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Abstract 
 
We define basic networks as the undirected subgraphs with minimal number of units in 

which the distances (geodesics, minimal path lengths) among a set of selected nodes, which 

we call seeds, in the original graph are conserved. The additional nodes required to draw the 

basic network are called connectors. We describe a heuristic strategy to find the basic 

networks of complex graphs. We also show how the characterization of these networks may 

help to obtain relevant biological information from highly complex protein-protein 

interaction data.  

 

Keywords: graph; module; interactome; Steiner tree. 
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Introduction. 

In biology, as in other sciences, many types of complex data can be expressed as undirected 

graphs, in which units (nodes) are connected by bidirectional edges. Among the most significant 

examples are protein-protein interaction networks, networks based in cooccurrence of protein 

domains or graphs generated by assigning edges to genes with a given level of coexpression 

(Aittokallio and Schwikowski 2006; Sharan et al. 2007). All these graphs have emerged very 

recently, with the advent of genomic and proteomic high-throughput technologies that have 

generated huge amounts of data. How to obtain useful information from this kind of data is one of 

the main challenges in modern biology. 

 

A significant problem occurs when a set of units of one of those graphs is selected by any 

given criteria and we are interested in determining its functional or structural meaning. There are 

two ways of tackling this situation. First, we can exclusively use information not included in the 

graph. For example, if we are trying to understand the function of a set of proteins, we can simply 

explore the available literature or, if possible, we can use standard classifications, such as Gene 

Ontologies (GOs), in which gene products are classified according to the biological processes in 

which they act (Ashburner et al. 2000). These approaches are very useful if the available 

information is sufficient, but may fail if the set contains many proteins of unknown function. A 

second alternative is to explore the graph to determine the context in which the selected units are 

working. For example, in a protein-protein interaction network, we can determine whether most of 

the selected proteins are located in a given region of that network. If this is the case, we can then 

use the information provided by proteins not included in our set, but closely linked to ours, to infer 

the functions that characterize our dataset. Conceptually, this second strategy can be schematized 

as follows. First, our set defines a group of seed nodes from which to start the analysis. Second, 

we characterize a second group of nodes which are sufficiently closely linked to the seed nodes, 

which may be called connectors. Third, we use the information provided by the connectors to 
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infer information about the seeds. The problem then consists in defining the best way to determine 

the connectors. In the current literature, this has been generally solved by devising strategies to 

define modules (e. g. Del Rio et al. 2001; Bader 2003; Ashtana et al. 2004; Hashimoto et al. 2004; 

Krauthamer et al. 2004; Arnau et al. 2005; Scott et al. 2005; Lubovac et al. 2006; Lucas et al. 

2006; Li and Horvath 2007; see review by Sharan et al. 2007) A module is loosely defined as a 

group of closely linked nodes, with an internal cohesion that allows its separation from the rest of 

units in the network. The problem is that the characterization of modules is based on conventional, 

a priori criteria of unknown efficiency. The ability of any module definition to efficiently 

characterize connectors will depend on the features of the graph (size, connectivity) and the 

proximity among the seeds, and different definitions may lead to quite different results (e. g. Luo 

et al. 2007). In fact, to define modules may be difficult if the seeds are very distant.  

 

The starting point of our work is the appreciation that any strategy able to determine 

significant connectors which is based on non-conventional criteria could be a significant advance 

in network exploration. We introduce here the concept of basic network and we show that it 

allows for a non-ambiguous definition of significant connectors. We describe a heuristic strategy 

to characterize the significant connectors and also, using real examples, we show the usefulness of 

the characterization of basic networks to explore complex biological graphs. 

