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Abstract

In the context of managed herds, epidemiological models usually take into account

relatively complex interactions involving a high number of parameters. Some pa-

rameters may be uncertain and/or highly variable, especially epidemiological pa-

rameters. Their impact on the model outputs then must then be assessed by a

sensitivity analysis, allowing to identify key parameters. The prevalence over time

is an output of particular interest in epidemiological models, so sensitivity analysis

methods adapted to such dynamic output are needed.

In this paper, such a sensitivity analysis method, based on a principal compo-

nent analysis and on analysis of variance, is presented. It allows to compute a
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generalised sensitivity index for each parameter of a model representing Salmonella

spread within a pig batch. The model is a stochastic discrete-time model describing

the batch dynamics and movements between rearing rooms, from birth to slaugh-

terhouse delivery. Four health states were introduced: Salmonella-free, seronegative

shedder, seropositive shedder and seropositive carrier. The indirect transmission

was modelled via an infection probability function depending on the quantity of

Salmonella in the rearing room.

Simulations were run according to a fractional factorial design enabling the esti-

mation of main effects and two-factor interactions. For each of the 18 epidemiological

parameters, four values were chosen, leading to 4096 scenarios. For each scenario, 15

replications were performed, leading to 61 440 simulations. The sensitivity analysis

was then conducted on the seroprevalence output.

The parameters governing the infection probability function and residual room

contaminations were identified as key parameters. To control the Salmonella sero-

prevalence, efficient measures should therefore aim at these parameters. Moreover,

the shedding rate and maternal protective factor also had a major impact. Therefore,

further investigation on the protective effect of maternal or post-infection antibodies

would be needed.

Key words: epidemiological model, parameter uncertainty and variability,

dynamic output, seroprevalence, analysis of variance
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1 Introduction1

Epidemiological models are useful tools for representing infection processes.2

They are often used to predict the spread of a pathogen in a population or to3

assess the efficacy of control measures on that spread (Diekmann and Heester-4

beek, 2000). In managed systems such as pig herds, they usually couple the5

population dynamics and the pathogen transmission, to take into account the6

relatively complex interactions between demography, management and infec-7

tion. In general, parameters governing the herd population dynamics are well8

known, even though they may exhibit some stochasticity due the variabil-9

ity among individuals in the batch. Their values and range of variation can10

be assessed from various data sources (ITP, 2000, 2006). In contrast, host–11

pathogen interactions are not so well known. This lack of knowledge induces12

uncertainty on the parameters involved in the herd infection processes. The13

impact of these uncertain and variable parameters on the pathogen spread can14

generally be best assessed by a sensitivity analysis, as analytical tractability in15

such complex models is not ensured. A sensitivity analysis describes the effect16

of parameter variations on model outputs. It identifies key parameters, i.e.17

parameters that influence the outputs most, which is useful for modelling and18

control purposes: on the one hand, improving knowledge on these parameters19

increases the model accuracy; on the other hand, control measures acting on20

these parameters will have a greater impact on the outputs.21

The prevalence of seropositive animals over time (seroprevalence trajectory) is22

an output of particular interest in epidemiological models, as control measures23

often aim at reducing the prevalence and may not be applied uniformly over24

time. Most sensitivity analysis methods are adapted to scalar outputs (Saltelli25
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et al., 2000) and cannot be applied to such dynamic outputs. However, some26

methods have been developed to analyse time series outputs (Campbell et al.,27

2006). They use classical statistical tools on variables that summarise the28

trajectory variability. The method developed by Lamboni et al. (2008) is based29

on a principal component analysis applied to the trajectories. It maximises the30

information that is retained from the output variability. It has already been31

used to analyse various agronomic models and can easily be applied to an32

epidemiological model.33

The control of Salmonella prevalence in pig herds is a major step to reduce34

the pork food chain contamination. Infected pigs are asymptomatic carriers35

that cannot be directly detected by observation. Serological and bacteriolog-36

ical detection methods do exist, but they cannot be systematically applied37

to all pigs sent to the slaughterhouse, for practical and economical reasons.38

Moreover, Salmonella are ubiquitous bacteria that survive well in the environ-39

ment (Murray, 2002). Hence, eliminating the bacteria in a contaminated herd40

is not a very realistic goal. Control measures should rather aim at reducing41

the prevalence level. To achieve this goal, the parameters that influence the42

Salmonella spread and prevalence most need to be identified. A modelling43

approach coupled with a sensitivity analysis can be applied to identify these44

key parameters.45

A simulation model representing the Salmonella spread within a farrow-to-46

finish pig herd implementing batch-farrowing management was developed by47

Lurette et al. (2008a). This model details both the sow and pig dynamics48

(Lurette et al., 2008b) and the Salmonella infection characteristics. In such a49

herd, sows are distributed in groups of equal size called batches and their re-50

productive cycles are synchronised. At regular intervals (usually three weeks),51
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a batch of sows is inseminated and their weaned pigs are managed together52

as a batch until their slaughterhouse delivery. Each batch of pigs is usually53

housed in a separate room, which is decontaminated between two batches.54

Batches of pigs may interact, mainly through batch mixing at the end of the55

finishing period. However, even if it occurs under normal pig growth conditions56

