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Large-scale pattern formation is a frequently occurring phenomenon in biological organisms, and several local interaction rules for generating such patterns have been suggested.

A mechanism driven by feedback between the plant hormone auxin and its polarly localized transport mediator PINFORMED1 has been proposed as a model for phyllotactic patterns in plants. It has been shown to agree with current biological experiments at a molecular level as well as with respect to the resulting patterns. We present a thorough investigation of variants of models based on auxin-regulated polarized transport and use analytical and numerical tools to derive requirements for these models to drive spontaneous pattern formation. We find that auxin concentrations in neighboring cells can feed back either on exocytosis or endocytosis and still produce patterns. In agreement with mutant experiments, the active cellular efflux is shown to be more important for pattern capabilities as compared to active influx. We also find that the feedback must originate from neighboring cells rather than from neighboring walls and that intracellular competition for the transport mediator is required for patterning. The importance of model parameters is investigated, especially regarding robustness to perturbations of experimentally estimated parameter values. Finally, the regulated transport mechanism is shown to be able to generate Turing patterns of various types.

A c c e p t e d m a n u s c r i p t 1 Introduction

In nature, spontaneous pattern formation is a common and important result from dynamic interactions. Several mechanisms have been proposed for generating regular patterns where the reaction-diffusion mechanism has proven to be capable of generating patterns of different forms such as peaks and stripes. The idea of reactions of morphogens within cells combined with different molecular diffusion rates as a main regulator of biological development was introduced by Turing already in the 1950s [Turing, 1952]. Gierer and Meinhardt also discussed the mechanism in terms of local activation and long-range inhibition [START_REF] Gierer | A theory of biological pattern formation[END_REF].

One of the most studied and intriguing patterns found in nature is the regular placement of plant organs resulting in phyllotactic patterns. Leaf and flower primordia are initiated at the flank of the shoot leading to patterns of different whorled or spiral symmetries. Especially the spiral pattern has been of interest in many studies for hundreds of years with its connection to the golden mean and the Fibonacci sequence [START_REF] Adler | A history of the study of phyllotaxis[END_REF]Barabé, 1998]. Mathematical analysis has shown that these patterns can naturally occur as a consequence of initiation on a ring, continuous spatial growth of the system, and a regular spacing mechanism [START_REF] Douady | Phyllotaxis as a physical selforganized growth process[END_REF], Mitchison, 1977, Smith et al., 2006a]. Several mechanisms have been proposed for the spacing mechanism, using mechanical as well as molecular arguments. A purely mechanical argument relies on the outer layer of cells being seen as a two-dimensional continuous sheet, which can buckle in a phyllotactic pattern due to compressive stresses [Green et al., 1998, Shipman andNewell, 2005]. It represents a global view where an optimal configuration results in patterning of the static shoot (or other organ). The molecular view mostly has included growth and an inhibition from earlier primordia where for example reaction-diffusion mechanisms have been proposed [START_REF] Chapman | A diffusion model of phyllotaxis[END_REF],

A c c e p t e d m a n u s c r i p t Meinhardt, 1982]. Recently, also combinations of molecular and mechanical mechanisms have been investigated in a continuous model [START_REF] Newell | Phyllotaxis: cooperation and competition between mechanical and biochemical processes[END_REF].

Experimental data have highlighted the importance of the plant hormone auxin in the initiation of new primordia, as its concentration peaks at the positions where new primordia form [Benkova et al., 2003, Heisler et al., 2005, Smith et al., 2006b]. Reducing the auxin transport leads to failure of phyllotaxis, which pinpoints the importance of transport in the process. Especially the PINFORMED1 (PIN1) membrane protein, which mediates cellular efflux of auxin, is integral in the patterning process since its loss-of-function mutant displays no organs in the inflorescence [START_REF] Okada | Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation[END_REF], Reinhardt et al., 2000].

PIN1, which cycles between cytosol and membrane compartments [START_REF] Geldner | PIN and AUX/LAX proteins: their role in auxin accumulation[END_REF],

is polarized towards sites of new primordia and away from older, and hence can transport auxin against a concentration gradient [Barbier de Ruille et al., 2006, Heisler et al., 2005, Reinhardt et al., 2003]. Single mutants of auxin influx mediators have shown less phyllotactic phenotypes, and no apparent polarization is seen in the shoot cells. Recently, quadruple mutants of the AUX1/LAX influx mediators showed irregularities in the phyllotactic pattern, although the organ formation was not completely stopped [Bainbridge et al., 2008].

