

Flight by night or day?Optimal daily timing of bird migration.

Thomas Alerstam

▶ To cite this version:

Thomas Alerstam. Flight by night or day?Optimal daily timing of bird migration.. Journal of Theoretical Biology, 2009, 258 (4), pp.530. 10.1016/j.jtbi.2009.01.020 . hal-00554567

HAL Id: hal-00554567 https://hal.science/hal-00554567

Submitted on 11 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Author's Accepted Manuscript

Flight by night or day?Optimal daily timing of bird migration.

Thomas Alerstam

PII:S0022-5193(09)00034-4DOI:doi:10.1016/j.jtbi.2009.01.020Reference:YJTBI 5445

www.elsevier.com/locate/yjtbi

To appear in: Journal of Theoretical Biology

Received date:16 August 2008Revised date:8 January 2009Accepted date:22 January 2009

Cite this article as: Thomas Alerstam, Flight by night or day?Optimal daily timing of bird migration., *Journal of Theoretical Biology* (2009), doi:10.1016/j.jtbi.2009.01.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	
3	
4	
5	
6	Flight by night or day?
7	Optimal daily timing of bird migration.
8	
9	
10	Thomas Alarstom
12	Thomas Aterstan
13	
14	
15	Department of Animal Ecology, Lund University, Ecology Building, SE-22362 Lund,
17	Sweden
18	E-mail: Thomas. Alerstam@zooekol.lu.se
19	
20 21	Phone: 0046 462223785, Fax: 0046 462224716
21	
22	
	G

22 Abstract (294 words)

23

24 Many migratory bird species fly mainly during the night (nocturnal migrants), others 25 during daytime (diurnal migrants) and still others during both night and day. Need to 26 forage during the day, atmospheric structure, predator avoidance and orientation 27 conditions have been proposed as explanations for the widespread occurrence of 28 nocturnal migration. However, the general principles that determine the basic 29 nocturnal-diurnal variation in flight habits are poorly known. In the present study 30 optimal timing of migratory flights, giving the minimum total duration of the 31 migratory journey, is evaluated in a schematic way in relation to ecological conditions 32 for energy gain in foraging and for energy costs in flight. There exists a strong and 33 fundamental advantage of flying by night because foraging time is maximized and 34 energy deposition can take place on days immediately after and prior to the nocturnal 35 flights. The increase in migration speed by nocturnal compared with diurnal migration 36 will be largest for birds with low flight costs and high energy deposition rates. Diurnal 37 migration will be optimal if it is associated with efficient energy gain immediately 38 after a migratory flight because suitable stopover/foraging places have been located 39 during the flight or if energy losses during flight are substantially reduced by thermal 40 soaring and/or by fly-and-forage migration. A strategy of combined diurnal and 41 nocturnal migration may be optimal when birds migrate across regions with relatively 42 poor conditions for energy deposition (not only severe but also soft barriers). 43 Predictions about variable timing of migratory flights depending on changing foraging 44 and environmental conditions along the migration route may be tested for individual 45 birds by analysing satellite tracking results with respect to daily travel routines in 46 different regions. Documenting and understanding the adaptive variability in daily

- 47 travel schedules among migrating animals constitute a fascinating challenge for future
- 48 research.
- 49
- 50 Key words: optimal migration, nocturnal migration, diurnal migration, fly-and-forage
- 51 migration, travel schedules
- 52

Accepted manuscript

52 Introduction

53

54 Many bird species perform their migratory flights during the night while others fly 55 mainly during daytime and still others are flexible and may fly both during the night 56 and day. Possible explanations for these habits have been discussed since long, mainly 57 with the aim of understanding why so many birds fly by night.

58 Nocturnal migration brings the potential advantage that the migratory flights do 59 not interfere with foraging during the days (for birds with diurnal foraging habits; 60 Brewster, 1886). The idea that the daily timing of migration has evolved primarily to 61 safeguard or maximise foraging opportunities was supported by the observations of 62 Lank (1989) that shorebirds departed on migratory flights not only at dusk (when 63 foraging conditions deteriorated because of the imminent darkness) but also at other 64 times of the day when tides were rising and access to feeding areas were prevented 65 during high tides.

66 Nocturnal migration may also be associated with more favourable flight 67 conditions compared with diurnal migration because of the diel variation in 68 atmospheric structure. Hence, by flying at night birds may avoid turbulence and 69 strong winds and also reduce evaporative water losses in the cooler and more humid 70 night time air (Kerlinger and Moore, 1989). In addition, avoidance of predators and 71 the use of critical orientation cues at sunset or during the night have also been 72 suggested as contributory explanations for nocturnal migration (cf. reviews by 73 Kerlinger and Moore, 1989, Lank, 1989).