 

Concept of basic network and some theoretical considerations 

We define basic network of an undirected, fully connected graph as the fully connected, 

undirected subgraph which includes a set of preselected units (seeds) plus the minimal number of 

connectors required to conserve the distances (geodesics, minimal path lengths) found among the 

seeds in the original graph. We define as basic units the set of seeds plus the set of connectors that 

are required to generate the basic network. This simple definition lacks any ambiguity: for any 
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starting graph and set of seeds, there is at least one basic network (see e. g. Figure 1A). However, 

it will occur often that more that one basic network, all with identical number of connectors, can 

be obtained. A typical example of tied basic networks is shown in Figure 1B. A tied basic network 

can be further simplified (pruned; see below) to obtain several basic networks (Figure 1B). It is 

very simple to demonstrate that randomly eliminating nodes from the graph will not necessarily 

lead to obtaining the basic network. On the contrary, random elimination of nodes will generally 

lead to subgraphs that cannot be further minimized but are much larger than the basic network of 

the graph (Figure 1C). We call these results local minimal networks. Thus, any strategy to 

determine the basic network(s) of a graph will have to effectively deal with the presence of local 

minimal networks. 

 

 A significant theoretical consideration is the relationship among Steiner trees and basic 

networks. In the context of undirected graphs in which all edges are equivalent, a Steiner tree for a 

given set of seeds is defined as the tree that minimizes the number of edges (i.e. the total distance) 

to connect those seeds (Chartrand and Zhang 2004). Although the goal of both Steiner trees and 

basic networks is to establish minimal subgraphs determined by the disposition of certain seeds in 

a starting graph, it is easy to demonstrate that they are often unrelated. The main reason is that, to 

obtain the basic networks, we demand the minimal distances among seeds to be conserved, while 

this is not the case for Steiner trees. Thus, although the basic network of a graph can coincide with 

the Steiner tree (Figure 2A), it will most often occur that the basic network is larger and totally 

different from the Steiner tree (Figure 2B). As can be seen in Figure 2B, and can be also easily 

visualized will occur in larger graphs, Steiner trees are based on finding “internal” units (i. e. units 

that are quite away from the seeds and more or less equidistant from all of them) to minimize the 

total path length. Thus, in Steiner trees the seeds may end up at large distances. On the contrary, 

basic networks select “external” units, which are as closely linked to the seeds as possible.  
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 We may now ask why the definition of basic networks may be significant in the exploration 

of complex graphs. There are three main reasons. First, the close proximity among seeds and 

connectors just mentioned is obviously a useful feature, if we wish to obtain information about the 

seeds. Second, as we already discussed above, the definition of basic network is not ambiguous, 

avoiding the potential pitfalls of all module definitions. This has another direct advantage: the fact 

that basic networks have a given, clear-cut number of seeds allows for their statistical comparison 

with random basic networks, which are those obtained by randomly taking units from the same 

starting graph. Thus, we can demonstrate that some seeds are unrelated if the basic network 

obtained starting with them is not significantly different in size from a set of random basic 

networks. Finally, by determining the minimal number of basic units, we focus on the nodes that 

best explain the connections among the seeds. These must necessarily be hubs, highly connected 

units, given that only hubs may contribute to minimize its size. 

 

 A heuristic strategy to characterize basic networks 

 It is obvious that it is impossible to test for all the possible combinations of connectors to 

obtain the basic network of any large graph. Thus, a heuristic strategy must be devised to obtain 

the basic network, or at least to get a good approximation to it, avoiding falling in local minimal 

networks. We have devised a strategy which is implemented in a program that we have called 

Netbasic. Although the algorithmic details of the program are complicated, and will be described 

elsewhere, the strategy is actually quite simple to understand. The basic pseudocode of the 

program is as follows: 

1) Mark seeds as basic units. 

2) Compute the distances among the seeds. 

3) For each seed, define seed+1 units as the second node in any geodesic that starts in that 
seed and ends in a different seed. 

4) Determine all the basic seed+1 units, which are those that have no alternative seed+1 
units and therefore are essential to connect two or more seeds with a a minimal number 
of steps. Mark them as basic units. 
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5) Remove paths among seeds, following these rules: 

a. If a seed+1 unit is basic, none of the paths in which it is included can be 
eliminated 

b. Count paths among seeds for each seed+1 unit. If two or more seed+1 units have 
alternative paths, which connect the same two seeds, but one of them has 
assigned more total paths than the rest, the paths that pass through the rest of 
seed+1 units are eliminated.  

c. In case of ties in the number of paths, all paths are kept unless one of the tied 
seed+1 units is basic. If that occurs, alternative paths through non-basic units are 
eliminated. 

d. Determine again whether seed+1 units are basic 

e. Repeat steps 5a – 5c until there are no more eliminations. 

