

Lévy processes and stochastic von Bertalanffy models of growth, with application to fish population analysis

Tommaso Russo, Paolo Baldi, Antonio Parisi, Giuseppe Magnifico, Stefano

Mariani, Stefano Cataudella

To cite this version:

Tommaso Russo, Paolo Baldi, Antonio Parisi, Giuseppe Magnifico, Stefano Mariani, et al.. Lévy processes and stochastic von Bertalanffy models of growth, with application to fish population analysis. Journal of Theoretical Biology, 2009, 258 (4), pp.521. 10.1016/j.jtbi.2009.01.033. hal-00554572

HAL Id: hal-00554572 <https://hal.science/hal-00554572v1>

Submitted on 11 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Author's Accepted Manuscript

Lévy processes and stochastic von Bertalanffy models of growth, with application to fish population analysis

Tommaso Russo, Paolo Baldi, Antonio Parisi, Giuseppe Magnifico, Stefano Mariani, Stefano Cataudella

PII: S0022-5193(09)00029-0

DOI: doi:10.1016/j.jtbi.2009.01.033 Reference: YJTBI 5440

www.elsevier.com/locate/yjtbi

To appear in: *Journal of Theoretical Biology*

Received date: 4 August 2008 Revised date: 21 January 2009 Accepted date: 21 January 2009

Cite this article as: Tommaso Russo, Paolo Baldi, Antonio Parisi, Giuseppe Magnifico, Stefano Mariani and Stefano Cataudella, Lévy processes and stochastic von Bertalanffy models of growth, with application to fish population analysis, *Journal of Theoretical Biology* (2009), doi[:10.1016/j.jtbi.2009.01.033](http://dx.doi.org/10.1016/j.jtbi.2009.01.033)

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Lévy processes and stochastic von Bertalanffy **models of growth, with application to fish population analysis**

Tommaso Russo^{a,*}, Paolo Baldi^b, Antonio Parisi^c,

Giuseppe Magnifico^d, Stefano Mariani^e, Stefano Cataudella^a

^aLaboratorio di Ecologia Sperimentale e Acquacoltura - Dipartimento di Biologia - Universit`a di Roma Tor Vergata

> b Dipartimento di Matematica - Università di Roma Tor Vergata ^cDipartimento di Scienze Statistiche - Universit`a di Padova d Consiglio Nazionale delle Ricerche - CNR - Roma

^eSchool of Biology and Environmental Science - University College of Dublin

Abstract

Accession Manuarie, Stefano Cataudella^a

Manuario di Ecologia Sperimentale e Acquacoltura - Dipartimento di Biologia

Università di Roma Tor Vergata

^b Dipartimento di Matematica - Università di Roma Tor Vergata

^d The study of animal growth is a longstanding crucial topic of theoretical biology. In this paper we introduce a new class of stochastic growth models that enjoy two crucial properties: the growth path of an individual is monotonically increasing and the mean length at time t follows the classic von Bertalanffy model. Besides the theoretical development, the models are also tested against a large set of lengthat-age data collected on Atlantic Herring (Clupea harengus): the mean lengths and variances of the cohorts were directly estimated by least squares. The results show that the use of subordinators can lead to models enjoying interesting properties, in particular able to catch some specific features often observed in fish growth data. The use of subordinators seems to allow for an increased fidelity in the description

Preprint submitted to Elsevier 21 January 2009

of fish growth, whilst still conforming to the general parameters of the traditional von Bertalanffy equation.

Key words: Individual-based models, Subordinators, Fish growth, Clupea harengus, Fisheries

¹ **1 Introduction**

modeling of growth and the analysis of intra-population pattern of size
bility through time are central topics in animal population biology,
the internal size structure of populations can have a decisive influence
e popul The modeling of growth and the analysis of intra-population pattern of size variability through time are central topics in animal population biology, since the internal size structure of populations can have a decisive influence 5 on the population dynamics (DeAngelis *et al.*, 1993; Imsland *et al.*, 1998; 6 Uchmanski, 2000; Kendall & Fox, 2002; Fujiwara et al., 2004). In general, the von Bertalanffy growth function (VBGF - von Bertalanffy, 1957) is the best acknowledged and used relationship to describe the growth of fish and other animals. This equation states that the size of an individual increases in time according to the equation

$$
x_t = L_{\infty} (1 - e^{-k(t + t_0)})
$$
\n(1.1)

¹¹ Where L_{∞} is the extremal length that is attained as time goes to infinity, $12 -t_0$ is the time of conception, at which the size should be 0 and k is a 13 parameter that gives the speed of the process: the larger the value of k , the ¹⁴ quickest the growth. The VBGF is most commonly used as a descriptive $15 \mod 15$ model of size-at-age data (Essington *et al.*, 2001). Nevertheless, equation ¹⁶ (1.1) describes the relationship between age and mean length of a

[∗] Corresponding author. Tel.: +390672595974. Fax: +390672595965. E-mail address: Tommaso.Russo@Uniroma2.it

그레피아제

population, whereas the variability among individuals of the same age (e.g.

the variance or even the distribution of each cohort) is not included.

¹⁹ The popular assumption of gaussianity (Imsland *et al.*, 1998) is clearly a first (rough) approximation in this direction. A natural approach to the problem of determining the appropriate form of the probability distribution for a 22 population at a given time t is to model first the growth process of the individuals (individual based models, IBM). Nowadays, both in ecological 24 (Arino et al., 2004), evolutionary (Conover & Munch, 2002; Ernande et al., 2004) and management (Caswell, 2001) contexts, one of the challenges of the researcher is to model how the size of an individual changes in time and deduce from the growth model which kind of probability distribution models the size of fish at a given age (Lv & Pitchford, 2007; Fujiwara *et al.*, 2004).

to *et al.*, 2004), evolutionary (Conover & Munch, 2002; Ernande *et al.*, and management (Caswell, 2001) contexts, one of the challenges of the rcher is to model how the size of an individual changes in time and eve from A suitable model of growth should account for both individual and environmental variability. In fish, as in other animals, the first source of variability is rooted in the physiological processes and is the net result of two opposing processes, catabolism and anabolism (von Bertalanffy, 1938). The inter-individual variability in growth is the result of several internal (genetic) and external (environmental) factors which affect these physiological processes. In fact, while each individual is born with a personal genetic architecture which primarily determines his growth profile, a number of physical and biological factors, such as water temperature (Sumpter, 1992), 38 dissolved oxygen (Brett, 1979), photoperiod (Imsland $et al., 2002$), and the availability of appropriate food sources (Rilling & Houde, 1999), have been shown to affect growth rates. In order to take into account these aspects as well as individual variability, a class of individually based model (IBM) was developed (Lv & Pitchford, 2007; Sainsbury, 1980; Mulligan & Leaman,

コロード

1992; Wang & Thomas, 2003; Imsland et al., 2002; Wang, 1999;

Gudmundsson, 2005).