Among the diurnal migrants are birds that travel by thermal soaring migration like raptors, storks and cranes. Thermals develop over land during the day and the daily travel schedules of these migrants are closely associated with the daily timing of

77 thermal convection (Kerlinger, 1989). By exploiting the free lift in thermal air, these 78 birds can use gliding flight which is much less energy-demanding than flapping flight 79 (particularly for large birds) and thus benefit by a reduced cost of transport 80 (Pennycuick, 1975, 1989, Kerlinger, 1989, Hedenström, 1993). 81 There are also many species of diurnal migrants that travel by sustained 82 flapping flight just like the nocturnal migrants and the reasons for the daily timing of 83 these migratory flights are much less clear. One interesting possibility is that the birds 84 combine their migratory flights with foraging in a fly-and-forage migration strategy, 85 which may be much more advantageous and widespread than generally assumed 86 (Strandberg and Alerstam, 2007). Still another factor that may contribute to explain 87 diurnal migration is the possibility of locating suitable stopover habitats and foraging 88 flocks during the actual flights, thus reducing the costs of search and settling after a 89 migratory flight. In addition, birds may change their travel schedules when passing 90 regions with poor foraging conditions. 91 In this contribution I will evaluate and illustrate in a very simplified and 92 schematic way some of the basic aspects that determine if nocturnal or diurnal flights, 93 or a combination of both, are optimal in bird migration. I will evaluate the optimal 94 solutions for time-selected migration (with minimization of total migration time as 95 optimality criterion) but the general patterns and conclusions are also valid for 96 energy-selected migration where the total energy costs for both flight transport and 97 existence during the migratory period are taken into account (cf. Hedenström and 98 Alerstam, 1997). As pointed out above, considerations for other criteria of minimal 99 flight transport costs or predation risks have been put forward in earlier studies 100 (Kerlinger and Moore, 1989).

101	The modern techniques of satellite tracking and GPS positioning make it
102	possible to analyse daily travel routines of individual birds throughout their migratory
103	journeys (Klaassen et al., 2008). This will open up new possibilities of evaluating the
104	variation in daily timing within individuals depending on the shifting environmental
105	conditions along the flight routes and also of comparing differences in travel
106	schedules between individuals (e.g. between individuals infected or not infected by
107	influenza virus; Van Gils et al., 2007), populations and species in a detailed way. The
108	aim of my paper is to draw attention to these new possibilities of advancing our
109	knowledge and understanding of the fascinating variation in daily travel schedules
110	among migrating birds by providing some initial predictions for tests of optimal daily
111	timing of bird migration.
112	
113	Four basic cases of optimal daily timing of bird migration
114	
115	Case 1: The fundamental advantage of flying by night.
115 116	Case 1: The fundamental advantage of flying by night.
115 116 117	Case 1: The fundamental advantage of flying by night. Let us consider a bird with diurnal foraging habits and assume the following changes
115 116 117 118	<i>Case 1: The fundamental advantage of flying by night.</i> Let us consider a bird with diurnal foraging habits and assume the following changes in its energy status depending on the main activities during the periods of night and
115 116 117 118 119	<i>Case 1: The fundamental advantage of flying by night.</i> Let us consider a bird with diurnal foraging habits and assume the following changes in its energy status depending on the main activities during the periods of night and day (together making up the full 24 hr day): a migratory flight step completed either
 115 116 117 118 119 120 	Case 1: The fundamental advantage of flying by night. Let us consider a bird with diurnal foraging habits and assume the following changes in its energy status depending on the main activities during the periods of night and day (together making up the full 24 hr day): a migratory flight step completed either during the night (nocturnal migration) or day (diurnal migration) is associated with
 115 116 117 118 119 120 121 	<i>Case 1: The fundamental advantage of flying by night.</i> Let us consider a bird with diurnal foraging habits and assume the following changes in its energy status depending on the main activities during the periods of night and day (together making up the full 24 hr day): a migratory flight step completed either during the night (nocturnal migration) or day (diurnal migration) is associated with energy consumption <i>F</i> , roosting during the night with energy consumption <i>N</i> and
 115 116 117 118 119 120 121 122 	<i>Case 1: The fundamental advantage of flying by night.</i> Let us consider a bird with diurnal foraging habits and assume the following changes in its energy status depending on the main activities during the periods of night and day (together making up the full 24 hr day): a migratory flight step completed either during the night (nocturnal migration) or day (diurnal migration) is associated with energy consumption <i>F</i> , roosting during the night with energy consumption <i>N</i> and foraging during daytime with net energy gain $D(F, N, D > 0 \text{ and } D > N)$. All else
 115 116 117 118 119 120 121 122 123 	Case 1: The fundamental advantage of flying by night. Let us consider a bird with diurnal foraging habits and assume the following changes in its energy status depending on the main activities during the periods of night and day (together making up the full 24 hr day): a migratory flight step completed either during the night (nocturnal migration) or day (diurnal migration) is associated with energy consumption <i>F</i> , roosting during the night with energy consumption <i>N</i> and foraging during daytime with net energy gain $D(F, N, D > 0$ and $D > N$). All else being equal this will bring a distinct advantage to a migrant performing its flight
 115 116 117 118 119 120 121 122 123 124 	<i>Case 1: The fundamental advantage of flying by night.</i> Let us consider a bird with diurnal foraging habits and assume the following changes in its energy status depending on the main activities during the periods of night and day (together making up the full 24 hr day): a migratory flight step completed either during the night (nocturnal migration) or day (diurnal migration) is associated with energy consumption <i>F</i> , roosting during the night with energy consumption <i>N</i> and foraging during daytime with net energy gain $D(F, N, D > 0 \text{ and } D > N)$. All else being equal this will bring a distinct advantage to a migrant performing its flight during the night because it can get a head start in foraging and energy gain on the