The underlying mechanism for creating polarized PIN1 cycling is to a large extent unknown, and it is still unsettled whether a single mechanism is acting throughout different plant tissues. Interestingly, a hypothesis with auxin itself feeding back to the PIN1 polarization can result in patterning dynamics. If auxin in neighboring cells attracts PIN1

to the cell membrane in respective direction, it can be enough for generating a pattern with a parameter dependent wavelength, i.e. one of the requirements for phyllotactic patterning [START_REF] Jönsson | Proc. Natl. Acad. Sci. USA[END_REF], Smith et al., 2006b]. In [START_REF] Jönsson | Proc. Natl. Acad. Sci. USA[END_REF], it was shown that the relative strengths of the active PIN1 mediated transport and the passive diffusion-like transport is a main determinant of the possibility of patterning and
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of the wavelength of the patterns. Another proposed mechanism for generating patterns in plants is that of auxin-fluxes feeding back to active efflux, which mainly have been used to describe venation, e.g. [START_REF] Feugier | Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and carrier proteins[END_REF], Fujita and Mochizuki, 2006, Mitchison, 1980, Sachs, 1981].

In this work we extend the analysis of the auxin-concentration feedback model, investigating more detailed requirements for pattern formation from this regulated transport mechanism. We pursue the relation between the feedback mechanism and transport mechanisms, where also cellular influx is included. We demonstrate the mechanism's generality with dynamics very similar to reaction-diffusion models, where patterns other than peaks can be formed. We also thoroughly investigate the patterning behavior in the parameter region surrounding experimentally estimated values, and especially investigate its robustness to single and multiple parameter perturbations.

Materials and Methods

The Model

Although the model presented in this paper may be involved in various pattern mechanisms in nature, it was initially inspired by plant phyllotaxis. Hence, the model is introduced in this context, and based on experimental knowledge of auxin transport from earlier work. The main mechanisms in the model are the passive and active auxin transport, and the mechanisms for localizing transport mediators on cell-wall membranes.

We also introduce generalizations and simplifications of the model used in our analysis and simulations.

A c c e p t e d m a n u s c r i p t

Auxin transport

In plant phyllotaxis, auxin is assumed to act as a morphogen, directed to the sites of primordia formation [Benkova et al., 2003, Heisler et al., 2005, Reinhardt et al., 2003]. The auxin transport model is based on the chemiosmotic theory [Rubery andSheldrake, 1974, Raven, 1975] where auxin dissociation leads to an anion (a -) and a protonated (aH) form (Fig. 1A). The fractions of auxin in its two states are assumed to be in equilibrium in each compartment, where different pH values in the cytosol and wall compartments result in the fractions f cell a -, f cell aH , f wall a -, and f wall aH . While the protonated form of auxin can passively cross the cell-wall membrane, the anion cannot and it is actively transported across the membrane mediated by PIN1 for cell efflux, and AUX1 for cell influx. The passive transport is assumed to be unsaturated, while the PIN1/AUX1 mediated active transport can be saturated. The auxin flux from a cell compartment (i) to a wall compartment (ij) is described by

J a,i→ij =p aH (f cell aH a i -f wall aH a ij ) + p PIN W ij P ij N(Φ) f cell a -a i K P + f cell a -a i -N(-Φ) f wall a -a ij K P + f wall a -a ij + p AUX W ij A ij N(-Φ) f cell a -a i K A + f cell a -a i -N(Φ) f wall a -a ij K A + f wall a -a ij , (1) 
where a i is the concentration of auxin in the cytosol compartment in cell i and a ij is the concentration of auxin in the wall compartment located between cells i and j [Kramer, 2004, Swarup et al., 2005, Jönsson et al., 2006, Heisler and Jönsson, 2006]. P ij and A ij are the surface densities of PIN1 and AUX1 on the membrane compartment in cell i facing cell j. p aH , p PIN , and p AUX are permeabilities for the three different means of transport. K P and K A are constants setting the levels of saturation. W ij is the ratio between the area of the membrane in cell compartment i facing wall compartment ij and the volume of cell compartment i.
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N(Φ) is defined as

N(Φ) ≡ Φe Φ e Φ -1 , where Φ = zV F RT , (2) 
and represents the electrochemical factor for transport across a membrane potential V where z is the valence of the ion, R is the gas constant, F is Faraday's constant, and T is the temperature. Since the ratio N(Φ)/N (-Φ) is large, PIN1 (AUX1) acts as an efflux (influx) transport mediator. In addition to the cell-wall transport apoplastic (wall-wall) diffusion also occurs, although we disregard this in our model (see Section 2.2).