 These models can be classified into two main categories. The first comprises those which consider the inter-individual variability as a stochastic factor to be added to the general growth curve of the population. The distribution of this factor is the same for all the individuals. In the most recent approaches of this kind (Gudmundsson, 2005; Lv & Pitchford, 2007; Wang, 1999) some individual-based stochastic models of growth are proposed using a stochastic differential equations. These models take the general form:

$$
dL_t = f(L_t, t) + \alpha(L_t, t) dB(t)
$$
\n(1.2)

idual-based stochastic models of growth are proposed using a stochastic
ential equations. These models take the general form:
 $dL_t = f(L_t, t) + \alpha(L_t, t) dB(t)$ (1.2)
 L_t is the size at time t , $f(L_t, t)$ characterizes the determin \mathbf{E}_{12} Here L_t is the size at time t, $f(L_t, t)$ characterizes the deterministic intrinsic growth (drift coefficient) of the individual (the same for all individuals); ⁵⁴ $\alpha(L_t, t)$ gives the magnitude of the random fluctuations (diffusion coefficient) and $B(t)$ is a standard Brownian motion, or Wiener process, which is commonly used to model a variety of background and environmental fluctuations in physical, financial and biological contexts, see Karlin & Taylor (1981) e.g.

 The stochastic component of these models is intended to account both for the environment and the inter-individual variability. It should be stressed, however, that (as already remarked in Gudmundsson, 2005) the solution of ϵ_2 an equation as (1.2) cannot be monotonically increasing and therefore appears to be unsuitable to model the evolution of the size of an individual. Stochastic models like the one of (1.2) are conversely well suited in order to model quantities, as prices in financial markets, that are characterized by an

2001 E D

 oscillating and therefore non monotonic behaviour. This aspect seems to be σ a drawback for a growth model of several animals like fish. In fact, for fish and other vertebrates, the physiological mechanism of growth in length (i.e. addition of bone material to the axil unit of the skeleton that is the vertebra) leads to a pattern in which the size of an individual is necessarily π_1 increasing in time (Weatherley & Gill, 1987). Let us point out that there exist no Gaussian process which is increasing. Therefore, modeling size variability through an individual growth process, can not give rise to a Gaussian distribution.

sian distribution.

Aly related to the models (1.2) are those introduced in Gudmindsson

(i) where it is the derivative of the growth process that is the solution of

chastic equation. It is possible in this way to obtain ⁷⁵ Closely related to the models (1.2) are those introduced in Gudmundsson $76 \times (2005)$ where it is the derivative of the growth process that is the solution of π a stochastic equation. It is possible in this way to obtain a stochastic process ⁷⁸ that is increasing. These models are interesting and deserve to be tried by τ_{P} testing against real data. Remark however that the mean size at time t of a ⁸⁰ population following such a model does not follow a VBGF.

⁸¹ The second category of stochastic models suggested so far comprises ⁸² non-deterministic models in which the individuals of a fish population have ⁸³ different parameters of the VBGF. In this way, each individual has its own 84 triplet (L_{∞}, t_0, k) , that is retained throughout its life (Sainsbury, 1980). 85 Considering the length to age relationship, the length X_t at age t of the i-th ³⁶ individual with the parameters triple $(L_i, t_{0,i}, k_i)$ is given by:

$$
X_{t,i} = L_i(1 - e^{-k_i(t + t_{0,i})})
$$
\n(1.3)

⁸⁷ This model displays a monotonic behaviour and considers the

⁸⁸ inter-individual variability of growth parameters, but does not account for

PTED MAN

the randomness coming from the environment, which can be seen as a

limitation of the model.

Accept the species was allocated to storage for the presence of a

Accept the specifical conducting only also be allocated to storage for future use, producing

Accept α is a growth dynamics. Individual organisms encoun Finally, it should be considered that individual growth is a complex energetic process. Individual length increases only when enough energy from food is available for growth. On the other hand lack of food does not usually lead to a reduction in length, because organisms can lose body mass without shrinking in length (Kooijman, 2000) also because of the presence of a skeleton. Energy may also be allocated to storage for future use, producing ⁹⁷ "memory" in growth dynamics. Individual organisms encounter and ingest food, which is then assimilated. Assimilated food is transformed into reserve material such as protein and fat. A fixed fraction of the energy from the reserve is used for both metabolic maintenance and growth, and the rest is used for reproduction. Looking at the length of an individual, we suggest that this process determines a pattern in which periods of no growth (determined by scant energy inlet) are separated by periods of growth. If the periods of growth are short, the growth process could be well described by a model allowing for discontinuities, i.e. for instantaneous increases of the length (jumps). This idea is consistent with several observations reported for fish in general and for the species we are going to study (Hinrichsen *et al.*, 2007).

 In this paper we introduce two classes of stochastic models of growth that attempt to overcome the drawbacks pointed out above. The main idea developed in this paper is to model the growth process as the solution of a stochastic equation of the form

$$
dX_t = (L_{\infty} - X_{t-}) dZ_t
$$

ミニョ

- 112 where $(Z_t)_t$ is a subordinator. These are a class of stochastic processes that 113 are strictly increasing and the solution $(X_t)_t$ turns out to be increasing also.
- ¹¹⁴ These models enjoy a certain number of desirable features, namely
- ¹¹⁵ they take into account both the individual and environmental sources of
- ¹¹⁶ randomness;
- 117 they are increasing.
- 118 the mean size at time t follows a VBGF.

we make a quick review on the topics of subordinators upon which our als are built. In §3 and §4 some models are developed, attempting to ret to the points exposed above. Finally in §6 we apply the proposed als to a large In §2 we make a quick review on the topics of subordinators upon which our models are built. In §3 and §4 some models are developed, attempting to answer to the points exposed above. Finally in $\S6$ we apply the proposed models to a large set of length-at-age data of Atlantic herring Clupea harengus, presented in §5.

¹²⁴ **2 Subordinators**

- ¹²⁵ A *subordinator* is a stochastic process $(Z_t)_t$ such that
- 126 $Z_0 = 0;$
- $_{127}$ its paths are right continuous and increasing almost surely;
- ¹²⁸ has independent and stationary increments.
- This means in particular that the distribution of $Z_{t+h} Z_t$ is independent of 130 t for every $h \geq 0$ and that $Z_t - Z_s$ and $Z_v - Z_u$ are independent r.v.'s for 131 $u < v \leq s < t$. Also the increments $Z_{t+h} - Z_t$ must be stationary, in the 132 sense that their distribution depends on h only and not on t. The ¹³³ characterization of such processes (that are particular instances of L´evy ¹³⁴ processes) has received much attention in time and it is characterized in

=l b

terms of the Laplace transform of Z_t . It is immediate that if

$$
M_t(\theta) = \mathcal{E}(e^{-\theta Z_t}), \qquad \theta \ge 0 \tag{2.4}
$$

 $_{136}$ then M is of the form

$$
M_t(\theta) = e^{t\phi(\theta)}\tag{2.5}
$$

137 where the exponent ϕ is characterized by the Lévy-Khintchin formula (see,

¹³⁸ for the subjects developed in this section and in the next ones

¹³⁹ Cont & Tankov 2004 and Sato 1999 e.g.). More precisely, the

¹⁴⁰ L´evy-Khintchin formula for subordinators states that

$$
\phi(\theta) = -\theta\gamma + \int_0^{+\infty} (e^{-\theta x} - 1) \nu(dx)
$$

