y) =
α

− log(1− y)
(1− y)λ−1 (4.16)

for 0 < y ≤ 1 and h(y) = 0 for y > 1, where α > 0, λ > 0. With this choice289

we obtain290

h̃(y) =
α

y
e−λy

which is the Lévy measure of a Gamma process. Hence if we choose a driving291

subordinator Z with a Lévy measure as in (4.16) and drift γ, the solution of292

(4.10) is293

Xt = L
∞
(1− e−γt−Z̃t+t0) (4.17)

where Z̃ is a Gamma process with parameters α and λ and drift γ. Thanks294

to (4.10) and (2.7), for this model the mean is equal to295

E(Xt) = E(L
∞
)
(
1− e−γ(t+t0)

(
λ

λ+ 1

)α(t+t0))
(4.18)
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which, as already noted, is a von Bertalanffy equation with296

k = γ + α log λ+1
λ
. The variance of Xt is also easily computed using (4.15):297

Var(Xt) = E[L2
∞
]e−2γ(t+t0)

[(
λ

λ+ 2

)α(t+t0)

−
(

λ

λ+ 1

)2α(t+t0)]
+

+Var(L
∞
)
[
1− eγ(t+t0)

(
λ

λ+1

)α(t+t0)]2

.

(4.19)

It is also possible to compute the density of Xt, conditioned to the value of298

L
∞
= l, which is given by299

f(x) =
λα(t+t0)(l − x)λ−1

Γ(α(t+ t0))lλ

(
− log(1− x

l
)− γ(t+ t0)

)α(t+t0)−1
eλγ(t+t0) (4.20)

for l(1− e−γ(t+t0)) ≤ x ≤ l and f(x) = 0 otherwise. The graph of this density300

for different values of t is produced in Figure 3. See in Figure 4 the graph of301

some simulated paths of (Xt)t with γ = 0.302

Example 4.4 (The inverse Gaussian process) Let us assume that Z is a303

Levy process such that Z̃ is an inverse Gaussian process with drift γ. If the304

Lévy measure of Z has a density305

h(x) =
1√

2πρ(− log(1− x))3/2
(1− x)

b2

2ρ
−1

for 0 < x < 1 and h(x) = 0 elsewhere, then it turns out that Z̃ is an inverse306

Gaussian process with parameters b and ρ. The density of307

Xt = L
∞
(1− e−Z̃t−γt) given L

∞
= l is straightforward to compute and is308

ft(x) =
tebt/ρ

√
2πρ

(− log(1− x
l
))−3/2(1− x

l
)

b2

2ρ
−1 exp

(
t2ρ

2 log(1− x
l
)

)

for 0 < x < l and ft(x) = 0 otherwise.309
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One could also think of Z̃ as a stable process with exponent α = 1
2
. This310

choice however does not seem really suitable. Indeed in this case it is also311

possible to compute the density, as the same type of computation produces312

in this case the density, conditional on L
∞
= l,313

gt(x) =
t+ t0√

2π(l − x)(log l
l−x

)3/2
exp

(
−(t + t0)

2

2 log l
l−x

)
, 0 < x < l .

(with γ = 0). The expression of this density suggests that the use of stable314

subordinators is inappropriate in order to model fish growth, as g(x)→ +∞315

as x→ l−, for every value of t.316

The model based on the Doléans exponential (4.10) appears to enjoy many317

interesting features. It is fair however to point out that in order to take318

advantage of it there remains the question of determining an appropriate319

distribution for the maximal length L
∞
. It also appears difficult to find a320

distribution such that the density distribution of the length of the321

individuals of a given time t, L
∞
(1− e−Zt+t0 ) has an explicit analytic322

expression. This density can be computed numerically, but it may be323

impossible to use of statistical methods based on maximum likelihood.324

The question of determining a good candidate of distribution has been325

already tackled in (Sainsbury, 1980), where the author suggested a Gamma326

distribution.327

5 The Dataset328

The data used in this study were collected as part of the EU FP5 project329

“HERGEN” (Mariani et al., 2005; Ruzzante et al., 2006), and include a330
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homogeneous collection of genetically and phenotypically characterized331

North Sea Autumn Spawning herring (Clupea harengus L., 1758), from ICES332

areas zones IVa, IVb and IVc. Herring is the dominant converter of333

zooplankton production, using the biomass of copepods, mysids, euphausids334

in the pelagic environment of the northern hemisphere (Winters & Wheeler,335

1987). Additionally, herring is a central prey item for higher trophic levels.336