(i.e. adequate feed and no diseases affecting pig growth), it only concerns a57

low number of pigs (Lurette et al., 2008b). Salmonella transmission is mostly58

due to indirect contacts among animals via their rearing room. Infected pigs59

shed the bacteria intermittently (Kranker et al., 2003); it is then transmitted60

to susceptible pigs by the oro-fecal route. Due to the limited contacts be-61

tween batches, Salmonella transmission is stronger at the within-batch level.62

So we chose to focus in this study on a single batch of pigs, from birth to63

slaughterhouse delivery.64

The aim of this paper is therefore to identify the parameters that contribute65

most to the variability of the Salmonella seroprevalence in a batch of pigs,66

using a sensitivity analysis based on a principal components analysis. We will67

first describe the pig batch epidemiological model, followed by the sensitiv-68

ity analysis. Then we will present and discuss the results obtained with this69

method.70

2 Model description71

We developed a stochastic model to represent the Salmonella transmission72

within a batch of pigs, from their birth to their slaughterhouse delivery. The73

model has a discrete one-week time step, which is suited both to the repre-74

sentation of the farmer task planning and to the epidemiological time scale.75
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As the carriage of Salmonella in pigs is generally subclinic, the infection does76

not affect the pig demography. Hence, the pig batch model and the epidemi-77

ological model are first presented separately. They are then coupled by dis-78

tributing the animals of the batch into the infection states. Finally, the pa-79

rameters and initial conditions are described.80

2.1 Pig batch model81

Pigs in a batch are born simultaneously from a batch of sows at time t = 0.82

The litter size L is fixed. Pigs pass through three growing stages during their83

lifetime, denoted by X, corresponding to the occupancy of three rooms: (i)84

the suckling stage, a 4-week period from birth to weaning (X = S,DS = 4),85

takes place with the sows in the farrowing room; (ii) the 8-week post-weaning86

period (X = PW,DPW = 8) takes place in the post-weaning room; (iii) the87

finishing stage takes place in the finishing room and lasts up to 14 weeks88

(X = F,DF = 14) . The number of pigs in the batch at time t ∈ {0, 1, . . . , 25}89

is given by P (t). At each time step, the number of pigs decreases because of90

mortality and, at the end of the finishing stage, because of slaughterhouse91

delivery.92

The mortality rate μX is assumed to be constant in each growing stage X and93

differs between stages.94

At each delivery time (usually every two weeks), producers send groups of95

finishers with a given slaughtering weight. As out-of-range pigs are sold at a96

lower price, they are kept in the herd until they reach the slaughtering weight97

or until their room needs to be emptied. Because of pig growth variability,98
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a batch leaves the herd at different times. To represent the proportion of99

the batch that has reached the slaughtering weight over time, a lognormal100

distribution is used (with parameters aα, mean age at slaughtering weight101

and aσ, its standard deviation). This distribution represents the variability102

among individual animals reported by technical data (ITP, 2006). Let ϕ be103

the associated probability density function and Δt the time interval between104

two deliveries (usually Δt = 2 weeks), assuming they start at t = 1. At each105

delivery time t = kΔt(k ∈ N), the proportion of pigs sent to the slaughterhouse106

to the initial number of pigs P (0) = L, corresponding to pigs that have reached107

the required weight since the last delivery, is given by:
∫ t
t−Δt ϕ(s)ds. Moreover,108

delivery of finishing pigs only occurs between 22 and 25 weeks of age.109

All remaining pigs are delivered at the last delivery time (25 weeks of age)

tm = maxk∈N{kΔt : kΔt � 25} because the room needs to be emptied. The

proportion of pigs delivered to the slaughterhouse at time t, calculated from

the pig population P (t− 1), is given by:

d(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t < 22 or if t �= kΔt, k ∈ N (not a delivery time),∫ t

t−Δt
ϕ(s)ds

1−
∫ t−Δt

0
ϕ(s)ds

if 22 � t = kΔt < tm, k ∈ N (delivery time),

1 if t = tm (room is emptied).

The number of pigs at time t is hence obtained from the following equations:

P (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L if t = 0 (birth),

(1− μS)P (t− 1) if 0 < t � 4 (suckling period),

(1− μPW )P (t− 1) if 4 < t � 12 (post-weaning period),

(1− μF )(1− d(t))P (t− 1) if 12 < t � 25, (finishing period).
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At each time step, mortality is assumed to take place first, so slaughterhouse110

deliveries are given by: D(t) = (1− μF )d(t)P (t− 1).111

2.2 Salmonella epidemiological model112

The epidemiological model was developed by Lurette et al. (2008a). Infected113

animals shed Salmonella in their feces and, hence, contaminate their local en-114

vironment, i.e. their rearing room. The model represents the indirect fecal-oral115

transmission via encounters with the free-living Salmonella in contaminated116

feces on the room floor, the pen separations and the pig bodies. The free-living117