¹⁴¹ where $\gamma \geq 0$ and ν , the Lévy measure, is a positive measure on \mathbb{R}^+ such that

$$
\int_0^{+\infty} \frac{x}{1+x} \,\nu(dx) < +\infty \tag{2.6}
$$

& Tankov 2004 and Sato 1999 e.g.). More precisely, the
 Accepted manuscript Accepted Manuscript Act (e $e^{\theta x} = 1$) $\nu(dx)$
 $\phi(\theta) = -\theta \gamma + \int_0^{+\infty} (e^{-\theta x} - 1) \nu(dx)$
 $\phi(\theta) = -\theta \gamma + \int_0^{+\infty} (e^{-\theta x} - 1) \nu(dx)$
 $\phi(\theta) = -\theta \gamma + \int$ ¹⁴² Intuitively a subordinator increases as the superposition of a deterministic ¹⁴³ evolution $t \to \gamma t$ and of a stochastic process which only makes jumps. These ¹⁴⁴ are made at times governed by a Poisson process. More precisely, if 145 $0 < a < b$, then $\nu([a, b])$ is the intensity of the Poisson process of the jumps ¹⁴⁶ whose size is larger than a and smaller than b . This means that if t is the $_{147}$ (random) time at which the jump occurs, then the path has, at t, a left limit ¹⁴⁸ X_{t-} and a right limit X_{t+} that are different, with $X_{t-} < X_{t+}$. For our $_{149}$ purposes we shall therefore be much interested in subordinators whose Lévy ¹⁵⁰ measure is large to near 0 and gives a small mass only away from 0. The ¹⁵¹ resulting process would hence be characterized by many very small jumps.

おぼゴキ

- ¹⁵² As every L´evy process, the independence and stationarity properties of the
- 153 increments implies that if Z_t has a finite mean, then

$$
E(Z_t) = \mu t
$$

154 for some real number μ and if it has a finite variance then

$$
\text{Var}(Z_t) = \sigma^2 t
$$

¹⁵⁵ for some $\sigma^2 \geq 0$.

156 It is not possible for a general Lévy measure to compute explicitly the

 $_{157}$ Laplace transform and/or the density at time t of the associated

¹⁵⁸ subordinator. The next examples introduce some families of subordinators of

¹⁵⁹ interest for which these feature can be determined.

- \bullet the Gamma process, where the distribution of Z_t follows a $\Gamma(\alpha t, \lambda)$
- ¹⁶¹ distribution. Recall that such a distribution has a density

$$
f(x) = \frac{\lambda^{\alpha t}}{\Gamma(\alpha t)} x^{\alpha t - 1} e^{-\lambda x}, \qquad x > 0
$$

ome $\sigma^2 \geq 0$.

Accept transform and/or the density at time *t* of the associated

dinator. The next examples introduce some families of subordinators of

st for which these feature can be determined.

Gamma process, wh 162 and $f(x) = 0$ for $x \le 0$. Of course the increment $Z_t - Z_s$, having the same ¹⁶³ distribution as Z_{t-s} , has a Γ(α ($t-s$), λ) distribution. Its Laplace transform is

$$
M_t(\theta) = \left(\frac{\lambda}{\lambda + \theta}\right)^{\alpha t} \tag{2.7}
$$

164 so that $\phi(\theta) = -\alpha \log \frac{\lambda}{\lambda + \theta}$. From well-known properties of the $\Gamma(\alpha t, \lambda)$ ¹⁶⁵ distribution the statistical indices of interest of a Gamma process are: mean = $\alpha t/\lambda$, variance = $\alpha t/\lambda^2$, skewness = $2/\sqrt{\alpha t}$ and kurtosis =

\overline{B}

167 $3+6/(\alpha t)$.

168 Here the Lévy measure is

$$
\nu(dy) = \frac{\alpha}{y} e^{-\lambda y} dy.
$$

¹⁶⁹ This process therefore gives a high intensity to small jumps (see Fig 1).

¹⁷⁰ • The *inverse Gaussian processes*, where Z_t is defined as the first time at

¹⁷¹ which a process of the form $\sqrt{\rho}B_s + bs$ crosses level t. Here $(B_t)_t$ denotes a

172 standard Brownian motion and $\rho, b > 0$. Its density at time t is, for $x > 0$,

$$
f_t(x) = \frac{t e^{bt/\rho}}{(2\pi\rho)^{1/2} x^{3/2}} \exp\left(-\frac{b^2}{2\rho} x - \frac{t^2}{2\rho x}\right).
$$

173 It depends on the positive parameters b, ρ . Its Laplace transform at time t is

$$
M_t(\theta) = \exp\left(-t\left(\sqrt{\frac{b^2}{\rho^2} + \frac{2\theta}{\rho}} - \frac{b}{\rho}\right)\right),\,
$$

- *Let unerse Gaussian processes,* where Z_t is defined as the first time at a process of the form $\sqrt{\rho}B_s + bs$ crosses level t . Here $(B_t)_t$ denotes a lard Brownian motion and $\rho, b > 0$. Its density at time t is, for x ¹⁷⁴ from which one can derive the expression of the statistical indices of interest: m_{175} mean $= t/b$, variance $= \rho t/b^3$, skewness $= 3\sqrt{\rho/(tb)}$ and kurtosis $=$
- 176 $3 + 15\rho/(tb)$.
- 177 The Lévy measure is

$$
\nu(dy) = \frac{1}{\sqrt{2\pi\rho y^3}} e^{-\frac{1}{2\rho}b^2 y} dy.
$$
\n(2.8)

¹⁷⁸ We stress that both the Gamma and the inverse Gaussian process have a ¹⁷⁹ L´evy measure that gives much weight to small jumps and that decreases fast ¹⁸⁰ at infinity.

おぼゴキ

¹⁸¹ • The α -stable process, $0 < \alpha < 1$ whose Laplace transform is

$$
M_t(\theta) = e^{-c\theta^{\alpha}t}.
$$

¹⁸² For these processes an explicit expression for the density does not exist,

¹⁸³ unless $\alpha = \frac{1}{2}$. In this case, for $c = \sqrt{2}$, the density is, for $x > 0$,

$$
f(x) = \frac{t}{(2\pi)^{1/2}x^{3/2}} e^{-\frac{t^2}{2x}}.
$$

For that, as $x \to +\infty$ the density decreases very slowly and, in particular, expectation and variance are infinite. Also the Lévy measure decreases slowly at infinity, therefore allowing very large jumps. We shall see tha 184 Notice that, as $x \to +\infty$ the density decreases very slowly and, in particular, both expectation and variance are infinite. Also the L´evy measure decreases very slowly at infinity, therefore allowing very large jumps. We shall see that this model is not well suited for the growth phenomena of interest and we mention it only for reasons of completeness.

¹⁸⁹ To the previous examples one should add the deterministic increasing

190 process: $Z_t = \gamma t$. Recall also that the sum of independent subordinators is a

¹⁹¹ subordinator itself.

¹⁹² **3 Modeling by time change**

- ¹⁹³ A first growth model using subordinators can be obtained by time change.
- 194 We simply consider that the size of the fish X_t at time t is given by

$$
X_t = Z_{A_t}
$$

2011년 8월 \rightarrow

195 where Z is the subordinator and A is the von Bertalanffy type function

$$
A_t = (1 - e^{-k(t+t_0)}).
$$

196 If the subordinator Z_t has finite mean, then for some real number μ

$$
E(X_t) = \mu (1 - e^{-k(t + t_0)})
$$

¹⁹⁷ and the means follow therefore a VBGF, where μ plays the role of L_{∞} (recall 198 that $\mu = \mathrm{E}(Z_1)$).