We will do a generalized analysis and will not restrict ourselves to Eq. 1 but rather consider a general functional form of the mediated auxin transport described by

J a,i→ij = p aH (f cell aH a i -f wall aH a ij ) + p PIN W ij P ij N(Φ)h(a i ) -p AUX W ij A ij N(Φ)h A (a ij ), (3) 
where h(a i ) is an auxin-dependent function for mediated efflux and h A (a ij ) is the corresponding function for influx. Note that we disregard PIN1-mediated transport into the cells and AUX1-mediated transport out of the cells.

Protein cycling

In the model the proteins mediating auxin transport are assumed to cycle between cytosol and membrane compartments (Fig. 1B, [START_REF] Geldner | PIN and AUX/LAX proteins: their role in auxin accumulation[END_REF]). The influx mediator AUX1 is assumed to localize symmetrically on all membranes while the membrane localization of the efflux mediator PIN1 is dependent on auxin in neighboring cells. In accordance with previous models [START_REF] Heisler | Modeling auxin transport and plant development[END_REF], cycling of PIN1 and AUX1
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between the cytosol compartment i and the membrane compartment ij is described by

J A,i→ij = k A1 W -1 ij A i -k A2 A ij , (4) 
J P,i→ij = k P1 W -1 ij (1 -c P ) + c P a n j K n H + a n j P i -k P2 P ij . (5) 
A i and P i are the concentrations of AUX1 and PIN1 in the cytosol compartment in cell i, k A1 , k A2 , k P1 , and k P2 are AUX1 and PIN1 cycling rates, K H and n sets the saturation of PIN1-cycling, and c P sets the balance between symmetric and auxin-dependent cycling of PIN1. We will look at a generalized form for PIN1 cycling and define the functions f exo and f endo for the functional forms of the auxin dependence on exocytosis and endocytosis respectively, leading to

J P,i→ij = W -1 ij f exo (a j )P i -f endo (a j )P ij . (6) 

Production and degradation

This paper focuses on the regulated transport aspects of the model, and thus we use a somewhat simplistic description of production and degradation. We introduce constant homogeneous PIN1 and AUX1 concentrations and constant auxin production and degradation described by

da i dt = c a -d a a i + transport contributions, (7) 
for each cell i, where c a is the constant rate of production, and d a is the rate of degradation. It has been shown that auxin-regulated PIN1 and AUX1 production influences the stability of the patterns [Heisler andJönsson, 2006, Merks et al., 2007], which will be discussed in Section 3.1.4.

A c c e p t e d m a n u s c r i p t 2.2 Model simplifications

Three assumptions are made that simplify the analysis of the model and better illuminate the results. The first assumption is that PIN1-and AUX1-cycling between the cytosol and the membranes is fast compared to auxin dynamics [START_REF] Jönsson | Proc. Natl. Acad. Sci. USA[END_REF]Jönsson, 2006]. With this assumption we get the fixed point surface densities of PIN1 (P * ij ) and AUX1 (A * ij ) by setting J A,i→ij and J P,i→ij in Eqs. 4 and 6 to zero. The fixed point surface densities of PIN1 are

P * ij = P ij W -1 ij P total , where P ij = f (a j ) 1 + k∈N i f (a k )
, and f (a

j ) = f exo (a j ) f endo (a j ) , (8) 
and the fixed point surface densities of AUX1 are

A * ij = A ij W -1 ij A total , where A ij = k A1 k A2 1 + k∈N i k A1 k A2 . (9) 
P total (A total ) is the total concentration of PIN1 (AUX1) in the cell compartment. The summation is done over the set of indices of neighboring cells (N i ). The second assumption is to disregard apoplastic diffusion. Hence, the question of the importance of the apoplastic diffusion cannot be addressed. Our comparisons between the simplified model and previous efforts [START_REF] Heisler | Modeling auxin transport and plant development[END_REF] do not suggest that this is a problem, at least at experimentally estimated parameter values. A discussion on the importance of apoplastic diffusion in plant tissue can be found in [Kramer, 2006]. Finally, we assume that all cells (and walls) are of equal size and have the same number of neighbors. Hence W ij = W and A ij = A for all i and j.