PTED USCRIE (어어크

126	performed during daytime the migrant will have to roost first during the succeeding
127	night before energy replenishment can start the next day. A nocturnal migrant will
128	also save time by departing immediately after a day of foraging and energy
129	deposition, while a diurnal migrant will spend a night of roosting before departure. As
130	a consequence, energy restoration until the next flight will last longer and migration
131	speed will thus be slower for diurnal compared to nocturnal migration (Fig. 1).
132	Assuming that the bird covers distance Y in a migratory flight step, speed of
133	migration for a diurnal (S_d) and nocturnal (S_n) migrant may be calculated by dividing
134	distance with the time of one flight and energy replenishment cycle. The time (in 24 h
135	days) of one such cycle will be $1+(F+N)/(D-N)$ for diurnal migration and $1+(F-N)/(D-N)$
136	D/(D - N) for nocturnal migration (Fig. 1), giving the following resulting migration
137	speeds:
138	2
139	$S_d = Y \cdot \frac{(D-N)}{(F+D)} \tag{1}$
140	
141	$S_n = Y \cdot \frac{(D-N)}{(F-N)} \tag{2}$

139
$$S_d = Y \cdot \frac{(D-N)}{(F+D)}$$

141
$$S_n = Y \cdot \frac{(D-N)}{(F-N)}$$
(2)

142

144

145
$$\frac{S_d}{S_n} = \frac{(F-N)}{(F+D)}$$
(3)

146

147 Under these simplified conditions nocturnal migration will always be faster and 148 thereby advantageous compared to diurnal migration. The relative gain in speed by

149	nocturnal migration will be largest for migrants with low relative energy consumption
150	in flight and large relative daily energy gain in foraging (Fig. 2).
151	The scaling exponent for energy expenditure in flapping flight (flight power) in
152	relation to body mass is expected to exceed the corresponding scaling exponent for
153	resting metabolism (Pennycuick, 1975, 1989; but see McWilliams et al., 2004). If this
154	holds true small birds will have more to gain by nocturnal flight than large birds. No
155	such general size-dependence seems to exist for energy deposition rate relative to
156	resting metabolic rate (Lindström, 1991, 2003) but there is important variation in
157	relative energy deposition rates between populations and species migrating under
158	different ecological conditions (Lindström, 2003).
159	The gain in migration speed by nocturnal compared to diurnal migration is
160	often expected to be substantial. For a case of $F=9$, $N=1$, $D=3$ (provisionally regarded
161	as a typical example case), S_n will exceed S_d by 50%, and for a migrant with
162	somewhat lower relative flight costs and higher relative foraging gain ($F=6$, $N=1$,
163	$D=4$) S_n will be twice the S_d (eq. 3).
164	Given this fundamental and strong advantage in time saving by nocturnal
165	migration, what possible factors are there to explain the regular occurrence of diurnal
166	migration among many species and in many situations?
167	
168	Case 2: Differential energy gain on first day(s) after flight.
169	
170	An important advantage associated with diurnal migration is the possibility for the
171	migrants to efficiently find suitable foraging habitats and to join foraging flocks
172	during their travel days (by combining flight with surveillance for suitable stopover

173 sites) so that they can achieve full rates of energy gain already on the first stopover

174	day. However, combining migration flight with surveillance for suitable
175	stopover/foraging places will probably be associated with a cost in terms of a less
176	direct and effective flight towards the migratory destination. In comparison, a
177	nocturnal migrant will often have to spend time after landing at a new site to localise
178	suitable and safe foraging conditions, resulting in a lost or reduced energy gain during
179	its first day(s) at a new stopover site (Alerstam and Lindström, 1990). In addition,
180	there may be a cost of sleep deprivation after the night's flight that may contribute to
181	reduce foraging efficiency during the first day (Swilch et al., 2002, Fuchs et al., 2006;
182	but see also Rattenborg et al., 2004).
183	Assuming that the energy gain on the first day after a flight step differs between
184	a diurnal (D_{1d}) and nocturnal (D_{1n}) migrant and that the larger gain in diurnal
185	migration $(D_{1d} > D_{1n})$ comes at a cost of reduced effective flight distance by a factor
186	of (1- <i>c</i>), where c ($0 \le c < 1$) is a cost associated with the surveillance for
187	foraging/stopover opportunities, gives the following migration speeds:
188	Ŏ

189
$$S_d = Y \cdot (1-c) \cdot \frac{(D-N)}{(F-D_{1d}+2D)}$$
(4)

190

$$S_n = Y \cdot \frac{(D-N)}{(F-D_{1n}+D-N)}$$
(5)

193
$$\frac{S_d}{S_n} = \frac{(1-c) \cdot (F - D_{1n} + D - N)}{(F - D_{1d} + 2D)}$$
(6)

On the second and succeeding foraging days at a stopover site the energy gain is assumed to be the same (D) for diurnal and nocturnal migrants (nocturnal migrants

197	are assumed to find suitable stopover conditions after local search and settling
198	behaviour during the first day after landing). The relationship in eq. 6 is illustrated for
199	an example case in Fig. 3, demonstrating that for migrants with significant
200	search/settling costs at a new stopover site leading to initial daily energy losses
201	exceeding those during roosting, diurnal migration may be the most favourable option
202	provided that the costs in terms of a reduced daily flight distance are not too high.
203	These conditions may hold true among e.g. species that forage in large flocks that are
204	widely scattered and hard to find.
205	Rather than travelling for a full day and stopping at a suitable site allowing
206	efficient foraging the next morning, as assumed above, diurnal migrants may achieve
207	equivalent migration speeds also by flying shorter times (and distances) between
208	suitable foraging sites that they locate during the flights. In fact, many diurnal
209	migrants fly mainly during morning hours, using the afternoon for foraging (Kerlinger
210	and Moore, 1989, Newton, 2008). If the afternoon foraging will not fully compensate
211	for the energy loss during the preceding morning flight this may lead to a pattern of
212	migration waves, where the birds after a number of migration days will have to spend
213	some full days for replenishing their exhausted fuel reserves and thus getting prepared
214	for a new series of migration days (Newton, 2008).
215	Equation 6 and Fig. 3 shows that there must be a pronounced difference in
216	settling costs in strong favour of diurnal migration to outweigh the fundamental
217	advantage of nocturnal migration according to Case 1.
218	
219	Case 3: Reduced energy losses during diurnal flights.
220	