199 If in particular Z is a Gamma process, then $\mu = \frac{\alpha}{\lambda}$. It is also immediate that, 200 if Z_t has finite variance,

$$
Var(X_t) = \sigma^2 (1 - e^{-k(t + t_0)})
$$
\n(3.9)

Accept ²⁰¹ for some $\sigma^2 > 0$ ($\sigma^2 = \frac{\alpha}{\lambda^2}$ if Z is a Gamma process). Recall that the variance 202 is always increasing in t. This fact makes that the models obtained by time ²⁰³ change of a subordinator are rather rigid and are in particular unable to ²⁰⁴ account for a non monotonic behaviour of the variance, as is often observed ²⁰⁵ in data.

²⁰⁶ 4 Modeling by Doléans exponential

 207 A more interesting model of growth is given by the process $(X_t)_t$ which is ²⁰⁸ obtained as the solution of the stochastic equation

$$
dX_t = (L_{\infty} - X_{t-}) dZ_t
$$
\n
$$
X_{-t_0} = 0
$$
\n(4.10)

(4.10)
 $X_{-t_0} = 0$
 $\in (Z_t)_t$ is a subordinator. Here $-t_0$ denotes the time of conception, at
 γ equal to 0, the solution of (4.10) is a process that remains constant

seen the jumps of *Z*, whereas it has an increm where $(Z_t)_t$ is a subordinator. Here $-t_0$ denotes the time of conception, at ²¹⁰ which the size must be considered equal to 0. If the subordinator Z has a 211 drift γ equal to 0, the solution of (4.10) is a process that remains constant $_{212}$ between the jumps of Z, whereas it has an increment of size

$$
(L_{\infty} - X_{t-}) \Delta Z_t
$$

²¹³ whenever Z has a jump of size ΔZ_t . The quantity X_{t-} denotes the value of ²¹⁴ X just before the jump that occurs at time t. If we define $Y_t = L_{\infty} - X_t$, 215 then Y is the solution of

$$
dY_t = -Y_{t-} dZ_t
$$

$$
Y_{-t_0} = L_{\infty} .
$$

(4.11)

216 Therefore Y is equal to the Doléans exponential of the Lévy process $-Z$ ²¹⁷ multiplied by L_{∞} . The Doléans exponential of the Lévy process is a subject ²¹⁸ that has received much attention and it is possible to derive an explicit 219 solution of (4.11) , at least if one makes the assumption that the process Z ²²⁰ cannot make jumps larger than 1 (which is a quite reasonable assumption, in

a si =1 e

 $_{221}$ our case). Under this assumption the solution of (4.11) is

$$
Y_t = L_{\infty} e^{-\widetilde{Z}_{t+t_0}} \tag{4.12}
$$

222 where Z is another subordinator whose Lévy measure $\tilde{\nu}$ and drift $\tilde{\gamma}$ are 223 obtained from ν and γ in an explicit way. More precisely $\tilde{\nu}$ is the image of ν 224 through the application $x \to \log(1+x)$ and $\tilde{\gamma} = \gamma$. The solution of (4.10) is ²²⁵ therefore

$$
X_t = L_{\infty} (1 - e^{-\tilde{Z}_{t+t_0}}). \tag{4.13}
$$

 $X_t = L_{\infty}(1 - e^{-2\epsilon + t_0})$. (4.13)

easy to compute the mean $E(X_t)$, as the quantity $E(e^{-\tilde{Z}_{t+t_0}})$ is the

time transform at $\theta = 1$ of the r.v. Z_{t+t_0} , which is easy to compute thanks

(4) and (2.5):
 $E(X_t) = L_{\infty}(1 - e$ 226 It is easy to compute the mean $E(X_t)$, as the quantity $E(e^{-\widetilde{Z}_{t+t_0}})$ is the 227 Laplace transform at $\theta = 1$ of the r.v. Z_{t+t_0} , which is easy to compute thanks $_{228}$ to (2.4) and (2.5) :

$$
E(X_t) = L_{\infty}(1 - e^{-(t+t_0)\widetilde{\phi}(1)}).
$$
\n(4.14)

²²⁹ Hence also for this model whatever the subordinator that is chosen (provided 230 its Lévy measure vanishes outside $[0, 1]$, the mean of the solution of (4.10) ²³¹ follows a von Bertalanffy-type equation.

232 **Note 4.1** Recall that the VBGF (1.1) is the solution of equation (4.10) 233 when Z is the deterministic subordinator $Z_t = kt$. Therefore (4.10) appears ²³⁴ as a natural stochastic extension of the VBGF.

²³⁵ Remark also that some models already present in the literature are

236 particular instances of (4.10) . It is the case of the model (3.4) of

²³⁷ Lv & Pitchford (2007) where the authors actually consider $Z_t = rt + \sigma B_t$.

 $_{238}$ We point out again that the solution to (4.10) in this case does not have

²³⁹ paths which are monotonically increasing.

コロード

onmental randomness respectively. It is therefore natural to assume L_{∞} and $(Z_t)_t$ are independent. In this case formula (4.14) remains valid
replaces L_{∞} by $E(L_{\infty})$. Therefore the expectation $E(X_t)$ still fol ²⁴⁰ The solution (4.13) however has a drawback as a growth model because ²⁴¹ $X_t \to L_\infty$ as $t \to +\infty$ (unless $Z_t \equiv 0$). This implies that $Var(X_t) \to 0$ as ²⁴² $t \rightarrow +\infty$, which is not realistic, as it would imply that all individuals should $_{243}$ reach the same limiting size as t increases. In order to overcome this problem ²⁴⁴ it seems natural to assume that the extremal size L_{∞} is itself a random ²⁴⁵ variable, thus accounting for the individual variability. In this way the two sources of randomness, L_{∞} and $(Z_t)_t$, appearing in equation (4.10) have the ²⁴⁷ meaning of modeling the random individual variability and the ²⁴⁸ environmental randomness respectively. It is therefore natural to assume ²⁴⁹ that L_{∞} and $(Z_t)_t$ are independent. In this case formula (4.14) remains valid ²⁵⁰ if one replaces L_{∞} by $E(L_{\infty})$. Therefore the expectation $E(X_t)$ still follows a ²⁵¹ von Bertalanffy-type pattern as in (4.14), but with L_{∞} replaced by $E(L_{\infty})$. ²⁵² Similarly it is easy to compute the variance which is given by

$$
\text{Var}(X_t) = \text{Var}(1 - e^{-\widetilde{Z}_{t+t_0}}) \mathbb{E}[L_{\infty}^2] + \text{Var}(L_{\infty}^2) \mathbb{E}[1 - e^{-\widetilde{Z}_{t+t_0}}]^2 =
$$
\n
$$
= \left(e^{-(t+t_0)\widetilde{\phi}(2)} - e^{-2(t+t_0)\widetilde{\phi}(1)} \right) \mathbb{E}[L_{\infty}^2] + \text{Var}(L_{\infty}^2) \left(1 - e^{-(t+t_0)\widetilde{\phi}(1)} \right)^2.
$$
\n(4.15)

²⁵³ Notice that $Var(X_t)$ appears as the sum of two terms. As both $\phi(1)$ and $\phi(2)$ 254 are positive, the first term vanishes at $-t_0$ and at $+\infty$ and it easy to see that 255 (unless $Z_t \equiv 0$) it increases at first and then decreases. The second one α ₂₅₆ conversely is increasing in t. Therefore the variance of X_t , according to ²⁵⁷ different values of the parameters, can exhibit two possible behaviours:

²⁵⁸ • increasing or

²⁵⁹ • first increasing and then decreasing.