The spawning period of this species in the western North Sea is337

September/October.338

The samples were collected east of the Shetland Islands in July 2005. At that339

moment, fish were located in that area to feed (summer feeding aggregation).340

Aging was performed by counting the otolith (sagitta) winter rings, following341

standard procedures (Ruzzante et al., 2006; AA.VV, 2007). This method was342

validated and tested for reliability following the procedure reported in343

Beverton et al. (2004). The dataset is composed by 1255 specimens344

belonging to 7 cohorts. The abundances and the ages of these cohorts are345

showed in Table 1. The values of the empirical means and variances of the346

cohorts can be found in Fig 5.347

6 Analysis of the herring dataset348

In order to apply the models developed in §3 and §4 to the analysis of a349

dataset as the herring one described in the previous section, one is350

confronted with two kind of problems.351

The first one is the determination of the appropriate driving subordinator.352

Actually subordinators form a large family, every Lévy measure on R
+

353

satisfying (2.6) being associated to a corresponding subordinator. This is354
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therefore a non parametric problem and it appears very difficult to355

determine this Lévy measure starting from data in the form of cohorts, as is356

the case for the herring dataset.357

The second order of problems comes from the fact that these models are to358

be considered only approximatively correct, as they do not take into account359

the time variability of the environment (see Note 4.2).360

In this section we produce the results obtained fitting the models of §3 and 4361

to the herring dataset. In both cases we decided to work with the Gamma362

model, as it seemed to give better results than the inverse Gaussian.363

In order to have a benchmark for the analysis of the dataset, we shall first364

adapt a normal Gaussian model inside each cohort. This is the default choice365

in literature (Imsland et al., 1998). Given the age ti, the length Xti is366

assumed to be normally distributed with mean L
∞
(1− e−k(ti+t0)) and367

variance σ2
i (different cohorts are allowed to have different variances). This368

model requires therefore a number of parameters that is equal to 3+the369

number of cohorts.370

It is worth noting that this is not a mixture model, as we are able to assign371

every individual to its class. Recall also that, as stated in the introduction,372

this is not a Individual Based Model.373

The normal and time change models have been estimated by means of374

maximum likelihood, which appears to be the most natural method for375

them. As already pointed out in §4, for the Doléans exponential model,376

which is the most promising, the maximum likelihood method is377

inapplicable, as the distribution of the maximal size L
∞
is not known. We378

therefore resorted to the least squares method in order to fit the moments.379
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The estimates obtained with different models are shown in Table 2.380

It is apparent that the normal model has a good agreement with the data,381

which is not surprising, given also the availability of many parameters.382

6.1 Time change model383

As already hinted in §3 this kind of models shows a certain rigidity. We give384

the estimates obtained using it for completeness sake only. Assuming that385

the lengths at time ti follow a Γ(α(1− e−k(ti+t0)), λ) distribution, we have a386

model with 4 parameters (whatever the number of cohorts). The estimated387

values are α = 388.2, λ = 1.33, k = 0.64 and t0 = 0.047. From this we deduce388

L̂
∞
as the ratio α̂/λ̂ (see Table 2). Estimates of the means and variances are389

obtained using (3.9).390

Notice that the estimated means are very close to the empirical means (with391

the exception of cohort 1). However it is clear that this model cannot392

accommodate the variances. Recall that for this model the variances are393

necessarily increasing with time, at a difference with the behaviour of the394

empirical variances.395

As already mentioned above, the model based on time change is a396

particularly parsimonious explanation of the data in terms of number of397

parameters, but has limited capacities of catching some relevant features.398
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6.2 Doléans exponential399

We tried a model based on the solution of (4.10) with respect to a Gamma400

process, as in Example 4.3.401

According to this model, the density of the observations follows a402

distribution, given L
∞
= l, that is given in (4.20). Noting that the mean403

values of the lengths of the different cohorts must lie on the VBGF, we404

decided to perform a two-stage method of moments, in which, at first, the405

empirical means are interpolated by a VBGF function (1.1), therefore406

estimating the parameters E(L
∞
), k and t0. In the second stage, we407

interpolated the empirical variances with the function (4.19). In this way we408

obtained estimates of α, λ, γ together with an estimate of σ2
L∞

= Var(L
∞
).409

Recall that the quantities k and α, λ, γ are related by the constraint410

k = γ + α log λ+1
λ
. For both stages we used a least squares method in order411

to fit the moments.412

See Fig 5 for the graph of the fitted von Bertalanffy function and the413

empirical means with error bars.414

This method produces an estimate of the mean and variance of L
∞
without415

assuming any distribution for L
∞
. The estimates are α = 1.3, λ = 15,416

γ = 0.55, k = 0.63, t0 = 0.072, E(L
∞
) = 297.3 and σ2

L∞

= 160. Finally, in417

order to obtain a concrete and visually appreciable estimate of the density of418