Salmonella in the room are modelled as a quantity of Salmonella infectious118

units denoted Q(t) at time t.119

Four mutually exclusive health states (Y ) were identified and selected from120

the literature and from expert opinion. A susceptible pig free of Salmonella121

(Y = F ) becomes a shedding pig (Y = Sh) after ingesting the bacteria. After122

a seroconversion delay, it is called a seropositive shedding pig (Y = Shs). The123

shedding is intermittent. When it stops, the pig becomes a seropositive carrier124

pig (Y = Cs). The shedding can be reactivated, especially under stressful125

conditions. The number of pigs in each state Y at time t is given by P (t, Y ),126

where P (t) =
∑

Y P (t, Y ) represents the total population size. All transitions127

are stochastic: the number of pigs which undergo a transition between two128

states is drawn in a binomial law; the first parameter is the number of pigs in129

the initial state, the second is the individual transition probability.130

Assuming homogeneous mixing, each pig is exposed to Q(t)/P (t) Salmonella

infectious units. Ingestion is considered to have a logarithmic effect, so the

8
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effective quantity of Salmonella infectious units for each susceptible pig is:

q(t) = log(1 +Q(t)/P (t)). The probability of infection for a susceptible pig is

an increasing function of q with two thresholds:

f(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if q = 0,

b1 if 0 < q � q1,

b1 + b2−b1
q2−q1

(q − q1) if q1 < q � q2,

b2 if q > q2.

This semi-log sigmoid-like function is very similar to the classical dose-response131

relationships, very commonly used in pharmacokinetics. The number of sus-132

ceptible pigs that become infected is calculated at each time step from the133

following binomial law: Bin(P (t, F ), f(q(t)).134

The probability that a shedder pig becomes seropositive derives from the sero-135

conversion delay λ1 and is equal to: 1− exp(−1/λ1). Similarly, the probability136

that a seropositive shedding pig stops shedding Salmonella depends on the137

shedding period duration λ2(t). The shedding duration follows a lognormal138

distribution (with parameters λ2α and λ2σ , mean and standard deviation) and139

is recalculated at each time step t to account for environmental variability.140

The probability that a seropositive carrier pig starts shedding again is β. As141

previously, the pigs which undergo a state change at each time step are drawn142

from binomial laws using these three individual transition probabilities.143

Hence, we obtain the following system of equations, that describes the popu-
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lation evolution in the four health states:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (t, F ) = P (t− 1, F )− Bin(P (t− 1, F ), f(q(t− 1))),

P (t, Sh) = P (t− 1, Sh) + Bin(P (t− 1, F ), f(q(t− 1)))

− Bin

(
P (t− 1, Sh), 1− exp

(−1

λ1

))
,

P (t, Shs) = P (t− 1, Shs) + Bin

(
P (t− 1, Sh), 1− exp

(−1

λ1

))

− Bin

(
P (t− 1, Shs), 1− exp

( −1

λ2(t− 1)

))
+

− Bin(P (t− 1, Cs), β),

P (t, Cs) = P (t− 1, Cs) + Bin

(
P (t− 1, Shs), 1− exp

( −1

λ2(t− 1)

))

− Bin(P (t− 1, Cs), β).

Finally, the Salmonella infectious units are subject to a degradation process at

each time step with a fixed rate ν. They are incremented by the infectious units

shed by seropositive and seronegative shedder pigs. The resulting dynamics of

the Salmonella infectious units is the following:

Q(t) = (1− ν)Q(t− 1) + qeP (t, Sh) + qeπ+P (t, Shs).

where qe is the shedding rate, i.e. the quantity of infectious units shed by a144

seronegative shedder pig, and π+ is the shedding ratio between a seropositive145

and a seronegative shedder pig.146

2.3 Coupling the models147

The pig batch model and the epidemiological models are coupled as follows.148

At each time step, mortality and slaughterhouse delivery are first applied149

uniformly over the four epidemiological states in the batch. The number of150
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pigs in epidemiological state Y delivered to the slaughterhouse at time t is151

therefore : D(t, Y ) = (1− μF )d(t)P (t− 1, Y ); D(t) =
∑

Y D(t, Y ) is the total152

number of pigs delivered. Then the epidemiological transitions are drawn and153

finally the number of Salmonella infectious units is updated.154

Some epidemiological transitions and parameters depend on the pig growing155

stage. The susceptibility of piglets to Salmonella infection is considered lower156

during the suckling period than during the other growing stages, due to a ma-157

ternal protective immunity. So, during the suckling period S, the probability158

of infection fS(q) = εf(q), ε being a maternal protective factor (ε < 1); during159

all other stages X ∈ {PW,F}, fX(q) = f(q). The shedding rate also depends160

on the growing stage. Let qe be the shedding rate of a finisher pig and πX be161

the shedding ratio between a pig in stage X = S, PW and a finishing pig; the162

shedding rate in stage X is qeπX . Finally, piglets undergo a supplementary163

stress at weaning, which increases the probability β that a carrier pig starts164

shedding again. Denoting by γ the value of this probability at weaning time165

t = 5, at any other time, it is given by β = πβγ, with πβ < 1.166

Between two batches, rooms are cleaned and disinfected, but residual Salmonella

may remain in the room. When piglets are born, the room can also have been

contaminated by the sows. So when the pig batch enters each rearing room,

the number of Salmonella infectious units is set to a residual value denoted

QX , X being the corresponding stage. The number of Salmonella infectious

11
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units is then given by the following equations:

Q(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QS if t = 0

(birth),

(1− ν)Q(t− 1) + qeπSP (t, Sh) + qeπ+πSP (t, Shs) if 0 < t � 4

(suckling),

QPW if t = 5

(weaning),

(1− ν)Q(t− 1) + qeπPWP (t, Sh) + qeπ+πPWP (t, Shs) if 5 < t � 12

(post-weaning),

QF if t = 13

(finishing),

(1− ν)Q(t− 1) + qeP (t, Sh) + qeπ+P (t, Sh) if 13 < t � 25

(finishing).

2.4 Model parameters and initial condition167

The demographic parameters used for the pig herd model are known from the168

published performance data (ITP, 2000, 2006) and are detailed in Table 1.169

The epidemiological parameters, however, are not so well known. The infor-170

mation available is presented in Table 2.171

At the beginning of the simulation, we assume that piglets are born Salmonella-172

free. So P (0, F ) = L and P (0, Y ) = 0 for Y �= F . Contamination of the batch173

is initiated by the residual Salmonella infectious units in the rooms QY . Their174

12
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Table 1

Demographic parameters used in the batch model.

Name Description Value

DS Duration of the suckling period 4 weeks∗

DPW Duration of the post-weaning period 8 weeks∗

DF Duration of the finishing period 14 weeks∗

μS Mortality rate for suckling pigs 0.01 week−1†

μPW Mortality rate for post-weaning pigs 0.005 week−1†

μF Mortality rate for finishing pigs 0.002 week−1†

aα Mean age at slaughtering weight 25.5 weeks∗

aσ Standard deviation — 1.5 weeks∗

∗ from (ITP, 2000). † from (ITP, 2006).

values are given in Table 2. Slaughterhouse deliveries from the herd may occur175

every Δt = 2 weeks, starting at t = 0; so the room is emptied at tm = 25.176

All simulations were performed using Scilab 4.0. 1
177

3 Sensitivity analysis178

The aim of a sensitivity analysis is to define which parameters have the great-

est impact on given model outputs. We chose two outputs. The first one is the

Salmonella seroprevalence in the batch over time, from the piglet birth until

1 Scilab, a free scientific software for numerical computations: http://www.

scilab.org/

13
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Table 2

Epidemiological parameters used in the batch model.

Name Description Values tested

q1 Lower infection probability threshold 1, 2, 3, 4 log(S.i.u.)

q2 Saturation infection probability threshold 4, 4.7, 5, 6 log(S.i.u.)

b1 Lower infection probability 10−7, 10−6, 10−4, 10−2

b2 Saturation infection probability 0.05, 0.1, 0.3, 0.5

λ1 Seroconversion delay 1, 2, 3, 4 weeks∗

λ2α Shedding period duration: mean 1, 3, 6, 10 weeks†

λ2σ Shedding period duration:standard deviation 1, 2, 3, 4 weeks

γ Probability of shedding reactivation due to stress 0.1, 0.2, 0.4, 0.6

πβ Ratio: shedding reactivation / γ 0.1, 0.4, 0.7, 1

ε Maternal protective factor 0, 0.1, 0.3, 1

ν Salmonella degradation rate 0, 0.3, 0.5, 0.8 week−1‡

qe Shedding rate for seronegative finishing pigs 102, 5.103, 105, 5.106

S.i.u.(week)−1

πS Ratio: shedding rate for suckling pigs / qe 0.1, 0.2, 0.4, 0.6

πPW Ratio: shedding rate for post-weaning pigs / qe 0.1, 0.2, 0.4, 0.6

π+ Ratio: shedding rate for seropositive pigs / qe 0.1, 0.4, 0.7, 1

QS Residual contamination: farrowing room 0, 102, 104, 106 S.i.u.

QPW Residual contamination: post-weaning room 0, 102, 104, 106 S.i.u.

QF Residual contamination: finishing room 0, 102, 104, 106 S.i.u.
S.i.u.: Salmonella infectious units.

∗ from (van Winsen et al., 2001; Fravalo et al., 2003).

† (Davies et al., 1998; Nielsen et al., 1995; van Winsen et al., 2001; Kranker et al.,

2003; Wong et al., 2002).

‡ (Plachá et al., 2001; Boes et al., 2005; Nicholson et al., 2005).
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their slaughterhouse delivery. The seroprevalence corresponds to the propor-

tion of seropositive shedding and carrying pigs in the batch. It is calculated

at each time step by:

ψ(t) =

∑
Y ∈Shs,Cs P (t, Y )

P (t)
.