²⁶⁰ See Figure 2 for an illustration of this typical behaviour.

-2011 그 8)

 The non monotonic behaviour of the variance is an interesting feature that is enjoyed also by some of the models proposed by Gudmundsson, 2005 and Lv & Pitchford, 2007. This is not surprising as the computation above only ₂₆₄ makes use of the fact that $(X_t)_t$ is the solution of equation (4.10) with a ²⁶⁵ driving process $(Z_t)_t$ which is a Lévy process, possibly a Brownian motion as it happens to be the case for the models of the authors above.

A.2 In $\S6$ we adapt the models of this section and of $\S3$ to a
lation of herrings. It is fair however to point out a limitation that arises
trying to model real populations with processes driven by
cdinators. Recall t **Note 4.2** In §6 we adapt the models of this section and of §3 to a population of herrings. It is fair however to point out a limitation that arises when trying to model real populations with processes driven by subordinators. Recall that the driving subordinator is meant to model the randomness of the growth process arising from the environment. The assumption of independence and stationarity of the increments of the subordinator implies the assumption that the environment remains stable and stationary in time, which is a feature that can be expected to hold in real world only for a short span of time, as the effect of season and of other sources of modification of the natural habitat should introduce a $_{277}$ time-dependent effect. It is clear however that more realistic models would be far more complicated and, possibly, intractable in practice. The same observation, by the way, applies to the VBGF, which is an equation that is derived under the assumption of stationarity of the environment.

 In the rest of this section we give more details in two particular cases, ²⁸² making assumptions on Z that imply that \widetilde{Z} is either a Gamma or an inverse Gaussian process.

2011년 8월

- 284 Assume that the Lévy measure ν of Z has a density h with respect to the
- 285 Lebesgue measure. h must be ≥ 0 , must vanish on $[1, +\infty]$ and be such that

$$
\int_0^1 yh(y)dy < +\infty
$$

286 Then $-Z$ has a drift $=-\gamma$ and a Lévy measure $\overline{\nu}$ given by the density

$$
\overline{h}(y) = h(-y)
$$

²⁸⁷ The image of the measure $\overline{h}(y) dy$ by $y \to \log(1 + y)$ is

$$
\tilde{h}(y) = e^{-y}h(1 - e^{-y})
$$

²⁸⁸ **Example 4.3** (The Gamma process) Let us assume that

$$
h(y) = \frac{\alpha}{-\log(1-y)} (1-y)^{\lambda - 1}
$$
 (4.16)

289 for $0 < y \le 1$ and $h(y) = 0$ for $y > 1$, where $\alpha > 0$, $\lambda > 0$. With this choice ²⁹⁰ we obtain

$$
\widetilde{h}(y) = \frac{\alpha}{y} e^{-\lambda y}
$$

image of the measure $\overline{h}(y) dy$ by $y \to \log(1 + y)$ is
 $\tilde{h}(y) = e^{-y}h(1 - e^{-y})$
 Acceptube 4.3 (The Gamma process) Let us assume that
 $h(y) = \frac{\alpha}{-\log(1 - y)}(1 - y)^{\lambda - 1}$ (4.16)
 $\langle y \le 1 \text{ and } h(y) = 0 \text{ for } y > 1, \text{ where } \alpha > 0, \lambda > 0. \text{$ $_{291}$ which is the Lévy measure of a Gamma process. Hence if we choose a driving 292 subordinator Z with a Lévy measure as in (4.16) and drift γ , the solution of ²⁹³ (4.10) is

$$
X_t = L_{\infty} (1 - e^{-\gamma t - \widetilde{Z}_{t+t_0}})
$$
\n(4.17)

²⁹⁴ where \widetilde{Z} is a Gamma process with parameters α and λ and drift γ . Thanks 295 to (4.10) and (2.7) , for this model the mean is equal to

$$
E(X_t) = E(L_{\infty}) \left(1 - e^{-\gamma(t+t_0)} \left(\frac{\lambda}{\lambda + 1} \right)^{\alpha(t+t_0)} \right)
$$
(4.18)

a si ci s

²⁹⁶ which, as already noted, is a von Bertalanffy equation with

²⁹⁷ $k = \gamma + \alpha \log \frac{\lambda + 1}{\lambda}$. The variance of X_t is also easily computed using (4.15):

$$
\operatorname{Var}(X_t) = \mathbb{E}[L_{\infty}^2]e^{-2\gamma(t+t_0)} \left[\left(\frac{\lambda}{\lambda+2}\right)^{\alpha(t+t_0)} - \left(\frac{\lambda}{\lambda+1}\right)^{2\alpha(t+t_0)} \right] + \operatorname{Var}(L_{\infty}) \left[1 - e^{\gamma(t+t_0)} \left(\frac{\lambda}{\lambda+1}\right)^{\alpha(t+t_0)} \right]^2.
$$
\n(4.19)

²⁹⁸ It is also possible to compute the density of X_t , conditioned to the value of ²⁹⁹ $L_{\infty} = l$, which is given by

$$
f(x) = \frac{\lambda^{\alpha(t+t_0)}(l-x)^{\lambda-1}}{\Gamma(\alpha(t+t_0))l^{\lambda}} \left(-\log(1-\frac{x}{l}) - \gamma(t+t_0)\right)^{\alpha(t+t_0)-1} e^{\lambda \gamma(t+t_0)} \quad (4.20)
$$

 $x) = \frac{\lambda^{\alpha(t+t_0)}(l-x)^{\lambda-1}}{\Gamma(\alpha(t+t_0))l^{\lambda}} \Big(-\log(1-\frac{x}{l}) - \gamma(t+t_0)\Big)^{\alpha(t+t_0)-1} e^{\lambda\gamma(t+t_0)} \quad (4.20)$
 $1 - e^{-\gamma(t+t_0)} \Big) \leq x \leq l \text{ and } f(x) = 0 \text{ otherwise. The graph of this density different values of } t \text{ is produced in Figure 3. See in Figure 4 the graph of simulated paths of } (X_t)_t \text{ with } \gamma = 0.$
 And the measure of the inverse Gaussi ³⁰⁰ for $l(1 - e^{-\gamma(t+t_0)}) \leq x \leq l$ and $f(x) = 0$ otherwise. The graph of this density 301 for different values of t is produced in Figure 3. See in Figure 4 the graph of 302 some simulated paths of $(X_t)_t$ with $\gamma = 0$.