The fixed point expressions are used for the surface densities of PIN1 and AUX1 in Eq. 3.
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Taken together, the model equations become

da i dt =W k∈N i p aH f wall a H a ij -p aH f cell a H a i -W k∈N i p PIN N(Φ)P ik P total h(a i ) + W k∈N i p AUX N(Φ)AA total h A (a ik ) + c a -d a a i ( 10 
)
da ij dt =W V cell V wall p ah f cell a H (a i + a j ) -2p aH f wall a H a ij +p PIN N(Φ)P ij P total h(a i ) + p PIN N(Φ)P ji P total h(a j ) -p AUX N(Φ)AA total h A (a ij ) -p AUX N(Φ)AA total h A (a ij )) , (11) 
which can be rewritten as

da i dτ = k∈N i (d 2 b ik -Da i ) - k∈N i P ik P total h(a i ) + k∈N i GAA total h A V cell V wall b ik + C a -δ a a i ( 12 
)
db ij dτ =D(a i + a j ) -2d 2 b ij + P ij P total h(a i ) + P ji P total h(a j ) -GAA total h A V cell V wall b ij -GAA total h A V cell V wall b ij , (13) 
where b ij = V wall V cell a ij is a scaled auxin concentration in the wall and τ is a dimensionless time parameter. V cell and V wall are the volumes of the cell and wall compartments respectively. Parameters D and d 2 can be interpreted as ratios between rates of passive diffusion-like transport and the active PIN1-dependent transport. G is the ratio of AUX and PIN permeabilities and C a and δ a are rescaled auxin production and degradation rates respectively. The exact parameter definitions and values can be found in Table 1.

A c c e p t e d m a n u s c r i p t 2.3 Analysis methodology

We consider a model on a regular lattice. Each cell (i) is assumed to be located on an associated lattice point x i . It has an even number m of nearest neighbours. We denote by e p the relative position vector to the p:th neighbor cell, which has the label j = j pi and hence the location x j = x i + e p . j pi represents the index j of the p:th neighbor cell of cell i.

Between each neighbor pair i, j there is a wall compartment (ij) located at the mid-point

x ij = (x i + x j )/2 = x i + e p /2 = x j -e p /2.
The dynamics is linearized by considering small deviations (a

i , b ij ) = (a + i , b + ij ) from
the homogeneous fixed point concentrations (a,b) obtained by requiring the right-hand sides of Eqs. 12 and 13 to vanish. Linear versions of Eqs. 12 and 13 then result by neglecting terms higher than linear in the :s, yielding

d i dτ = -δ a + k∈N i (D + E 1 ) i -E 2 k∈N i k + D 2 k∈N i ik ( 14 
)
d ij dτ = (D + E 1 + E 2 + mE 3 )( i + j ) -E 3 ⎛ ⎝ l∈N i l + l∈N j l ⎞ ⎠ -2D 2 ij , (15) 
where

D 2 = d 2 + GAA total h A (a) V cell V wall and E 1 = f (a)P total h (a) (1 + mf (a)) , E 2 = f (a)P total h(a) (1 + mf (a)) 2 , and E 3 = f (a)f (a)P total h(a) (1 + mf (a)) 2 , ( 16 
)
while f and h are the derivatives (with respect to auxin concentration) of f and h respectively.

The analysis of the solution to the equation system in Eqs. 

= 1 2π i i e -ik•x i , ( 17 
) k,p = 1 2π i i,j pi e -ik•x ij pi , (18) 
leading to the system of ODEs

˙ k = -(δ a + m(D + E 1 + E 2 S(k))) k + 2D 2 m/2 p=1 cos 1 2 k • e p k,p (19) 
˙ k,p = 2 cos 1 2 k • e p (D + E 1 + E 2 + mE 3 (1 -S(k))) k -2D 2 k,p (20) 
where S(k) denotes the "lattice form factor"

S(k) = 1 m m p=1 e ik•ep = 2 m m/2 p=1 cos (k • e p ), (21) 
obeying

|S(k)| ≤ 1.
By introducing σ k defined as

σ k ≡ 2 m m/2 p=1 cos 1 2 k • e p k,p , (22) 
the non-trivial part of Eqs. 19 and 20 simplifies to

⎡ ⎣ ˙ k σk ⎤ ⎦ = ⎡ ⎣ -(D A + m(D + E 1 + E 2 S(k))) mD 2 (S(k) + 1)(D + E 1 + E 2 + mE 3 (1 -S(k))) -2D 2 ⎤ ⎦ ⎡ ⎣ k σ k ⎤ ⎦ . (23) 
(The remaining part trivially decays as e -2D 2 τ .) The matrix in Eq. 23 can be diagonalized to yield a pair of eigenvalues λ k1 , λ k2 , in addition to the trivial eigenvalue λ k0 = -2D 2 .

For the perturbations of auxin concentrations in cell compartments the final solution to c kα e λ kα τ cos (k

• x i + δ kα ) , (24) 
where c kα and δ kα are scalar functions determined by the initial conditions. If at least one (real part of an) eigenvalue for some wave vector k is positive then the homogeneous fixed point is unstable and we expect patterns with a related spatial wavelength to emerge.