By travelling during daytime birds can reduce their energy losses during the flight in
two main ways, (1) by exploiting free energy from the atmosphere in soaring flight,
which is much less energy-demanding than sustained flapping flight and (2) by partly
(or wholly) offsetting the flight costs by food intake using a strategy of fly-and-forage
migration (birds with diurnal foraging habits).
Favourable conditions for thermal soaring migration, as used by e.g. raptors,
storks and cranes, prevail over land during the day. Such soaring flight is associated
with a marked reduction in energy consumption, particularly for large birds,
compared to flapping flight which must be used when there are no thermals, during
the night and over the sea (Pennycuick, 1975, 1989, Kerlinger, 1989).
Birds that fly extensively during their foraging, e.g. when hunting on their
wings for insect of bird prey, or making search flights to locate food on the ground or
in water, may combine foraging with covering migration distance. The food intake
will help to offset the net energy expenditure during travelling. Rather little is known
about the importance of such fly-and-forage migration, but it may well be a highly
profitable and widely used strategy among many bird species (Strandberg and
Alerstam, 2007, Klaassen et al., 2008).
These two main ways of reducing energy losses during diurnal flights are not
mutually exclusive but may well be combined, as in the osprey Pandion haliaetus and
other raptors (Strandberg and Alerstam, 2007). The advantage of fly-and-forage
migration may also be combined with the related advantage of locating sites and
habitats for stopover as evaluated above (Case 2). There is no sharp division line
between Cases 2 and 3 for situations where localisation of stopover/foraging sites is
very efficient during diurnal migratory flights, permitting the birds to travel by short
hops between successive foraging sites during a day.

CCEPTED 6-

246	While assuming that energy costs for diurnal flight will be reduced by a factor
247	(1- <i>b</i>), where b (0 < $b \le 1$) is the relative benefit associated with soaring flight and/or
248	fly-and-forage migration, this benefit will usually come with a cost of a reduced daily
249	travel distance. Hence, the distance of a diurnal flight step is assumed to be reduced
250	by a factor (1- <i>c</i>), where c (0 < $c \le 1$) is the relative cost of a reduced effective travel
251	speed (e.g. because cross-country soaring flight is often slower than sustained
252	flapping flight and because effective progress towards the migratory destination will
253	be reduced when flight is combined with searching/foraging). With these benefits and
254	costs the speed of diurnal migration becomes:
255	G
256	$S_d = Y \cdot (1-c) \cdot \frac{(D-N)}{\left[F \cdot (1-b) + D\right]} \tag{7}$
257	

255

256
$$S_d = Y \cdot (1-c) \cdot \frac{(D-N)}{[F \cdot (1-b) + D]}$$
 (7)

257

The corresponding speed of nocturnal migration remains the same as in eq. 2. The 258 259 speed ratio thus becomes:

260

261
$$\frac{S_d}{S_n} = \frac{(1-c)\cdot(F-N)}{[F\cdot(1-b)+D]}$$
(8)

262

263 This ratio is illustrated in the parameter space of b and c in Fig. 4. As long as 264 costs (c) are not too large the advantages of reduced energy losses during flight may 265 make diurnal migration clearly more favourable than nocturnal migration for birds 266 that can exploit these advantages (in the illustrated example, diurnal migration of a 267 high benefit – low cost character may become more than twice as fast as nocturnal 268 migration).

269	Predicted size-dependent reductions of flight costs in soaring compared to
270	flapping flight are sufficient to explain the preference among many large birds for
271	diurnal migration by thermal soaring flight (Hedenström, 1993, Alerstam, 2000). The
272	fly-and-forage migration strategy may also be a crucial factor to explain diurnal
273	migration among many species, but studies of benefits and costs of this strategy are
274	needed for critical testing of this possibility (Klaassen et al., 2008). The specific
275	optimal behaviour for maximizing migration speed will depend on the trade-off
276	function between benefits and costs and where this function is associated with
277	maximum migration speed in the parameter space of b and c (cf. Alerstam and
278	Strandberg, 2007).
279	5
280	Case 4: Migration across regions with poor conditions for energy deposition.
281	
282	Flying both by day and night will lead to intermediate total migration speeds
283	(intermediate between S_d and S_n) for the cases considered above when energy
284	deposition rate is assumed to be the same throughout the journey. Hence, combined
285	nocturnal and diurnal migration will never be most beneficial in these cases.
286	However, this changes if we consider cases where birds pass regions with
287	relatively poor conditions for energy deposition. In such cases we expect the birds to
288	maximize their total migration speed by depositing extra energy stores in richer
289	regions (where energy deposition rate is faster) before the passage of the poor region
290	(and by replenishing exhausted reserves in richer regions after the passage) Hence
291	birds will be expected to incur a net energy loss during the passage of a poor region

extreme case of an ecological barrier where birds can find no food, they must ofcourse store all necessary fuel before the passage.