³⁰³ **Example 4.4** (The inverse Gaussian process) Let us assume that Z is a ³⁰⁴ Levy process such that \overline{Z} is an inverse Gaussian process with drift γ. If the 305 Lévy measure of Z has a density

$$
h(x) = \frac{1}{\sqrt{2\pi\rho}(-\log(1-x))^{3/2}} (1-x)^{\frac{b^2}{2\rho} - 1}
$$

³⁰⁶ for $0 < x < 1$ and $h(x) = 0$ elsewhere, then it turns out that \tilde{Z} is an inverse 307 Gaussian process with parameters b and ρ . The density of

³⁰⁸ $X_t = L_\infty (1 - e^{-\tilde{Z}_t - \gamma t})$ given $L_\infty = l$ is straightforward to compute and is

$$
f_t(x) = \frac{t e^{bt/\rho}}{\sqrt{2\pi\rho}} \left(-\log(1 - \frac{x}{l})\right)^{-3/2} (1 - \frac{x}{l})^{\frac{b^2}{2\rho} - 1} \exp\left(\frac{t^2 \rho}{2\log(1 - \frac{x}{l})}\right)
$$

309 for $0 < x < l$ and $f_t(x) = 0$ otherwise.

コロード

310 One could also think of \tilde{Z} as a stable process with exponent $\alpha = \frac{1}{2}$. This ³¹¹ choice however does not seem really suitable. Indeed in this case it is also ³¹² possible to compute the density, as the same type of computation produces 313 in this case the density, conditional on $L_{\infty} = l$,

$$
g_t(x) = \frac{t + t_0}{\sqrt{2\pi}(l-x)(\log\frac{l}{l-x})^{3/2}} \exp\left(-\frac{(t+t_0)^2}{2\log\frac{l}{l-x}}\right), \qquad 0 < x < l.
$$

314 (with $\gamma = 0$). The expression of this density suggests that the use of stable 315 subordinators is inappropriate in order to model fish growth, as $g(x) \rightarrow +\infty$ 316 as $x \rightarrow l-,$ for every value of t.

dinators is inappropriate in order to model fish growth, as $g(x) \to +\infty$
 $\to l-,$ for every value of t.

model based on the Doléans exponential (4.10) appears to enjoy many

string features. It is fair however to point out $_{317}$ The model based on the Doléans exponential (4.10) appears to enjoy many ³¹⁸ interesting features. It is fair however to point out that in order to take ³¹⁹ advantage of it there remains the question of determining an appropriate 320 distribution for the maximal length L_{∞} . It also appears difficult to find a ³²¹ distribution such that the density distribution of the length of the ³²² individuals of a given time t, $L_{\infty}(1 - e^{-Z_{t+t_0}})$ has an explicit analytic ³²³ expression. This density can be computed numerically, but it may be ³²⁴ impossible to use of statistical methods based on maximum likelihood.

³²⁵ The question of determining a good candidate of distribution has been ³²⁶ already tackled in (Sainsbury, 1980), where the author suggested a Gamma ³²⁷ distribution.

³²⁸ **5 The Dataset**

³²⁹ The data used in this study were collected as part of the EU FP5 project 330 "HERGEN" (Mariani et al., 2005; Ruzzante et al., 2006), and include a

 homogeneous collection of genetically and phenotypically characterized 332 North Sea Autumn Spawning herring (Clupea harengus L., 1758), from ICES areas zones IVa, IVb and IVc. Herring is the dominant converter of zooplankton production, using the biomass of copepods, mysids, euphausids in the pelagic environment of the northern hemisphere (Winters & Wheeler, 1987). Additionally, herring is a central prey item for higher trophic levels. The spawning period of this species in the western North Sea is September/October.

samples were collected east of the Shetland Islands in July 2005. At that
ent, fish were located in that area to feed (summer feeding aggregation).
g was performed by counting the otolith (sagitta) winter rings, following 339 The samples were collected east of the Shetland Islands in July 2005. At that moment, fish were located in that area to feed (summer feeding aggregation). Aging was performed by counting the otolith (sagitta) winter rings, following $_{342}$ standard procedures (Ruzzante *et al.*, 2006; AA.VV, 2007). This method was validated and tested for reliability following the procedure reported in Beverton *et al.* (2004). The dataset is composed by 1255 specimens belonging to 7 cohorts. The abundances and the ages of these cohorts are showed in Table 1. The values of the empirical means and variances of the cohorts can be found in Fig 5.

6 Analysis of the herring dataset

 In order to apply the models developed in §3 and §4 to the analysis of a dataset as the herring one described in the previous section, one is confronted with two kind of problems.

The first one is the determination of the appropriate driving subordinator.

353 Actually subordinators form a large family, every Lévy measure on \mathbb{R}^+

satisfying (2.6) being associated to a corresponding subordinator. This is

a si ci e

 therefore a non parametric problem and it appears very difficult to determine this L´evy measure starting from data in the form of cohorts, as is the case for the herring dataset.

 The second order of problems comes from the fact that these models are to be considered only approximatively correct, as they do not take into account the time variability of the environment (see Note 4.2).

 In this section we produce the results obtained fitting the models of §3 and 4 to the herring dataset. In both cases we decided to work with the Gamma model, as it seemed to give better results than the inverse Gaussian.

cherring dataset. In both cases we decided to work with the Gamma

el, as it seemed to give better results than the inverse Gaussian.

der to have a benchmark for the analysis of the dataset, we shall first

t a normal Ga In order to have a benchmark for the analysis of the dataset, we shall first adapt a normal Gaussian model inside each cohort. This is the default choice ³⁶⁶ in literature (Imsland *et al.*, 1998). Given the age t_i , the length X_{t_i} is ³⁶⁷ assumed to be normally distributed with mean $L_{\infty}(1 - e^{-k(t_i + t_0)})$ and ³⁶⁸ variance σ_i^2 (different cohorts are allowed to have different variances). This model requires therefore a number of parameters that is equal to 3+the number of cohorts.

 It is worth noting that this is not a mixture model, as we are able to assign every individual to its class. Recall also that, as stated in the introduction, this is not a Individual Based Model.

 The normal and time change models have been estimated by means of maximum likelihood, which appears to be the most natural method for them. As already pointed out in §4, for the Doléans exponential model, which is the most promising, the maximum likelihood method is 378 inapplicable, as the distribution of the maximal size L_{∞} is not known. We ³⁷⁹ therefore resorted to the least squares method in order to fit the moments.

=l b

The estimates obtained with different models are shown in Table 2.

- It is apparent that the normal model has a good agreement with the data,
- which is not surprising, given also the availability of many parameters.

6.1 Time change model

Time change model
ready hinted in §3 this kind of models shows a certain rigidity. We give
stimates obtained using it for completeness sake only. Assuming that
engths at time t_i follow a $\Gamma(\alpha(1 - e^{-k(t_i + t0)}), \lambda)$ distribut As already hinted in §3 this kind of models shows a certain rigidity. We give the estimates obtained using it for completeness sake only. Assuming that ³⁸⁶ the lengths at time t_i follow a $\Gamma(\alpha(1 - e^{-k(t_i+t_0)}), \lambda)$ distribution, we have a model with 4 parameters (whatever the number of cohorts). The estimated 388 values are $\alpha = 388.2$, $\lambda = 1.33$, $k = 0.64$ and $t_0 = 0.047$. From this we deduce ³⁸⁹ \hat{L}_{∞} as the ratio $\hat{\alpha}/\hat{\lambda}$ (see Table 2). Estimates of the means and variances are obtained using (3.9).