Numerical simulations

All simulations have been done by using in-house developed software utilizing a 5th order Runge-Kutta numerical ODE-solver [START_REF] Press | Numerical recipes in C The art of scientific computing[END_REF]. Parameter values for the models used in different simulations and calculations are presented in Table 1. For the numerical simulations we used a model assuming fast auxin dynamics. The auxin concentrations in the wall compartments are integrated out from the equations. Fixed point expressions for the wall concentrations of auxin are substituted into Eq. 3. This assumption leads to a model for auxin concentrations in cell compartments described by a system of non-linear ordinary differential equations.

da i dτ = 1 2 k∈N i D(a k -a i ) + 1 2 k∈N i (P ki P total h(a k ) -P ik P total h(a i )) + C a -δ a a i , (25) 
where

h(a i ) = a i K M + a i , and 
f (a i ) = k 1 + k 2 a n i K n H + a n i . ( 26 
)
The simplified cell-cell model is analyzed in Appendix A. The stability requirements are identical to those of the cell-wall based model.

A c c e p t e d m a n u s c r i p t 3 Results

The feedback model is capable of spontaneous pattern generation with parameter dependent characteristics

The model presented in Eqs. 12 and 13 (or Eq. 25) is capable of spontaneous pattern generation. When experimental estimates for the transport parameters are used, peaks with distances of about five to seven cells are generated (Fig. 2A). A similar behavior was also described in [START_REF] Heisler | Modeling auxin transport and plant development[END_REF] 

inequalities (D -(E 2 + 2mE 3 -E 1 )) 2 8E 3 > δ a (27)
and

D < E 2 + 2mE 3 -E 1 (28)
are true, which can be found by investigating the signs of the trace and the determinant from Eq. 23. We can directly see that the passive auxin transport from cell to wall as well as the auxin degradation must not be too large for patterns to form.

A c c e p t e d m a n u s c r i p t

To further evaluate the generated patterns, we investigated how the typical distances between peaks evolve as parameter values are changed. This was done for cells located on a two-dimensional hexagonal lattice. From Eqs. 21 and A.3 we see that for such a lattice the wave vectors k = (k x , k y ) corresponding to the greatest (degenerate) eigenvalue fulfill

1 3 2 cos k x 2 cos √ 3k y 2 + cos (k x ) = S * . ( 29 
)
Fig. 3A displays the function in Eq. 29 plotted with contour curves. For small wave numbers the hexagonal structure of the lattice has no visual effect while large wave numbers conform to the structure. Fig. 3B presents a numerical Fourier transform of a pattern generated using the parameter values from Table 1. The analytic prediction of the dominating wave vectors is marked in the figure showing a good match between the (linear) analysis and the final pattern.

Mediated efflux is more important than influx for pattern capabilities

Experimental results have indicated that efflux mediators, in particular PIN1, are more important than influx mediators, especially AUX1 [START_REF] Reinhardt | Regulation of phyllotaxis by polar auxin transport[END_REF], Bainbridge et al., 2008] for organ initiation. From the model's capability to generate patterns from perturbations of the homogeneous fixed point, we can see that PIN1 enters Eqs. 27 and 28 such that higher concentration levels of PIN1 increase the possibility of pattern generation. Too low PIN1 levels will lead to no patterns. On the other hand the requirements in Eqs. 27 and 28 are independent on AUX1 concentration levels. Thus AUX1 does not contribute at all to the model's capability of generating patterns. ization is that auxin has been shown to be able to affect PIN1 endocytosis in plant tissue [Paciorek, 2005]. Assuming fast PIN1 cycling the equilibrium surface density of PIN1 on the membrane (P * ij ) is given by Eq. 8 where the feedback on exocytosis and endocytosis is described by f exo and f endo respectively. It is trivially seen that only the ratio f (a j ) = f exo (a j )/f endo (a j ) is important, and the conclusion is that the model has the same behavior if endocytosis is reduced as if exocytosis is increased from a signal originating from auxin in the neighboring cell. is fulfilled, which can be found by substituting Eq. 16 into Eq. 28. If this requirement is not fulfilled no physically meaningful parameter values can be found that yield patterns.

The righthand side of Eq. 30 is bounded by 1/2 and 1.

As an illustrative example, consider a feedback function of the form f (a) ∝ a α (α measures the 'strength' or cooperativity of the feedback signal) with a linear efflux function (h(a) ∝ a). Then the left hand side of Eq. 30 is equal to α. Thus such a feedback function can be used for polarization in a pattern generating model only if α > 1/2.