295 Assuming a net energy deposition rate *B* during a full stopover day and night 296 before the passage of the poor region, where *B* exceeds the corresponding net 297 deposition rate in the poor region (B > D-N), we may compare migration speeds 298 between three different strategies across the poor region -(1) diurnal migration 299 (travelling during the day and resting during the night), (2) nocturnal migration 300 (travelling during the night and foraging, although with reduced gain rate, during the 301 day) and (3) combined diurnal and nocturnal migration (travelling during both day 302 and night). 303 The resulting migration speed is calculated as the distance covered during a 24 304 h period (day + night) divided the time of this period plus the time required for

305 depositing the net energy loss at deposition rate *B* before the passage of the poor

region. For diurnal migration the daily distance will be Y(1-c) and the associated time

1+[F(1-b)+N]/B, for nocturnal migration the distance will be Y and the time 1+(F-

308 D)/B, and for combined diurnal/nocturnal migration the distance will be Y(2-c) and

309 the time 1+F(2-b)/B. This gives the following total migration speeds:

310

311
$$S_d = Y \cdot (1-c) \cdot \frac{B}{\left[F \cdot (1-b) + N + B\right]}$$
(9)

312

313
$$S_n = Y \cdot \frac{B}{(F - D + B)}$$
(10)

315
$$S_c = Y \cdot (2-c) \cdot \frac{B}{\left[F \cdot (2-b) + B\right]}$$
(11)

316

317
$$\frac{S_d}{S_c} = \frac{(1-c) \cdot [F \cdot (2-b) + B]}{(2-c) \cdot [F \cdot (1-b) + N + B]}$$
(12)

318

319
$$\frac{S_d}{S_n} = \frac{(1-c) \cdot (F-D+B)}{[F \cdot (1-b) + N+B]}$$
(13)

320

321
$$\frac{S_c}{S_n} = \frac{(2-c) \cdot (F-D+B)}{[F \cdot (2-b) + B]}$$
(14)

322

323 S_c denotes the total speed of combined diurnal and nocturnal migration. 324 Depending on the degree of impoverishment of the region passed a strategy of 325 combined diurnal and nocturnal migration will be most favourable in a larger or 326 smaller part of the parameter space of b and c (Fig. 5). For ecological barriers devoid 327 of food, where birds will incur an energy loss if stopping to rest during the day (D = -328 N), the strategy of combined diurnal and nocturnal migration will be favourable under 329 a wide range of conditions (Fig. 5a). However, purely diurnal migration may still be a 330 favourable strategy for crossing such a barrier if benefits associated with e.g. thermal 331 soaring migration remain sufficiently large and costs remain small. These general 332 conclusions about the favourability of combined diurnal and nocturnal migration hold 333 not only for the criterion of a maximal migration speed but also for minimal total 334 energy costs for crossing the ecological barrier. 335 It is interesting to note that combined diurnal and nocturnal migration may be most 336 favourable, albeit under a more restricted range of conditions, also for birds passing a 337 "soft barrier" where foraging and energy deposition are still possible although at a

reduced gain rate (Fig. 5b). Such situations of soft barriers probably apply to many

339	birds like shorebirds, seabirds, geese and others that travel long distances between
340	particularly rich staging sites, but also forage and refuel during the migration across
341	intervening regions. In such situations we may expect to find cases of combined
342	diurnal and nocturnal migration (as well as cases of pure diurnal or nocturnal
343	migration; Fig. 5b).
344	
345	Discussion
346	
347	The first case considered above showed that nocturnal migration, by allowing
348	maximum time for foraging, is expected to clearly surpass diurnal migration in

resulting migration speed. Adding to this picture the advantages of flying by night
rather than by day because of atmospheric conditions (Kerlinger and Moore, 1989), it
seems that the general advantages of nocturnal migration are so pronounced and
fundamental that the traditional question "why fly by night?" (e.g. Brewster, 1886,
Kerlinger and Moore, 1989, Lank, 1989) should be replaced by the more puzzling
"why fly by day?".

The remaining three cases in the above treatment help to identify aspects that promote diurnal migration. One such factor is the benefit of an efficient start of foraging after a daytime migratory flight in comparison with the probable costs of search and settling after a nocturnal flight, possibly aggravated by the effects of sleep deprivation (Swilch et al., 2002, Rattenborg et al., 2004, Fuchs et al., 2006). Of major importance to explain diurnal migration is the possibility for the birds

- to strongly reduce their flight costs by travelling during daytime. This is well
- 362 understood for birds that use thermal soaring migration (Pennycuick, 1975, 1989,
- 363 Kerlinger, 1989, Hedenström, 1993, Alerstam, 2000) but the possibilities of reducing

net costs for flight by a combined fly-and-forage strategy has attracted much less
attention. The beneficial effects of reduced energy losses during daytime flights will
in principle be the same irrespective if the reductions derive from exploitation of
thermal air or from food intake during the flights.
Another aspect that has attracted little attention is the fact that migration across

369 regions with relatively poor foraging conditions is expected to be best performed by 370 flights during both nights and days, with the migrants preparing for these passages by 371 accumulating extra energy reserves before reaching the impoverished regions. Such 372 behaviour may be advantageous not only during the crossing of severe barriers almost 373 devoid of food (e.g. deserts) but also of regions where foraging conditions are only 374 mildly restricted ("soft barriers"). This is a potentially important explanation for the 375 flexible daily flight schedules among e.g. shorebirds and waterfowl that often migrate 376 between restricted key sites of particularly rich food abundance (e.g. wetlands, tidal 377 mudflats; e.g. Van Gils et al., 2005). Tidal variation has a strong influence on 378 foraging conditions of coastal birds and may constitute another important factor that 379 explains flexible day/night migration among these birds as demonstrated by Lank 380 (1989). However, Piersma et al. (1990) showed that the relationship bewteen tides and 381 migratory departures of coastal shorebirds is less consistent when comparing different 382 stopover sites and species than the more general habit among shorebirds to depart 383 mainly during the evening hours before or at sunset. Flying by both day and night is 384 of course also required among birds making long non-stop flights that last more than a 385 single night, like land birds crossing vast expanses of sea, e.g. across the Gulf of 386 Mexico, West Atlantic, Mediterranean Sea and Pacific Ocean (Alerstam, 2001, Gill et 387 al., 2005).