The second output is the mean seroprevalence at slaughterhouse delivery, cal-

culated as follows:

Ω =

∑25
t=22

∑
Y ∈Shs,CsD(t, Y )∑25
t=22D(t)

As the demographic parameters are well known, we chose to perform the179

analysis on the epidemiological parameters given in Table 2, whose values are180

uncertain. We used a design of experiments to define which simulations to run.181

Then the resulting outputs were analysed.182

3.1 Design of experiments183

The simulation model described in the previous section has 18 epidemiological184

parameters, also called “factors”. To study the sensitivity of the outputs to185

these parameters, we used a factorial experimental design, with four parameter186

values, called “levels”, per factor. As the model is stochastic, each combination187

of levels of factors, i.e. each parameter set or “scenario”, was replicated 15188

times. This number of replications was found to be largely sufficient to get189

robust results. It also allowed to obtain quite precise estimates of the variances190

between replications for each scenario.191

A complete factorial design corresponds to 418 scenarios, that is 15× 418 sim-192

ulations, which is not feasible. Therefore, we used a fractional factorial design193

(Kobilinsky, 1997; Box et al., 1978). A resolution V design is orthogonal and194
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it enables the estimation of main effects and two-factor interactions, assuming195

that the higher order interactions are negligible. A resolution V design for196

18 factors can be obtained with 4096 scenarios, which corresponds to 61 440197

simulations with 15 replications. The fractional factorial design we used was198

produced by the FACTEX procedure of the SAS 8.0/QC module. 2 Alter-199

native designs could have been used, in particular response surface designs200

(Myers and Montgomery, 2002) or space-filling designs (Fang et al., 2006). In201

the present study, we gave priority to orthogonal and balanced designs.202

3.2 Sensitivity analysis on the seroprevalence over time203

To analyse the seroprevalences over time ψ(t) obtained with the fractional fac-204

torial design described above, we used a method developed by Lamboni et al.205

(2008). We only give here a short description of this method. The seropreva-206

lence outputs can be represented in a N×p table denoted T , with N = 61 440207

the number of simulations and p = 23 the number of seroprevalence output208

times (t = 2, . . . , 24). As the animals are born Salmonella-free at t = 0 and209

need a week for seroconversion when they become infected, ψ(0) = ψ(1) = 0210

for each simulation; moreover, their room is emptied at t = tm = 25, so211

ψ(25) = 0. Hence, these times are not included in the analysis.212

A principal component analysis (PCA) with N individuals and p variables is213

performed on this table T . It consists in an eigenvalue decomposition of the214

matrix of correlations between the columns of T , T̃ ′T̃ , where T̃ is obtained by215

centring and normalising each column of T . Let u1 denote the first eigenvector216

2 SAS/QC 8 User’s Guide, Introduction to the FACTEX procedure: http://

v8doc.sas.com/sashtml/qc/chap14/index.htm
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associated with the largest eigenvalue. The first component u1 thus obtained217

is the linear combination of the variables that explains the maximum of vari-218

ability – or inertia – among the simulations. The second component is the219

second best combination to explain the variability, conditionally on being or-220

thogonal to the first component, etc. Usually, four components are enough to221

explain most of the variability among the simulations. In this study, only three222

components were needed.223

As a result of the PCA, each simulation corresponding to a line in table T is224

given a “score” on each component. For the first component, it corresponds225

to the scalar product of u1 and the corresponding line of the T matrix. The226

scores are similarly obtained for each subsequent component. Each simulation227

is hence described by a scalar value called score for each component.228

An ANOVA was then performed on the simulation scores for each of the first229

three principal components, to compare the influence of the 18 epidemiological230

factors on the seroprevalence. The model included all main effects and all two-231

factor interactions. Sensitivity indices and total sensitivities were calculated for232

each component i ∈ {1, 2, 3}. The sensitivity index SI i
w associated with each233

factorial term w (main effect or interaction) is defined as the ratio between the234

sum of squares associated with that term and the total sum of squares. The235

total sensitivity TSi
f is given for each factor f by the sum of the sensitivity236

indices corresponding to that factor; it gives the contribution of the factor and237

its two-factor interactions (Saltelli et al., 2000).238

These indices describe the impact of the epidemiological parameters on the239

seroprevalence output. To assess the impact of the model stochasticity, which240

represents the variability among individuals in the batch, an extra sensitivity241
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index RSi was calculated for each component i as the ratio of the sum of242

squares within scenario summed over all scenarios to the total sum of squares.243

This analysis was performed with the R software. 3
244

3.3 Sensitivity analysis on the mean seroprevalence at slaughterhouse deliv-245

ery246

An ANOVA was also performed to compare the influence of the 18 epidemi-247

ological parameters on the mean seroprevalence of delivered pigs Ω. It was248

calculated for each scenario defined by the fractional factorial design described249

above.250

4 Results251

We tested several sets of simulations with 10 replications per scenario. The252

sensitivity analysis was conducted on each set. Results were stable in terms253

of sensitivity index values and parameter order. Therefore, the 15 replications254

per scenario performed for this study ensure that the results are robust.255

4.1 Influence of factors on the seroprevalence over time256

At each time step from birth to slaughterhouse delivery and for each sce-257

nario, the average seroprevalence was calculated over the 15 replications per-258

formed for the sensitivity analysis. The percentiles of the average seropreva-259