 Notice that the estimated means are very close to the empirical means (with the exception of cohort 1). However it is clear that this model cannot accommodate the variances. Recall that for this model the variances are necessarily increasing with time, at a difference with the behaviour of the empirical variances.

 As already mentioned above, the model based on time change is a particularly parsimonious explanation of the data in terms of number of parameters, but has limited capacities of catching some relevant features.

3996.2 Doléans exponential

⁴⁰⁰ We tried a model based on the solution of (4.10) with respect to a Gamma ⁴⁰¹ process, as in Example 4.3.

ed to perform a two-stage method of moments, in which, at first, the
rical means are interpolated by a VBGF function (1.1), therefore
ating the parameters $E(L_{\infty})$, k and t_0 . In the second stage, we
polated the empi ⁴⁰² According to this model, the density of the observations follows a 403 distribution, given $L_{\infty} = l$, that is given in (4.20). Noting that the mean ⁴⁰⁴ values of the lengths of the different cohorts must lie on the VBGF, we ⁴⁰⁵ decided to perform a two-stage method of moments, in which, at first, the ⁴⁰⁶ empirical means are interpolated by a VBGF function (1.1), therefore $\frac{407}{407}$ estimating the parameters $E(L_{\infty}), k$ and t_0 . In the second stage, we ⁴⁰⁸ interpolated the empirical variances with the function (4.19). In this way we ⁴⁰⁹ obtained estimates of α , λ , γ together with an estimate of $\sigma_{L_{\infty}}^2 = \text{Var}(L_{\infty})$. 410 Recall that the quantities k and α , λ , γ are related by the constraint ⁴¹¹ $k = \gamma + \alpha \log \frac{\lambda+1}{\lambda}$. For both stages we used a least squares method in order ⁴¹² to fit the moments.

⁴¹³ See Fig 5 for the graph of the fitted von Bertalanffy function and the ⁴¹⁴ empirical means with error bars.

⁴¹⁵ This method produces an estimate of the mean and variance of L_{∞} without 416 assuming any distribution for L_{∞} . The estimates are $\alpha = 1.3, \lambda = 15$, 417 $\gamma = 0.55$, $k = 0.63$, $t_0 = 0.072$, $E(L_{\infty}) = 297.3$ and $\sigma_{L_{\infty}}^2 = 160$. Finally, in ⁴¹⁸ order to obtain a concrete and visually appreciable estimate of the density of 419 each cohort, we computed it numerically assuming for L_{∞} a Gamma ⁴²⁰ distribution having parameters matching the estimated mean and variance, 421 that is with parameters $\alpha_0 = 552.34$ and $\lambda_0 = 1.86$. Figure 6 produces a ⁴²² comparison between the density obtained as described above from the model

내내다이

 and an empirical density, produced from the data with a usual kernel estimator. Taking into account the limited number of parameters employed by this model one can appreciate the nice fit for some of the cohorts. Discrepancies can be found for the first two cohorts and for the sixth one. For the fifth one there is a evident discrepancy: notice however that, as pointed out in Fig 5, also the estimated VBFG curve that fits the mean of this fifth cohort. At this point one should keep in mind Note 4.2.

7 Discussion

 Although several stochastic model are available in the literature in order to compute the time evolution of the distribution of the size of a population, a certain number of drawbacks still remain, leading to the need of a more appropriate formulation that is able to take into account some key aspects of animal growth.

Discussion

Discussion

Dugh several stochastic model are available in the literature in order to

ute the time evolution of the distribution of the size of a population, a

in number of drawbacks still remain, leading to These aspects basically concern the inclusion of the different sources of variability in growth rate among individuals, which directly determine the size density observed at different ages, and the property of the growth process of being increasing. In this work we developed two models based on the use of subordinators as driving processes. Our aim was to provide a new stochastic model, mainly of theoretical interest for the description of the growth process for a large class of organisms. It turns out that one of them, ⁴⁴³ the model based on the Doléans exponential giving rise to a Gamma process, is also able to produce an appreciable fit with the data. In particular it is able to reproduce the non monotonic trend of the variance, that is the measure of intra-cohort variability of size. This is an important feature: a

-2011 그 8)

 reduction of the demographic variance starting at some time is often observed in data (Gudmundsson, 2005 e.g.).

 In general, the variability in individual size increases within the same cohort through time when the individual growth rate is positively correlated with itself in time (Gudmundsson, 2005). This phenomenon is called "growth depensation".

remation") has been up to now explained with the fact that survival of
diuals are not independent and identically distributed (Kendall & Fox,
1. In other words, there needs to be some systematic structure in the
lation. Co Conversely, a reduction of the cohort variance (the so called "growth compensation") has been up to now explained with the fact that survival of individuals are not independent and identically distributed (Kendall & Fox, 2002). In other words, there needs to be some systematic structure in the population. Common biological mechanisms that can produce a reduction of demographic variance are contest competition (including territoriality), long-lived individuals with lifetime demographic traits ("individual heterogeneity"), maternally imposed variation, and directional or balancing selection.

 Observe however that our model explains this typical behaviour of the variance without introducing an explicit selection mechanism related to some size-dependent mortality. By this we do not claim that such a mechanism does not exist (and we think that it might be natural to devise a more sofisticated model including this feature), but simply that it is not necessary in order to explain the observed behavior of the empirical variances.

 The possibility to model and predict this aspect of fish growth seems to be of great importance in both theoretical studies and fishery management applications. This is particularly true if referred to the increasing use of measurement of the growth pattern of organisms (like fish) as an ecological

 $_{472}$ indicator (Bennett *et al.*, 1995). Further, assessment of growth pattern, combined with other measurement of physiological condition, have the potential to yield information on the history of environmental stress (e.g. from contaminants) or selective pressures (e.g. fisheries) and adaptation to α_{476} environmental change (Jorgensen *et al.*, 2007). In fact, statistical analyses of long-term data from some exploited fish stocks have revealed evolutionary changes in reaction norms (Ernande *et al.*, 2004). Accuracy of the growth model at the basis of these analyses obviously affect the results, so that the development of sound approach to model and predict size distribution is a main target.

opment of sound approach to model and predict size distribution is a target.

target.

ure direction will concern the assessment of the effect of the aging error

e estimates obtained using our model. Even if the aging met A future direction will concern the assessment of the effect of the aging error on the estimates obtained using our model. Even if the aging method is reliable, it seems that errors in aging young cohorts can significantly affect the estimates. This is due to the fact that both VBGF and the variance function converge with age.

 The present work represent a first attempt to apply the Lévy processes to the subject. We think that these and the ideas developed in this paper can be adapted to introduce stochasticity into more complex models of growth (see Edwards *et al.*, 2007).

8 Conclusion

 The aim of the present work was the development of a stochastic model of growth, and therefore an Individual Based Model for the distribution of data, that is compatible with the von Bertalanffy function and might be able to catch more of the features empirically observed.