388	According to these results we expect individual birds to change their daily
389	travel schedules when environmental conditions change along the routes, which may
390	be tested by analysing satellite tracking data from different regions (Klaassen et al.,
391	2008). More specifically, we predict that diurnal migrants change to nocturnal flights
392	when travelling across regions where they cannot benefit from the gains associated
393	with fly-and-forage and/or thermal soaring migration. When travelling across barriers
394	and suboptimal foraging habitats they are expected to extend their schedules to
395	include both nocturnal and diurnal flights. Likewise, nocturnal migrants are predicted
396	to use also diurnal flights when crossing severe or soft barriers.
397	Huge numbers of birds in the Palaearctic-African migration systems fly across
398	the Sahara Desert, a severe barrier extending over 1500-2000 km (Moreau, 1972).
399	The desert presumably has little to offer in the form of food for the migrants and we
400	would therefore predict that they will travel by flights during both night and day.
401	However, available observations are contradictory to this expectation providing
402	examples of both diurnal and nocturnal migrants maintaining their characteristic diel
403	flight habits during this crossing.
404	Ospreys enjoy the benefit of both thermal soaring and fly-and-forage
405	migration by travelling during daytime across Europe. They keep to their diurnal
406	flight times, mainly between 09 and 17 hrs, also during the Sahara crossing when they
407	fly higher and without interruption compared with their behaviour in Europe
408	(Klaassen et al. 2008). This reflects the fact that they do not forage much during their
409	Sahara crossing, but the gain obtained from thermal soaring migration in the desert is
410	still sufficient to explain their strict diurnal flight habits during the desert crossing
411	(Hedenström, 1993, Alerstam, 2000).

412	The much smaller hobby Falco subbuteo is less dependent on thermal soaring
413	than larger raptors. A major reason for its diurnal migration habits, starting already at
414	dawn, is presumably the use of fly-and-forage migration, combined with some
415	opportunistic soaring in thermals. Surprisingly, the hobbies seem to have a similar
416	daily flight routine during their Sahara crossing as during their travels in Europe and
417	tropical Africa south of Sahara (Strandberg et al., in prep.). The benefit from thermal
418	soaring in the desert is probably not a sufficient explanation since these small falcons
419	start their daily migration very early, before the development of thermals, also in
420	Sahara. Perhaps there is enough of insect or bird prey to make fly-and-forage
421	migration a profitable strategy for these aerial hunters also during the desert crossing
422	(Strandberg et al., in prep.)?
423	The majority of nocturnal passerine migrants seem to cross the Sahara primarily
424	by nocturnal flights, landing and resting (without foraging) in the shade in the desert
425	during daytime (Bairlein, 1985, 1988, Biebach et al., 1986, 2000, Schmaljohann et al.,
426	2007a). The risk of excessive evaporative water loss during daytime flights over the
427	desert is assumed to be the reason for this behaviour (Biebach, 1990, Carmi et al.,
428	1992, Klaassen, 1995). There are even indications that some diurnal passerine
429	migrants, like the yellow wagtail Motacilla flava, change to adopt this strategy of
430	intermittent nocturnal migration for the desert passage (Biebach et al., 2000). Still,
431	radar studies demonstrate that a significant proportion of the passerine migrants
432	continue their flights also during the day and this proportion is larger in spring when
433	migration takes place at higher and cooler altitudes than in autumn (Schmaljohann et
434	al., 2007a, 2007b). Densities of such daytime passerine migration were positively
435	correlated with favourable tailwinds, and it was suggested that the nocturnal migrants

prolonged their flights into daytime to exploit opportunities of particularly beneficialwind conditions (Schmaljohann et al., 2007b).

438 Such opportunistic exploitation of extra favourable winds (or other favourable 439 conditions that are unlikely to be encountered again during the migratory journey) 440 constitutes another possible explanation for the combination of both diurnal and 441 nocturnal flights (besides the barrier situation of Case 4 above). However, if and to 442 what extent nocturnal migrants prolong their flights into the day and diurnal migrants 443 prolong their flights into the night during extra favourable winds are poorly known. It 444 also remains to be evaluated how superior tailwinds must be on these occasions of 445 prolonged flights in relation to expected tailwinds during future migratory flights, for 446 such opportunistic behaviour of flight prolongation to evolve.

447 The simplified and schematic evaluations in this paper show some basic 448 features that determine how optimal behaviour changes between nocturnal and diurnal 449 migration depending on energy gain in foraging and energy costs in flight. This 450 treatment may be useful as a starting-point for generating predictions about migration 451 schedules, although additional factors, like e.g. water balance or opportunistic flight 452 prolongation, need to be considered depending on the environmental situation, as 453 shown by the above discussion about migration across the Sahara Desert. This general 454 approach can be used to predict daily travel routines for interesting special cases, e.g. 455 for seabirds that forage mainly during the night versus those foraging during the day, 456 for full moon nights that may allow foraging by some diurnal foragers, for shorebirds 457 that can feed only during daytime at low tide in comparison with shorebirds that feed 458 both during the day and night, etc.