The tight relation between the feedback and the efflux transport shown in Eq. 30 is quite interesting. If the efflux is assumed to be saturable and described by a Michaelis-Menten function, h /h is equal to K/(a(K + a)) which is less or equal to 1/a corresponding to a linear h. Compared with linear efflux transport, the saturable efflux described by a Michaelis-Menten function increases the possibility for pattern generation.

To further investigate the inequalities in Eqs. 27 and 28, we performed a number of simulations using different parameter sets to generate numerical statistics for pattern generation and compare with the analytical prediction of boundaries. Following previous efforts, we used the functions from Eq. 26 to describe feedback and saturable efflux.

The results from these simulations are presented in Fig. 4. As expected, the numerical simulations follow the analytical prediction very well.

Auxin-induced production of transport mediators influences the patterning capability

It has previously been shown that auxin-induced PIN1 and AUX1 production has an effect on the stability of the formed patterns [Heisler andJönsson, 2006, Merks et al., 2007].

While auxin-induced PIN1 destabilizes the inhomogeneous patterns by inducing a trans- Assume the total PIN1 concentration in a cell P total to be an increasing function of the auxin concentration. From Eq. 12 and 13 we can write the product between the total concentration of PIN1 and the efflux transport function as ĥ(a) = P total P (a)h(a) where P total is now a reference concentration and P (a) is a dimensionless increasing function.

In Eq. 30, h (a)/h(a) is replaced by ĥ (a) ĥ(a) = P (a)

P (a) + h (a) h(a) ≥ h (a) h(a) , (31) 
and we can see that auxin-induced PIN1 production stabilizes the homogeneous fixed point, i.e. it has a negative effect on the patterning capability of the model. A similar investigation for auxin-induced AUX1 leads to ĥA (a) = A total A(a)h A (a) where again A(a) is an increasing function of a. This affects D in Eq. 14 and 15 which is replaced by

D = D -GAA total A (a)h A ≤ D. (32) 
From Eqs. 27 and 28 it follows that auxin-induced AUX1 destabilizes the homogeneous fixed point, i.e. it has a positive effect on the patterning capability of the model.

Robustness of the model

After investigating the pattern capability of the model, we now turn to investigate in more detail the characteristics of the patterns. We use the wavelength as a measure and also investigate which types of patterns that result.

A c c e p t e d m a n u s c r i p t

Model robustness was first tested by calculating the local sensitivity of each parameter, defined by

Sensitivity = ∂L ∂p p L ( 33 
)
where p is a parameter and L is the predicted wavelength. L can be derived from Eq. 29.

Fig. 5 presents the predicted sensitivities. It can be seen that L was very robust to perturbations of parameters related to production, degradation, and transport rates. On the contrary, the predicted wavelength is more sensitive to parameters used for defining the auxin feedback to PIN1 polarization and the saturation of efflux. Especially, the parameter c p has a large sensitivity, which might be due to its somewhat unnatural definition as a ratio ([0:1]) between symmetric and polarized PIN1 cycling. The parameters k 1 and k 2 represent the actual symmetric and polarized cycling rates and the model is more robust to variations in these parameters.

We further performed a semi-global approach using series of numerical simulations to study the robustness of the final wavelength against parameter perturbations. For each series we kept all parameters except one fixed to the values stated in Table 1. The non-constant parameter was varied two orders of magnitude around the original value.

Ten simulations were performed for each unique set of parameter values. We applied a Fourier transform to each resulting pattern and identified the wavenumber with the largest amplitude to estimate the typical wavelength of the pattern. The results are presented in Fig. 6 along with the linear analysis prediction. The average wavelengths extracted from simulations are close to the analytic result, and the parameter dependence of the final pattern follows the results from our sensitivity analysis. The wavelength of the final pattern is more sensitive to the feedback parameters than to other parameters.

Note that the auxin degradation (δ a ) restricts the possible wavelengths available to the model by decreasing the parameter region where patterns appear (cf. Eq. 27).

A c c e p t e d m a n u s c r i p t

From the simulations done for Fig. 6 we noticed that the parameter space is divided into regions of different kinds of resulting patterns. We investigated more closely two regions of interest. Series of simulations for two narrow regions in the parameter space are presented in Fig. 7. The Michaelis-Menten constant for auxin transport K M and the Hill constant for PIN1 cycling K H are varied and we have used visual inspection to identify different types of patterns. The types of patterns are changing from peaks, to peaks and stripes, then to stripes, and finally to reentrant peaks before the homogeneous fixed point becomess stable. This clearly shows that different kinds of patterns can be formed with the regulated transport model, although the parameter space is dominated by patterns with peaks. We have not identified analytically requirements for stripe formation, although stripes have only appeared in simulations where the feedback signal is saturated. This can be compared to stripe formation in reaction-diffusion models where the stripes can appear when the self-enhancement is saturated [Meinhardt, 1995].