6) Remove nodes that lack paths 

7) If needed, define seed+2 units (and, if needed, seed+3 units, seed+4 units, …, seed+n 
units) and repeat the process described in steps 4 - 6 until all nodes are either marked as 
basic or no additional node can be eliminated. 

 

 Steps 1-4 are easy to follow. Most critical is step 5. In it, seed+1 units are compared and 

paths that go through basic or highly connected units (i. e. those that are included in many paths 

among seeds) are conserved, while those that go through non-basic, poorly connected units are 

eliminated. The same applies to step 7, for seed+2 units, seed+3 units, etc. These steps very 

effectively eliminate most units that are very unlikely to be part of the basic network, given its 

scarce participation in connecting the seeds. Thus, this strategy is based on keeping hubs and 

eliminating less connected units. A simple example of how this strategy works is shown in Figure 

3. 

 

 Even although this heuristic search is logical, it is obviously not certain it will obtain the 

basic network. As we already described above, the two complications are 1) ties and 2) local 

minimal networks. To deal with them, we have included refinements to the basic strategy. First, 

after the program goes through steps 1-7, it determines whether all nodes left are basic. If not, this 

may be caused by tied solutions as those that we shown in Figure 1B. If this is the case, the 

program can, if the user is interested, to further minimize the graph by checking in turn which 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

  8

connectors can be eliminated without affecting the distances among the seeds, in a process that we 

have called pruning. Once the pruning has been completed, ties are eliminated. However, the 

pruning process also eliminates the information about alternative solutions of the basic graph and, 

in many cases, it may be interesting to consider the full solution (see below). The second 

complication is much more difficult to cope with, given that to avoid the problem of local minimal 

networks with any heuristic search is intrinsically impossible, except in trivial cases. Thus, we 

have chosen to minimize the problem by using a permutation method. In steps 5 and 7, it is 

obviously critical the order in which seed+n units are considered. The process of path elimination 

depends on counting paths, and that count varies each time that a seed+n unit has been processed. 

Thus, we can easily envisage a situation in which taking the seed+n units in a given order will lead 

to a local minimal network, while considering them in a different order will lead to obtaining the 

basic network. By randomly taking the seeds and performing many alternative runs of the program 

(103 - 105), we can avoid as much as possible this problem. The multiple runs also give us a clear 

idea of the variation among the solutions obtained, and which is the set of proteins that appear in 

all the solutions and what proteins appear less frequently. 

 

 Searching for the basic networks in real data 

 To demonstrate the potential of this method, we have explored the basic network obtained 

when some sets of proteins of the yeast Saccharomyces cerevisiae are taken as seeds. The starting 

graph is the whole interactome of this species. This interactome, the largest known for any 

eukaryote, currently (April 2008) contains 4939 proteins connected by 38645 links (data from the 

Biogrid database; release 2.0.36; Stark et al. 2006).  

 

 The first set of seeds included 43 proteins, which were chosen because they are included in 

the Mitochondrial large ribosomal subunit Gene Ontology term (obtained from the 
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Saccharomyces Genome Database (SGD); http://www.yeastgenome.org/). Figure 4 shows the best 

solution obtained without pruning the data, which contains 20 connectors in addition of the 43 

original seeds. The average number of connectors in our set of solutions, without pruning, was 22 

± 1. Given that the seed proteins belong to an organule and thus often directly interact (see Figure 

4), the solutions obtained were expected to be much better than those obtained with random 

starting seeds. Indeed, the average number of connectors in analyses with 43 random seeds, again 

without pruning, was 207 ± 27 (Table 1). The pruned results were very similar (see also Table 1).  