One should be aware that, in this schematic evaluation, the assumptions aboutdaily timing of migration are much over-simplified. It is to be expected that there

461	exists a wide spectrum of subtle differences in timing and duration of flights, as well
462	as in the variability of these traits, between different species and ecological
463	conditions. However, our knowledge and understanding about these differences are
464	still rudimentary. This may rapidly change with the new possibilities of revealing
465	detailed daily travel schedules for individual birds based on satellite tracking and GPS
466	techniques. It is my hope that the present evaluation will help to draw attention to the
467	fascinating challenge of documenting and understanding the variable daily travel
468	schedules among migrating animals. Such knowledge about the principles for daily
469	travel timing is important for a general understanding of evolutionary possibilities and
470	limitations in animal migration.
471	5
472	Acknowledgements
473	2
474	This work was supported by grants from the Swedish Research Council. I am very
475	grateful for valuable help and suggestions from Johan Bäckman and from two
476	anonymous referees.
477	
478	References
479	D.C.
480	Alerstam, T., 2000. Bird migration performance on the basis of flight mechanics and
481	trigonometry. In: Domenici, P., Blake, R.W. (Eds.), Biomechanics in Animal

- 482 Behaviour. BIOS Scientific Publishers, Oxford, pp 105-124.
- 483 Alerstam, T. 2001. Detours in bird migration. J. Theor. Biol. 209, 319-331.

- 484 Alerstam, T., Lindström, Å. 1990. Optimal bird migration: The relative importance of
- 485 time, energy, and safety. In: Gwinner, E. (Ed.), Bird migration. Physiology and
- 486 Ecophysiology. Springer-Verlag, Berlin, pp 331-351.
- 487 Bairlein, F. 1985. Body weights and fat deposition of Palaearctic passerine migrants
- 488 in the central Sahara. Oecologia 66, 141-146.
- 489 Bairlein, F. 1988. How do migratory songbirds cross the Sahara? Trends Ecol. Evol.
- 490 3, 191-194.
- 491 Biebach, H. 1990. Strategies of trans-Sahara migrants. In: Gwinner, E. (Ed.), Bird
- 492 migration. Physiology and Ecophysiology. Springer-Verlag, Berlin, pp 352-367.
- 493 Biebach, H., Friedrich, W., Heine, G. 1986. Interaction of body-mass, fat, foraging
- 494 and stopover period in trans-Sahara migrating passerine birds. Oecologia 69, 370-379.
- 495 Biebach, H., Biebach, I., Friedrich, W., Heine, G., Partecke, J., Schmidl, D. 2000.
- 496 Strategies of passerine migration across the Mediterranean Sea and the Sahara Desert:
- 497 a radar study. Ibis 142, 623-634.
- 498 Brewster, W. 1886. Bird migration. Memoirs Nuttall Ornithological Club 1, Nuttall
- 499 Ornithological Club, Cambridge, Massachusetts.
- 500 Carmi, N., Pinshow, B., Porter, W. P., Jaeger, J. 1992. Water and energy limitations
- 501 on flight duration in small migrating birds. Auk 109, 268-276.
- 502 Fuchs, T., Haney, A., Jechura, T. J., Moore, F. R., Bingman, V. P. 2006. Daytime
- 503 naps in night-migrating birds: behavioural adaptations to seasonal sleep deprivation in
- the Swaison's thrush, *Catharus ustulatus*. Anim. Behav. 72, 951-958.
- 505 Gill, Jr. R. E., Piersma, T., Hufford, G., Servranckx, R., Riegen, A. 2005. Crossing
- 506 the ultimate ecological barrier: Evidence for an 11 000-km-long nonstop flight from

507	Alaska to New Zealand and eastern Australia by bar-tailed godwits. Condor 107, 1-
508	20.

- 509 Hedenström, A. 1993. Migration by soaring or flapping flight in birds: the relative
- 510 importance of energy cost and speed. Phil. Trans. R. Soc. Lond. B 342, 353-361.
- 511 Hedenström, A., Alerstam, T., 1997. Optimum fuel loads in migratory birds:
- 512 distinguishing between time and energy minimization. J. Theor. Biol. 189, 227-234.
- 513 Kerlinger, P. 1989. Flight strategies of migrating hawks. University of Chicago Press,
- 514 Chicago.
- 515 Kerlinger, P., Moore, F. R., 1989. Atmospheric structure and avian migration. In:
- 516 Power, D. M. (Ed.), Current Ornithology Volume 6. Plenum Press, New York, pp.
- 517 109-142.
- 518 Klaassen, M. 1995. Water and energy limitations on flight range. Auk 112, 260-262.
- 519 Klaassen, R. H. G., Strandberg, R., Hake, M., Alerstam, T., 2008. Flexibility in daily
- 520 travel routines causes regional variation in bird migration speed. Behav. Ecol.
- 521 Sociobiol. 62, 1427-1432.
- 522 Lank, D. B., 1989. Why fly by night? Inferences from tidally-induced migratory
- 523 departures of sandpipers. J. Field Ornithol. 60, 154-161.
- 524 Lindström, Å. 1991. Maximum fat deposition rates in migrating birds. Ornis Scand.
- 525 22, 12-19.
- 526 Lindström, Å., 2003. Fuel deposition rates in migrating birds: causes, constraints and
- 527 consequences. In: Berthold, P., Gwinner, E., Sonnenschein, E. (Eds.), Avian
- 528 Migration. Springer-Verlag, Berlin, pp 307-320.