3 The R Project for Statistical Computing: http://www.r-project.org/
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lences across the 4096 scenarios are represented at each time step in Fig. 1.260

They show a global increase in seroprevalence over time, but they also ex-261

hibit a high variability. In 10% of the scenarios, no infection is found. In 10%262

of the scenarios, the batch is almost entirely infected at the slaughterhouse263

delivery. Box-plots at each time step and for each percentile are also drawn264

in Fig. 1. They show the seroprevalence variability between replicates due265

to model stochasticity. Each box-plot is based on the 3×15 seroprevalences266

associated with the 3 scenarios closest to a given percentile at a given time267

step. As stated previously, no infection is found for the 10th percentile. For268

the other percentiles, the variability due to model stochasticity appears to be269

quite lower than the variability due to the epidemiological factors, despite a270

few large outliers.271

The inertia obtained for the first three principal components are 78.0%, 15.9%272

and 4.2%; the next component represented less than 1% of the total variability273

(Fig. 2). Results are described component by component, starting with the first274

component.275

The sensitivity indices RSi describing the impact of the model stochasticity

for the first three components i are quite low:

RS1 = 1.8%, RS2 = 3.6%, RS3 = 7.9%.

The first principal component represents 78.0% of the total inertia. According276

to Fig. 3-A all time steps have comparable weights for this component, though277

somehow lower for the first time steps. So it corresponds more or less to an278

average seroprevalence effect. The most sensitive factors, which contributed279

to more than 20% of the variability for this component, are: q1, the saturation280
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Fig. 1. Percentiles of the average seroprevalence at each time step (lines) and sero-

prevalence variability between replicates (boxplots). At each time step, percentiles

are calculated across the 4096 seroprevalences averaged over the 15 replications per

scenario: mean (plain line), 10th percentile (dotted line, superposed with the ab-

scissa axis), 50th percentile (dashed line), and 90th percentile (dash-dotted line).

Each boxplot is calculated over all replications of the 3 scenarios that are most

closely associated with a given percentile. In the boxplots: outliers for the 10th per-

centile (.,none), 50th percentile (∗), and 90th percentile (◦). Parameters are given in

Tables 1 and 2.

infection probability threshold, b2, the saturation infection probability. The281

residual contamination in the farrowing room, QS and in the post-weaning282

room QPW explain more than 10% of the inertia; qe, b1 and ε, more than 5%283

each (Fig. 3-B). The cumulated sensitivity indices of the eight major main284

effects and two-factor interactions are higher than 70% (Fig. 3-C). For all285

epidemiological parameters, the contributions of their main effect and their286
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Fig. 2. Contribution to the total inertia of the seven first principal components:

component contribution (black) and total inertia explained by the seven first com-

ponents (grey). PCX is the Xth component.

two-factor interactions are comparable. However, only one interaction appears287

in the eight most sensitive terms: b2:q1.288

The second component only corresponds to 15.9% of the total inertia. On289

this component, the higher scores are attributed to simulations which exhibit290

higher contrasts between the beginning and the end of the simulation (Fig. 4-291

A). The parameters explaining more variability differ from the first component292

(Fig. 4-B). Two parameters contribute to ca. 40% of the inertia: ε, the maternal293

protective factor, and QS, the residual contamination of the farrowing room.294

Both are involved in the early infection of piglets. b2 and q1, which govern295

the infection function, explain more than 10% of the inertia each. For all296

parameters, the contribution of the two-factor interactions is higher than the297

main effect contribution. The cumulated sensitivity indices of the eight major298

main factors and interactions is equal to 53 %; four interactions involving QS,299
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Fig. 3. Sensitivity analysis on the seroprevalence over time: results of the ANOVA

performed on the simulation scores of the first component (inertia: 78.0%). –

A Loadings defining the component for each time variable (in abscissa). B To-

tal sensitivities TS1
f for the 18 epidemiological parameters f ranked in descending

order; sensitivities are split in main effect (black) and two-factor interactions (grey).

C Sensitivity indices SI1
w of the eight main factorial terms w (main effects or inter-

actions) in descending order; individual (black) and cumulated (grey) contributions.

ε, q1 or b2 are included (Fig. 4-C).300

The third component contribution is very low: 4.2%. It highlights the tra-301

jectories in which the seroprevalence during the intermediate time steps was302

very different from the beginning and end of the simulation (Fig. 5-A). As for303
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Fig. 4. Sensitivity analysis on the seroprevalence over time: results of the ANOVA

performed on the simulation scores of the second component (inertia: 15.9%). –

A Loadings defining the component for each time variable (in abscissa). B Total

sensitivities TS2
f for the 18 epidemiological parameters f ranked in descending or-

der; sensitivities are split in main effect (black) and two-factor interactions (grey).