Model simplifications suggest parsimony of the model mechanism

Wall feedback is not capable of generating patterns

The proposed model suggests that the feedback from auxin to PIN1 polarization comes from neighboring cells. This means that the signal transmitting the information has to pass through the cell walls (see Supplementary Information in [START_REF] Jönsson | Proc. Natl. Acad. Sci. USA[END_REF] for a suggested mechanism). We also tested a model where the feedback comes from auxin in the walls, only separated by a thin membrane from the cytosol compartment. The analysis of such a model is presented in Appendix B. Although this model can have an unstable homogeneous fixed point, the eigenvalue distribution shows that the resulting patterns have a fixed wavelength of two cells independent of parameter values and hence the model is not suitable as a model for phyllotaxis.

A c c e p t e d m a n u s c r i p t

Competition of attracting PIN1 to the membrane is important

Another important requirement for the model to be capable of creating phyllotactic patterns is the competition among intracellular wall membrane compartments for PIN1.

This results from the feedback acting on the cycling rates of PIN1 (there is a competition among the membranes for a constant total amount of PIN1 The competition in the original model leads to an interaction with next-neighbor cells and provides a necessary requirement for the model to generate patterns of the desired form. Interestingly, competition is also important for models where auxin fluxes feed back on PIN1 polarization. Here the PIN1 competition is important for creating veins with high auxin concentrations [START_REF] Feugier | Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and carrier proteins[END_REF].

Discussion

We have analyzed a model based on a positive feedback on polarized transport as a mechanism capable of generating large-scale patterns from its local interactions. We have shown that the model is capable of generating different spatial patterns such as peaks, stripes and reentrant peaks that have parameter-dependent wavelengths. Our linear analysis together with numerical simulations shows that the analysis is useful for predicting the dynamics, and also the final patterns. We used this to make several predictions.

A c c e p t e d m a n u s c r i p t

The analyzed mechanism of pattern generation is inspired from molecular data in plant shoot cells, where it is suggested as a part of the initiation of new primordia. Auxin peaks lead to differentiation of the tissue into organs and the generation of phyllotactic patterns. Although the model predictions of PIN1 polarization patterns and reversal dynamics complies with current experimental data, the proposed signal mediating the feedback from auxin to PIN1 polarization is yet to be identified. We have investigated different possibilities and restrictions for such a feedback signal. We showed that the feedback works also when acting on PIN1 endocytosis (from membrane to cytosol), which is important since auxin has been shown to affect PIN1 endocytosis [Paciorek, 2005].

When analyzing the model using experimental estimates of parameters, we found that the patterns are very robust against parameter perturbations relating to transport rates. This is comforting since the estimates are from different plant species and tissues, but it also makes more plausible the possibility that a plant could introduce the feedback mechanism within an already working environment for auxin transport, without the need of adjusting these parameters with the risk of disrupting other functions where auxin transport is important. The patterns were shown to be more sensitive to parameter perturbations relating to the feedback mechanism, which is a result depending on using parameters from our previous study [START_REF] Heisler | Modeling auxin transport and plant development[END_REF]. Our results suggest how to change these parameter values if higher stability is a main objective (e.g. increasing the Hill-coefficient in the feedback mechanism). This would be at the cost of a possibility to tune the wavelength of the patterns, as well as reaching diverse patterns.

To further investigate the constraints on the feedback mechanism, we introduced a general functional form describing the mechanism. This permitted us to identify feedback mechanisms that allow for the emergence of patterns from a homogeneous state. Our conclusion is that the feedback has to be sensitive enough to differences in neighboring A c c e p t e d m a n u s c r i p t auxin concentrations. Given that we could show that a sub-linear feedback is sensitive enough, this allows for a large variety of possible biological mechanisms. Interestingly, the constraint on the feedback mechanism is tightly coupled with the PIN1-dependent transport mechanism. This provides an example showing the importance of modeling biological mechanisms correctly. For example, the choice between a linear and a saturated transport may render fundamentally different results.