- 529 McWilliams, S. R., Guglielmo, C., Pierce, B., Klaassen, M. 2004. Flying, fasting, and
- 530 feeding in birds during migration: a nutritional and physiological ecology perspective.
- 531 J. Avian Biol. 35, 377-393.
- 532 Moreau, R. E. G. 1972. The Palaearctic-African bird migration systems. Academic
- 533 Press, London.
- 534 Newton, I. 2008. The migration ecology of birds. Elsevier, London.
- 535 Pennycuick, C. J. 1975. Mechanics of flight. In: Farner, D. S., King, J. R. (Eds.),
- 536 Avian Biology Volume 5. Academic Press, New York, pp. 1-75.
- 537 Pennycuick, C. J., 1989. Bird Flight Performance. Oxford University Press, Oxford.
- 538 Piersma, T., Zwarts, L., Bruggemann, J. H. 1990. Behavioural aspects of the departure
- 539 of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal
- 540 timing. Ardea 78, 157-184.
- 541 Rattenborg, N. C., Mandt, B. H., Obermeyer, W. H., Winsauer, P. J., Huber, R.,
- 542 Wikelski, M., Benca, R. M. 2004. Migratory sleeplessness in the white-crowned
- 543 sparrow (Zonotrichia leucophrys gambelli). PLoS Biology 2, 924-936.
- 544 Schmaljohann, H., Liechti, F., Bruderer, B., 2007a. Songbird migration across the
- 545 Sahara: the non-stop hypothesis rejected! Proc. R. Soc. B 274, 735-739.
- 546 Schmaljohann, H., Liechti, F., Bruderer, B., 2007b. Daytime passerine migrants over
- 547 the Sahara are these diurnal migrants or prolonged flights of nocturnal migrants?
- 548 Ostrich 78, 357-362.
- 549 Strandberg, R., Alerstam, T., 2007. The strategy of fly-and-forage migration,
- 550 illustrated for the osprey (*Pandion haliaetus*). Behav. Ecol. Sociobiol., 1865-1875.

- 551 Swilch, R., Piersma, T., Holmgren, N. M. A., Jenni, L. 2002. Do migratory birds need
- 552 a nap after a long non-stop flight? Ardea 90, 149-154.
- 553 Van Gils, J. A., Battley, P.F., Piersma, T., Drent, R. 2005. Reinterpretation of gizzard
- 554 sizes of red knots world-wide emphasises overriding importance of prey quality at
- 555 migratory stopover sites. Proc. R. Soc. B 272, 2609-2618.
- 556 Van Gils, J. A, Munster, V. J., Radersma, R., Liefhebber, D., Fouchier, R. A. M.,
- sin Accepteo 557 Klaassen, M. 2007. Hampered foraging and migratory performance in swans infected
- 558 with low-pathogenic avian influenza A virus. PLoS ONE 2, e184.
- 559

559	FIGURE LEGENDS
560	
561	Fig. 1. Change in energy level during one cycle of migratory flight and energy
562	restoration for nocturnal (solid line) and diurnal migration (broken line). This cycle
563	will be shorter for nocturnal migration because energy deposition can take place on
564	the day immediately after the nocturnal flight and also on the day immediately prior to
565	the next nocturnal flight departure. In contrast, diurnal migrants have to spend the
566	nights resting after and prior to the daily flights. The graph illustrates a case of
567	relative energy changes $F = 9$, $N = 1$, $D = 3$ (see text).
568	
569	Fig. 2. Ratio of speed of nocturnal versus diurnal migration in relation to
570	relative energy consumption in flight (F/N) and relative energy gain during daytime
571	foraging (D/N) . Speed ratios in the range 1.25-3 are indicated by solid lines (based on
572	eq. 3, see text).
573	Ó
574	Fig. 3. Conditions of energy change during the first day after a nocturnal flight
575	(D_{In}) and cost of reduced distance during diurnal flight (c) making diurnal or
576	nocturnal migration the most favourable strategy. The graph illustrates a case of
577	relative energy changes $F = 9$, $N = 1$, $D = 3$, $D_{1d} = 3$ (see text). Diurnal migration will
578	be most favourable if flights during the night are associated with energy losses during
579	the succeeding day (search/settling at a new stopover site) and if diurnal migration
580	costs <i>c</i> are not too large.
581	
582	Fig. 4. Ratio of speed in diurnal versus nocturnal migration in relation to
583	benefits (b) and costs (c) in diurnal migration. Benefits (b) refer to the proportional

584 savings of energy costs for diurnal flights associated with thermal soaring flight 585 and/or fly-and-forage migration and costs (c) to the relative reduction in daily travel 586 distance in diurnal migration. Speed ratios are indicated by solid lines at intervals of 587 0.25 (ratios given at top of graph) with speed ratio 1 shown by a bold line, separating 588 conditions where diurnal and nocturnal migration are most favourable. The graph 589 illustrates a case of relative energy changes F = 9, N = 1, D = 3 (see text). 590 Fig. 5. Conditions of benefits (b) and costs (c) in diurnal migration promoting 591 592 strategies of diurnal or nocturnal migration or a combined diurnal and nocturnal 593 migration for migration across regions where rates of energy deposition are reduced. 594 (a) Migration across an ecological barrier completely devoid of food (energy change 595 during day equals resting costs; D = -1). (b) Migration across a "soft barrier" with reduced rate of energy deposition during the day (D = 2). Calculations refer to a case 596 597 with relative energy changes F = 9, N = 1 and with net energy gain B = 2 (during full

598 stopover day and night) before the passage of the poor region (see text).

Accer