C Sensitivity indices SI2
w of the eight main factorial terms w (main effects or inter-

actions) in descending order; individual (black) and cumulated (grey) contributions.

the second component, interactions contribute more to the inertia than major304

effects; they are comparable for the most influential parameter QF . The QF305

total sensitivity is higher than 20% (Fig. 5-B). Parameters QF , QPW , q1 and306

various two-factor interactions involving these three parameters as well as b2,307
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Fig. 5. Sensitivity analysis on the seroprevalence over time: results of the ANOVA

performed on the simulation scores of the third component (inertia: 4.2%). –

A Loadings defining the component for each time variable (in abscissa). B To-

tal sensitivities TS3
f for the 18 epidemiological parameters f ranked in descending

order; sensitivities are split in main effect (black) and two-factor interactions (grey).

C Sensitivity indices SI3
w of the eight main factorial terms w (main effects or inter-

actions) in descending order; individual (black) and cumulated (grey) contributions.

q1 and qe explained more than 47% of the variability (Fig. 5-C).308
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4.2 Influence of factors on the seroprevalence at slaughterhouse delivery309

The terms which had a higher than 5% effect on the seroprevalence at slaugh-310

terhouse delivery are, in descending order: q1 (16.1%), b2 (11.2%), b1 (5.3%),311

three of the four parameters governing the infection probability function, and312

the residual room contaminations QS (5.3%) and QPW (5.2%). The statistical313

model explains only 62% of the variability of the output.314

5 Discussion315

The model developed in this study is a simplified version of a herd model, ob-316

tained by considering an independent pig batch that only interacts with the317

herd through residual room contaminations. It cannot take into account batch318

mixing. It corresponds to an all-in/all-out management system, which is the319

recommended and a frequent system under normal pig growth conditions, i.e.320

when pig growth duration is not affected by any disease or other external fac-321

tor. This batch model has allowed us to assess the Salmonella seroprevalence322

in a batch of pigs, from birth to slaughterhouse delivery and in the groups323

delivered to the slaughterhouse.324

Sensitivity analyses were conducted to identify the parameters which had the325

greatest influence on the variability of these model outputs. The first anal-326

ysis, performed on the seroprevalence over time, was more informative than327

the analysis performed on the seroprevalence at slaughter age. Other sensitiv-328

ity analysis methods were used in previously published model describing the329

Salmonella spread within pig herds. Some graphically assessed the effect of330

infection probability variations on the seroprevalence of pigs at slaughter age331

25



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

(Hill et al., 2008). Others, in a meta-modelling approach, used a generalised332

linear mixed model to estimate the influence of epidemiological parameters333

on scalar outputs: the percentage of contaminated carcasses at the end of the334

slaughter process and their serological status (van der Gaag et al., 2004). In335

this study, we analysed the seroprevalence trajectories, estimating that the336

time variable would provide valuable information.337

Sensitivity analyses rank sources of uncertainty and variability, according to338

their influence on the model outputs. These sources need not be restricted to339

model parameters. Here, they also included the variability among individuals340

in a batch, because it induces notable variations on the batch seroprevalence.341

Results eventually showed that this individual variability had a negligible im-342

pact on the Salmonella seroprevalence variability compared to the epidemio-343

logical parameters. The range of values tested for these parameters was chosen344

especially broad to account for the uncertainty on these parameters and to em-345

phasise their impact on the output variability. However, this result was not346

obvious. It highlights in the present case an urgent need for more accurate347

estimates of the epidemiological parameter values.348

Several key epidemiological parameters were identified and can be grouped349

in three categories. The first category consists of q1, b2 and b1, which govern350

the infection probability function. These parameters are the most influential351

ones, as together they explained more than 40% of the first component inertia352

(two-factor interaction not included), the first component representing more353

than 78% of the total inertia. In the second category, parameters related to354

the room contamination, QPW , QS, and QF are found. Their contribution355

to the seroprevalence variability appeared in the top eight of the first three356

components. The third and last category contains the Salmonella shedding357
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rate for a seronegative finishing pig qe and the maternal protective factor ε.358

Their contribution was lower, but their impact cannot be neglected.359

Infection probability function The infection probability function seems360

to have a major influence on the Salmonella infection dynamics. However, its361

four parameters do not have the same impact on the seroprevalence variability.362

Actually, q1 and b2, corresponding respectively to the lower threshold and the363

saturation infection probability, are the most sensitive parameters. This is364

consistent with a rapid growth of the quantity of Salmonella infectious units365

in a room. As the batch size does not vary much with time, this quantity Q(t)366

increases with the effective quantity ingested by a pig q(t). In low contaminated367

rooms (q(t) � q1), the transmission remains low. Once the room contamination368

exceeds a given threshold (q(t) > q1), the transmission increases rapidly and369

the infection probability reaches its saturation value (f(q(t) = b2). Further370

investigation would be needed to define this function more accurately. The371

major influence of the infection probability had already been shown by van der372

Gaag et al. (2004): in this study, the rate of infection within a group of pigs373

was the most influential factor on the percentage of contaminated carcasses374

at the end of the slaughter process. Control measures which would reduce the375

probability for a susceptible pig to become infected would be very efficient.376

They would involve: (i) a reduction of the contact rate between susceptible377

pigs and all sources of infection, by implementing a strict all-in/all-out housing378

system for instance; and/or (ii) a reduction of the probability of infection given379

such a contact, by acid feed (Farzan et al., 2006) or vaccination (Roesler et al.,380