 

 Using this example, we can show how to use the concept of basic network to obtain 

significant biological information, based on the connectors found. Out of the 20 connectors 

detected in this analysis, four stand out as having many direct connections with multiple large 

subunit proteins. However, only three of them (MRP4, YLH47 and MDM38; white dots in Figure 

4) are annotated in SGD as being related with the large subunit of the mitochondrial ribosome. 

The case of MRP4 is the easiest to understand. MRP4 is a protein of the small subunit of the 

mitochondrial ribosome which has been successfully used to capture many proteins of both the 

small and large ribosomal subunits (Gan et al. 2002). Also not surprising is to find the very similar 

proteins YLH47 and MDM38, which are related to human Letm1, a protein encoded by a gene 

associated to Wolf-Hirschhorn syndrome. These proteins are located in the inner membrane of the 

mitochondria and both are known to interact with mitochondrial ribosomes. MDM38 interacts 

with nascent proteins and is involved in the transport of proteins across the mitochondrial inner 

membrane (Frazier et al. 2006). The recovery of YLH47 and MDM38 as connectors thus confirms 

their close functional relationship with the yeast ribosome. 

 

 Taking into account those results, it is logical to predict that the fourth connector that 

directly interacts with many of the seed proteins, MHR1, must also have a significant role in 

mitochondrial ribosome function. However, the SGD database does not report any relationship of 
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this protein with ribosomal function in Saccharomyces cerevisiae. It only includes that it is 

involved in homologous recombination in mitochondria, transcriptional regulation in the nucleus 

and recombination-dependent mtDNA partitioning. This summary turns out to be incomplete. In 

fact, the protein orthologous to MHR1 in another ascomycete fungus, Neurospora crassa, was 

found to be part of the large subunit of the mitochondrial ribosome (Gan et al. 2005). This finding 

led to a reexamination of whether MHR1 could be found in the ribosome in Saccharomyces and, 

as a result, I was determined that MHR1 is an integral part of the large subunit (Gan et al. 2005). 

Thus, we can conclude from these four examples that  detection by basic network analyses of 

connector proteins with large numbers of links is a good evidence for strong functional 

relationships of those connectors with the seed proteins. 

 

 Very interestingly, the other 16 connectors are both unrelated to ribosome function 

(according to SGD) and are only linked to at most a few of the large subunit proteins (Figure 4). 

These results can be explained noticing that there is an outlier among the seeds: the protein 

MET13, which is far apart from the rest of the proteins in this GO term (Figure 4). The fact that 

MET13 is not closely linked to the rest of seeds explains the need to include those 16 additional 

connectors. MET13 is a methylenetetrahydrofolate reductase involved in methionine biosynthesis 

and therefore its relationship with the mitochondrial ribosome is unclear. According to SGD, 

MET13 was purified together with units of the mitochondrial large ribosomal subunit by Kitakawa 

et al. (1997). However, a direct interaction with any of those units has not been yet described. Its 

purification may thus have been artifactual. 

 

 To generalize the results obtained with the large subunit of the mitochondrial ribosome, we 

performed related searches with other sets of proteins, defined according to diverse GO terms. 

Results are summarized in Table 1. Significantly, in all cases that we studied, the tied and pruned 

basic networks were very similar (Table 1). This is due to the fact that most units in the tied basic 
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networks were basic units and the number of ties was therefore very low. If we now consider each 

GO term in detail, we can easily conclude that they can be divided into two classes. Some of them, 

especially those that are included in the Cellular Component GO domain (as the Mitochondrial 

large ribosomal subunit term just described), are known to have a strong structural basis, that is, 

many of the proteins in a given term interact. They all generated basic networks which are much 

smaller than those generated by random seeds (Table 1; Ribosome- and Spliceosome-related 

terms). On the contrary, other GO terms, especially some of those included in the Molecular 

function and Biological process GO domains, generate basic networks that are either larger or not 

much smaller than those obtained starting with random seeds (see data in brackets in Table 1). In 

two cases, the sizes of the random basic networks were statistically not significantly different from 

those of the GO-based basic networks (see Z-scores in Table 1). These results demonstrate that 

these GO terms are not characterized by including gene products which are closely linked in the 

protein-protein interaction network.  