대배피비

⁴⁹⁶ The model developed in relation with the Doléans exponential shows interesting features. As other models already in the literature (Wang, 1999; Gudmundsson, 2005; Lv & Pitchford, 2007) it is able to explain the observed non monotonic behaviour of the variances. However, it is the first stochastic model producing paths that are increasing, thus, giving a realistic random model of individual growth.

oped m 34 can be of interest for practical applications such as stock
sment and forecasting. In this direction however some questions require
per investigation.

 L_{∞} .
e are
e determination (elicitation) of a suitable Our main objective was mainly theoretical, but we think that the models developed in §4 can be of interest for practical applications such as stock assessment and forecasting. In this direction however some questions require a deeper investigation.

These are

 • The determination (elicitation) of a suitable distribution for the maximal 508 size L_{∞} .

• The determination of the appropriate subordinator.

References

- AA.VV (2007). Report of Herring Assessment Working Group for the Area south of 628 N. ICES CM 2007/ACFM: 11.
- Arino, O., Shin, Y. & Mullon, C. (2004). A mathematical derivation of
- size spectra in fish populations. C.R. Biol. **327**, 245–254.
- Bennett, W., Ostrach, D. & Hinton, D. (1995). Condition of larval
- striped bass in a graught-stricken estuary: evaluating pelagic food web
- limitation. Ecol. Appl. **5**, 680–692.
- Beverton, R., Hylen, A., Østvedt, O.-J., Alvsvaag, J. & Iles, T.

- (2004). Growth, maturation, and longevity of maturation cohorts of
- Norwegian spring-spawning herring. ICES J.Mar.Scie. **61**, 165–175.
- BRETT, J. (1979). *Environmental factors and growth. In: Fish Physiology*,
- Vol. III, Bioenergetics and Growth. New York: Academic Press Inc.
- Caswell, H. (2001). Matrix population models: construction, analysis, and
- interpretation. Sunderland, Massachusetts, USA: Sinauder Associated.
- Conover, D. & Munch, S. (2002). Sustaining fisheries yields over
- evolutionary time scales. Science **297**(5578), 94–96.
- CONT, R. & TANKOV, P. (2004). Financial modelling with jump processes.
- Chapman & Hall/CRC Financial Mathematics Series. Chapman &
- Hall/CRC, Boca Raton, FL.
- DeAngelis, D., Rose, K., Crowder, L., Marshall, E. & Lika, D.
- r, R. & TANKOV, P. (2004). Financial modelling with jump processes.

apman & Hall/CRC Financial Mathematics Series. Chapman &

II/CRC, Boca Raton, FL.

NGELIS, D., ROSE, K., CROWDER, L., MARSHALL, E. & LIKA, D.

993). Fish (1993). Fish cohort dynamics: Application of complementary modelling approaches. Am. Nat. **142**(4), 604–622.
- Edwards, A., Phillips, R., Watkins, N., Freeman, M., Murphy,
- E., Afanasyev, V., Buldyrev, S., da Luz, M., Raposo, E. &
- 535 STANLEY, H. (2007). Revisiting Lévy flight search patterns of wandering
- albatrosses, bumblebees and deer. Nat. **449**, 1044–1049.
- Ernande, B., Dieckmann, U. & Heino, M. (2004). Adaptive changes in
- harvested populations: plasticity and evolution of age and size at
- maturation. Proc. R. Soc. Lond. **271**(1537), 415–423.
- Essington, T., Kitchell, J. & Walters, C. (2001). The von
- Bertalanffy growth function, bioenergetics, and the consumption rates of
- fish. Can. J. Fish. Aquat. Sci. **58**, 2129–2138.
- Fujiwara, M., Kendall, B. & Nisbet, R. (2004). Growth
- autocorrelation and animal size variation. Ecol. Lett. **7**, 106–113.
- 545 GUDMUNDSSON, G. (2005). Stochastic growth. Can. J. Fish. Aquat. Sci.

- Hinrichsen, H.-H., Buehler, V. & Clemmesen, C. (2007). An
- individual-based model for direct conversion of otolith into somatic growth rates. Fish.Oceanogr. **16**(3), 207–215.
- Imsland, A., Jonassen, T., Langston, A., Hoare, R., Wergeland,
- H., FitzGerald, R., Mulcahy, M. & Stefansson, S. (2002). The
- interrelation of growth performance and disease resistance of juvenile
- atlantic halibut (hippoglossus hippoglossus l.) from different populations.
- Aquacul. **204**, 167–177.
- Imsland, A., Nilsen, T. & Folkvord, A. (1998). Stochastic simulation
- of size variation in turbot: possible causes analysed with an individual
- based-model. J. Fish. Biol. **53**, 237–258.
- Jorgensen, C., Enberg, K., Dunlop, E., Arlinghaus, R., Boukal,
- S., Brander, K., Ernande, K., Gardmark, A., Johnston, F.,
- Matsumura, S., Pardoe, H., Raab, K., Silva, A., Vainikka, A.,
- Dieckmann, U., Heino, M. & Rijnsdorp, A. (2007). Managing

evolving fish stocks. Science **318**, 1247–1248.

- Karlin, S. & Taylor, H. M. (1981). A second course in stochastic
- processes. New York: Academic Press Inc. [Harcourt Brace Jovanovich Publishers].
- nacul. 204, 167–177.

AND, A., NILSEN, T. & FOLKVORD, A. (1998). Stochastic simulation

Fize variation in turbot: possible causes analysed with an individual

sed-model. *J. Fish. Biol.* 53, 237–258.

EENSEN, C., ENBERG, K Kendall, B. & Fox, G. (2002). Variation among individuals and reduced demographic stochasticity. Cons. Biol. **16**(1), 109–116.
- Kooijman, S. (2000). Dinamic energy and mass budgets in biological
- systems. Second edition. Cambridge, UK: Cambridge University Press Inc.
- Lv, Q. & Pitchford, J. W. (2007). Stochastic von Bertalanffy models,
- with applications to fish recruitment. J. Theoret. Biol. **244**(4), 640–655.
- Mariani, S., Hutchinson, W., Hatfield, D., E.M.C. Ruzzante,

ACCEPTED MANUSCRIPT

- Human Biol. **10**, 181–213.
- von Bertalanffy, L. (1957). Quantitative laws in metabolism and

CEPTED MANUSCRIPT

- growth. Quart. Rev. Biol. **32**(3), 217–231.
- Wang, Y. (1999). Estimating equations for parameters in stochastic growth
- models from tag-recapture data. Biometrics **55**, 900–903.
- Wang, Y. & Thomas, M. (2003). Accounting for individual variability in
- the von Bertalanffy growth model. Can. J. Fish. Aquat. Sci. **52**,

1368–1375.

- Weatherley, A. & Gill, H. (1987). The biology of fish growth. New
- York: Academic Press Inc. [Harcourt Brace Jovanovich Publishers].
- Winters, G. & Wheeler, J. (1987). Clupeoid fishes of the world
- TERS, G. & WHEELER, J. (1987). Clupeoid fishes of the world
border clupeioidei). an annotated and illustrated catalogue of the
rings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings.
n. J. Fish. Aquat. Sci (suborder clupeioidei). an annotated and illustrated catalogue of the
- herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings.
- Can. J. Fish. Aquat. Sci. **44**, 882–900.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