2006).381
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Residual room contaminations The residual room contaminations were,382

as expected, quite important for the prevalence, especially as they were used to383

introduce the infection in the batch. Globally, the farrowing and post-weaning384

room contaminations had more impact on the seroprevalence over time. The385

batch was usually already infected when it entered the finishing room, so386

the contribution of shedding pigs to the room contamination overpowered387

the residual contamination. The second component brought out particularly388

strongly the residual farrowing room contamination. As this component em-389

phasised trajectories exhibiting strong differences in seroprevalence between390

the beginning and the end of the simulation, it is quite consistent. The in-391

fluence of the room contamination has been previously shown (Beloeil et al.,392

2003) and it highlights the need of cleaning and disinfecting the room between393

batches. This result is consistent with experimental results that showed that394

pigs removed at weaning or at 10 weeks of age from their herd and placed in395

Salmonella-free facilities became Salmonella-free delivered pigs (Dahl et al.,396

1997). Our study hence suggests that control measures should also concentrate397

on the residual room contamination, especially for the farrowing and the post-398

weaning rooms. This goal could be reached by: (i) a better cleaning-disinfection399

process, (ii) reducing the quantity of Salmonella shed by infected pigs, and (iii)400

reducing the survival of these bacteria in the environment (quicker removal of401

contaminated feces).402

Shedding Control measures reducing the shedding duration were shown to403

be efficient by experimentation (e.g. with vaccination (Roesler et al., 2006),404

or with acid feed (Farzan et al., 2006; van Winsen et al., 2001)). However, in405

the range of variation tested here, the shedding duration did not have a great406
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impact on the seroprevalence variability. Therefore, further experiments should407

rather concentrate on the shedding quantity than on the shedding duration.408

Maternal protection A partial maternal protection was represented by409

lowering the probability of infection for piglets during the first four weeks410

of life. The maternal protective factor had an intermediate influence in the411

first component and a major effect in the second component. We used a large412

range of variation for this factor, between 0 and 1, because not only is its value413

uncertain, its existence remains to be demonstrated. The transmission from414

sows to piglets seems to be a critical point for the initial contamination of pig415

batches (Lurette et al., 2008a). However, little evidence was found in the lit-416

erature to support the existence of a maternal protective factor due to passive417

immunity. Indeed, even if passive immunity has been found in piglets (Proux418

et al., 2000), no experiments have yet shown a potential protection induced419

by this immunity. Other authors modelling Salmonella spread within grower-420

finisher herds considered active immunity and represented either a complete421

immunity for a short period (10 days) following the infection (Hill et al., 2008),422

or a partial immunity for the seropositive animals (van der Gaag et al., 2004).423

We also attributed a partial immunity to the seropositive health states by424

reducing the shedding rate of seropositive animals (π+). Additional data con-425

cerning the potential protective effect of maternal antibodies or post-infection426

antibodies are however needed to investigate these matters further.427

Hill et al. (2008) and van der Gaag et al. (2004) highlighted the importance428

of the infection prevalence in weaner pigs and then the importance of the429

transmission between sows and their piglets on the slaughterhouse delivery430

seroprevalence. Our study has shown that early infection, occurring between431
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birth and weaning, seems to be the critical point of the Salmonella spread432

within a pig batch, and possibly within a herd. Literature reported that the433

prevalence of Salmonella at slaughter age resulted from the late infection of434

pigs in cases of multi-site herds (Davies et al., 1998; Nielsen et al., 1995).435

Actually, the serotype identified at the slaughterhouse differed from those436

found in the breeding and in the multiplying herds. In this study, the birth437

and the growth of pigs take place at the same place. Moreover, other observed438

data exhibit a correlation between the sow herd Salmonella status and the439

finishing pigs status (Nollet et al., 2005), which tends to support our findings.440

6 Conclusion441

This first work has allowed us to identify key parameters in Salmonella trans-442

mission from a model describing the Salmonella spread within a pig batch: first443

came parameters involved in the infection probability function, then parame-444

ters related to the room contamination, and finally the Salmonella shedding445

rate and maternal protective factor. We deduced from these findings that effi-446

cient control measures should focus on reducing: (i) the probability of infection,447

like for instance acid feed, and vaccination; and (ii) the residual room contam-448

ination, especially for the farrowing room, with a better cleaning-disinfection449

process, or a quicker removal of contaminated feces. This study also high-450

lighted directions that should be further investigated to better understand the451

pathogen spread and control it better, such as the potential protective effect of452

maternal antibodies or post-infection antibodies. Given that the residual con-453

tamination of the rearing rooms and the early infection of piglets were shown454

to have quite an impact on the pathogen spread, it would be interesting to455
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study the influence of these parameters within a farrow-to-finish herd where456

sows and pigs are housed together and where batch mixing can occur between457

batches (Hébert, 2006).458
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