 

 Discussion 

 We think that our definition of basic network is conceptually significant. First, it is an 

intuitively simple concept. Second, it provides a natural way to obtain groups of nodes related to a 

set of predefined seeds that escapes from any, more or less controversial, module definition. 

Finally, the results described above show that it is useful in very different contexts. On one hand, 

basic networks can be used to determine whether units are related or not. We have shown that this 

can be done by comparing the minimal graphs obtained with those units as seeds with the minimal 

graphs obtained with the same number of seeds, but randomly taken from the graph. On the other 

hand, basic networks point out proteins which are very closely linked to the seeds, for which a 

function related to the function of the seed proteins is likely (as we have discussed above for the 

connectors MHR1, MRP4, YLH47 and MDM38). Alternatively, by defining groups of nodes that 

are closely linked to the selected seeds, the determination of basic networks may contribute to 
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understand what those seeds have in common. A final aspect is that basic networks may provide 

clues about potentially false connections in the graphs. When adding a single unit to the set of 

seeds involves a substantial increase in the number of connectors, we may suspect that the unit is 

unrelated to the rest of seeds. This can be quite easily observed by depicting the basic network: the 

offending unit stands out as very distant from the rest (e. g. the case of MET13 in Figure 4). 

 

 Our solution to the problem of obtaining basic networks, the strategy described above is, 

given the impossibility of analyzing all possible combinations of units in large graphs, a heuristic 

search based on conserving the nodes with the highest number of paths traveling among seeds. As 

any other heuristic search, it does not guarantee finding the true basic network. However, the cases 

examined suggest that, in general, the solutions obtained will be very similar if the seeds are close 

in the graph (see the very low standard deviations in Table 1). In any case, the user may perform a 

large number of trials, in order to obtain a progressively improving approximation to the basic 

network. Saturation, i.e. lack of further minimization of the size of the graphs after a large number 

of trials, may indicate that the basic network has been already obtained. Further exploration of 

complex graphs may determine the usefulness and limitations of this and other potentially 

competing heuristic searches for basic network characterization. 
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Figure legends 

 Figure 1.  Three situations that may occur when searching for basic networks. A) In the 

simplest case, a single basic network exists, and all connectors are basic units. B) A tied basic 

network can not be further simplified without pruning (left). When pruning is performed, multiple 

alternative basic networks are found (right). C) Randomly eliminating nodes may lead to the basic 

network (left) but, most often, will lead to local minimal networks (right; this would be the 

optimal solution if any of the two internal nodes is eliminated). 

 

 Figure 2. Relationships between Steiner trees and basic networks. A) When the only 

geodesic among the seeds is through the Steiner tree, the basic network and the Steiner tree are 

identical. B) A typical example in which the Steiner tree (left) is totally different from the basic 

network (right), for the same starting graph and starting seeds (black dots). The shortest paths do 

not include the nodes in the Steiner tree. 

 

 Figure 3. An example of how to obtain basic networks. Units are named in bold. A, B, C, D 

are the seed units. The whole graph contains only nine units. Basic units are indicated with double 

circles. 

  

 Figure 4. Tied basic network for the Mitochondrial large ribosomal subunit GO term. Grey 

dots: seeds, i.e. proteins included in the term. Black and white: connectors. White nodes are 

mitochondrial proteins known to associate to the ribosome (YLK47, MDM38) or part of the small 

subunit of the mitochondrial ribosome (MRP4). Black nodes had, according to SGD, no known 

relationship with mitochondrial ribosome function. All but one of the black nodes are included to 

connect MET13 with the rest of proteins, suggesting that MET13 should not be included in the 

GO term (see text). The size of the circles is proportional to the number of minimal paths among 

seeds which include the nodes. However, in the case of seeds, minimal paths that start or end in a 

seed have not been counted. The figure was drawn with Pajek (Batagelj and Mrvar 2003).  
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Table 1. Characterization of the basic networks obtained when the proteins annotated to several 

GO terms are used as seeds and comparison with random basic networks obtained starting from 

the same number of random seeds. In all cases, 1500 permutations of the seeds were performed. 