each cohort, we computed it numerically assuming for L
∞
a Gamma419

distribution having parameters matching the estimated mean and variance,420

that is with parameters α0 = 552.34 and λ0 = 1.86. Figure 6 produces a421

comparison between the density obtained as described above from the model422
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and an empirical density, produced from the data with a usual kernel423

estimator. Taking into account the limited number of parameters employed424

by this model one can appreciate the nice fit for some of the cohorts.425

Discrepancies can be found for the first two cohorts and for the sixth one.426

For the fifth one there is a evident discrepancy: notice however that, as427

pointed out in Fig 5, also the estimated VBFG curve that fits the mean of428

this fifth cohort. At this point one should keep in mind Note 4.2.429

7 Discussion430

Although several stochastic model are available in the literature in order to431

compute the time evolution of the distribution of the size of a population, a432

certain number of drawbacks still remain, leading to the need of a more433

appropriate formulation that is able to take into account some key aspects of434

animal growth.435

These aspects basically concern the inclusion of the different sources of436

variability in growth rate among individuals, which directly determine the437

size density observed at different ages, and the property of the growth438

process of being increasing. In this work we developed two models based on439

the use of subordinators as driving processes. Our aim was to provide a new440

stochastic model, mainly of theoretical interest for the description of the441

growth process for a large class of organisms. It turns out that one of them,442

the model based on the Doléans exponential giving rise to a Gamma process,443

is also able to produce an appreciable fit with the data. In particular it is444

able to reproduce the non monotonic trend of the variance, that is the445

measure of intra-cohort variability of size. This is an important feature: a446
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reduction of the demographic variance starting at some time is often447

observed in data (Gudmundsson, 2005 e.g.).448

In general, the variability in individual size increases within the same cohort449

through time when the individual growth rate is positively correlated with450

itself in time (Gudmundsson, 2005). This phenomenon is called “growth451

depensation”.452

Conversely, a reduction of the cohort variance (the so called “growth453

compensation”) has been up to now explained with the fact that survival of454

individuals are not independent and identically distributed (Kendall & Fox,455

2002). In other words, there needs to be some systematic structure in the456

population. Common biological mechanisms that can produce a reduction of457

demographic variance are contest competition (including territoriality),458

long-lived individuals with lifetime demographic traits (“individual459

heterogeneity”), maternally imposed variation, and directional or balancing460

selection.461

Observe however that our model explains this typical behaviour of the462

variance without introducing an explicit selection mechanism related to some463

size-dependent mortality. By this we do not claim that such a mechanism464

does not exist (and we think that it might be natural to devise a more465

sofisticated model including this feature), but simply that it is not necessary466

in order to explain the observed behavior of the empirical variances.467

The possibility to model and predict this aspect of fish growth seems to be of468

great importance in both theoretical studies and fishery management469

applications. This is particularly true if referred to the increasing use of470

measurement of the growth pattern of organisms (like fish) as an ecological471
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indicator (Bennett et al., 1995). Further, assessment of growth pattern,472

combined with other measurement of physiological condition, have the473

potential to yield information on the history of environmental stress (e.g.474

from contaminants) or selective pressures (e.g. fisheries) and adaptation to475

environmental change (Jorgensen et al., 2007). In fact, statistical analyses of476

long-term data from some exploited fish stocks have revealed evolutionary477

changes in reaction norms (Ernande et al., 2004). Accuracy of the growth478

model at the basis of these analyses obviously affect the results, so that the479

development of sound approach to model and predict size distribution is a480

main target.481

A future direction will concern the assessment of the effect of the aging error482

on the estimates obtained using our model. Even if the aging method is483

reliable, it seems that errors in aging young cohorts can significantly affect484

the estimates. This is due to the fact that both VBGF and the variance485

function converge with age.486

The present work represent a first attempt to apply the Lévy processes to487

the subject. We think that these and the ideas developed in this paper can488

be adapted to introduce stochasticity into more complex models of growth489

(see Edwards et al., 2007).490

8 Conclusion491

The aim of the present work was the development of a stochastic model of492

growth, and therefore an Individual Based Model for the distribution of493

data, that is compatible with the von Bertalanffy function and might be able494

to catch more of the features empirically observed.495
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The model developed in relation with the Doléans exponential shows496

interesting features. As other models already in the literature (Wang, 1999;497

Gudmundsson, 2005; Lv & Pitchford, 2007) it is able to explain the observed498

non monotonic behaviour of the variances. However, it is the first stochastic499

model producing paths that are increasing, thus, giving a realistic random500

model of individual growth.501

Our main objective was mainly theoretical, but we think that the models502

developed in §4 can be of interest for practical applications such as stock503

assessment and forecasting. In this direction however some questions require504

a deeper investigation.505

These are506

• The determination (elicitation) of a suitable distribution for the maximal507

size L
∞
.508

• The determination of the appropriate subordinator.509
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