Values are expressed as mean ± standard deviation and, in parenthesis, the minimum number (i.e. 

the optimal solution for the essential network characterized after obtaining all replicates). Z-scores 

(calculated as the absolute value of the difference between the average sizes of the random and 

experimental networks divided by the standard deviation of the random networks) are also 

indicated. The asterisk refers to the fact that, given that the number of seeds was identical in the 

two last GO terms, a single characterization of random basic networks, with number of seeds 

equal to 110, was performed. Thus, the Z-scores obtained for the GO terms Sexual reproduction 

and Sporulation are based on the same random basic networks. Values in bold are not significant, 

after Bonferroni´s correction. 

 

GO term 

 
GO 

domain 
 

No. 
of 

seeds 

No. of connectors in 
the basic networks 

tied/ pruned 

 
No. of connectors 
in random basic 

networks 
tied/pruned 

 

 
 

Z-scores 
tied / pruned 

Mitochondrial large 
ribosomal subunit 

Cellular 
component 43 22 ± 1 (20) / 

 19 (19) 
207 ± 27 (163) / 
206 ± 27 (163) 

6.85 / 6.92 

Mitochondrial small 
ribosomal subunit 

Cellular 
component 33 11 ± 1 (10) / 

 10 (10) 
150 ± 23 (109) / 
149 ± 22 (109) 

6.04 / 6.32 

Mitochondrial 
ribosome 

Cellular 
component 76 36 ± 2 (34) /  

34 ± 1 (34) 
382 ± 37 (298) / 
381 ± 37 (298) 

9.35 / 9.38 

Spliceosome Cellular 
component 79 19 ± 2 (17) / 

 19 ± 1 (17) 
402 ± 37 (339) / 
401 ± 36 (339) 

10.35 / 10.61 

Phosphoprotein 
phosphatase activity 

Molecular 
Function 46 151 ± 2 (149) / 

 151 ± 2 (149) 
220 ± 27 (171) / 
219 ± 26 (171) 

2.56 / 2.58 

Protein kinase 
activity 

Molecular 
Function 127 381 ± 1 (380) / 

381 ± 1 (380) 
637 ± 36 (551) / 
637 ± 36 (551) 

7.11 / 7.11 

Protein Folding Biological 
Process 72 224 ± 2 (221) / 

 224 ± 2 (221) 
362 ± 32 (301) / 
361 ± 31 (301) 

4.31 / 4.42 

Sexual reproduction Biological 
Process 110 403 ± 3 (399) / 

 403 ± 3 (399) 
560 ± 33 (499) / 
560 ± 33 (499) * 

4.76 / 4.76 

Sporulation Biological 
Process 110 525 ± 3 (522) / 

 525 ± 3 (522)  1.06 / 1.06 
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Figure 1. Marín and Hoyas 
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1. Mark seeds (A, B, C, and 
D) as basic. (Panel A).

2. Define seeds+1 (all the rest 
of nodes in this particular 
case). Detect seeds+1 
included in the minimal 
paths among seeds: A-B: 1,
3, 5 ;  A-C: 3 ; A-D: 4, 5;
B-D: 5, C 

3. Mark basic seeds+1: in this 
case, 3 (needed for path 
A3C) (Panel B).

4. Compute number of 
minimal paths for each 
seed+1: 5: 3; 3: 2; 1, 4: 1 

5. For each pair of seeds, find 
the seed+1 with more 
paths. Remove all the paths 
associated to other, non-
basic seeds+1. In case of 
tie, remove paths from non-
basic seeds, if any. In this 
case, A3B eliminates A1B, 
A5B. A5D eliminates A4D; 
BCD eliminates B5D. 

6. Go to step 3 and repeat 
until all the seeds+1 are 
basic (in this case, this is 
not needed).

7. Remove pathless seeds and 
non-used links. In this case, 
we are done: all the units 
left are basic, so we have 
determined the basic 
network (Panel C). If this 
is not the case, we should 
start characterizing the 
seed+2 nodes and go again 
to step 3.
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