Our analysis also gives predictions for the dependence on the transport mediators PIN1 and AUX1. In agreement with experiments, PIN1 is crucial for the patterning to appear, and lowering the amount of PIN1 about tenfold from our estimated value would lead to a parameter region where the homogeneous fixed point is stable. Interestingly, AUX1

does not appear in our requirements for generating patterns in our model. This is in agreement with experiments [Bainbridge et al., 2008], where upon removing AUX/LAX proteins primordia were still initiated although the pattern was less stable (as discussed below). In the model case, this is due to the completely symmetric distribution of AUX1 at different membranes for a cell, but the fact that we have disregarded apoplastic diffusion may also be of importance. When introducing auxin-induced production of the transport mediators, the analysis showed that with induced PIN1 periodic patterns occured over a reduced parameter range, while the parameter region was increased when inducing AUX1. Together with our previous results [START_REF] Heisler | Modeling auxin transport and plant development[END_REF] this suggests that auxin-induced PIN1 acts to stabilize the homogeneous fixed point while destabilizing the non-homogeneous pattern. Auxin-induced AUX1 acts in the opposite direction, and the loss of pattern stability upon removing AUX1/LAX has also been seen

in experiments [Bainbridge et al., 2008].

The presented model is not the most parsimonious way to create a feedback from auxin to PIN1 localization in the membranes. We have investigated several simplifications of Finally, we have shown that the model is also able to generate other types of patterns than peaks. Stripes and reentrant peaks can also appear, which may have implications in other biological systems. A peak pattern seems to be natural for the proposed mechanism, and other patterns can be created in rather narrow parameter regions inbetween the peaked pattern and no pattern regions. An interesting note is that this seems to be similar to flux-based models used for venation, where the venation patterns appear in a parameter region in-between a no-pattern region and a 'patch'-like pattern [START_REF] Fujita | Pattern formation of leaf veins by the positive feedback regulation between auxin flow and auxin efflux carrier[END_REF].

Two mechanisms have been suggested for patterning in plants where auxin feeds back to PIN polarization. As discussed before, a flux-based mechanism has been suggested mainly for canalization and vein formation, while the concentration-based model analyzed here has been proposed for phyllotaxis. Whether PIN polarization is tissue-specific

is still an open question, but recent work has investigated the possibility of a unified description [Merks et al., 2007, Stoma et al., 2008].

The concentration-based model can be considered as a novel mechanism for spontaneous pattern generation in biology, and complements suggested mechanisms used in reactiondiffusion models. Its capabilities are very similar to those of reaction-diffusion models, where moving uphill in concentration is present is chemotaxis, where e.g. bacteria move against a signal gradient and form patterns, which has been investigated in mathematical models (e.g. [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF]).

The usefulness of the analyzed model will be determined by the actual use in biology, but our analysis provides distinct predictions for which biological mechanisms to search for within a given system and which requirements that need to be fulfilled in the system.

This hopefully introduces some new perspectives in the field of developmental modeling. The analysis is performed by means of a linearization around the homogeneous fixed point. The cells are assumed to be located on a regular lattice and all cells are assumed to have m neighbors (an even number). To analyze the stability of the homogeneous fixed point we consider a small perturbation a i = a + i and neglect all terms of second order or higher. Eqs. 8 and 25 then turn into a system of ordinary linear equations

d i dτ = 1 2 (D + E 1 -E 2 -mE 3 ) k∈N i ( k -i ) - 1 2 E 3 k∈N i l∈N k l - l∈N i l -δ a i , (A.1)
where E 1 , E 2 , and E 3 are defined in Eq. 16. In Fourier space Eq. A.1 is diagonalized and corresponds to

˙ k = m 2 (D + E 1 -E 2 -mE 3 ) (S(k) -1) - m 2 2 E 3 S(k) (S(k) -1) -δ a k = λ k k , (A.2)
where S(k) is defined in Eq. 21. If at least one eigenvalue λ k of the system is positive, then the homogeneous fixed point is unstable and we expect patters to emerge. The set of wave vectors that corresponds to the maximal (typically degenerate) eigenvalue is

Ω = k|S(k) = S * = D + E 1 -E 2 2mE 3 . (A.3)
For the perturbation of auxin concentrations in cell compartments the final solution to the linearized differential equation is analogous to Eq. 24, but with a single eigenvalue for each wave-vector k. The requirements for a non-trivial positive eigenvalue are the same as given in Eq. 27 and 28. With feedback from the wall compartments the full model with cell and wall compartments can be expressed as in Eq. 3 with the exception that

P * ij = P ij W -1 ij P total , where P ij = f (a ij ) 1 + k∈N i f (a ik ) , and f (a ij ) = f exo (a ij ) f endo (a ij ) . 
(B.1)

The linearized system of ordinary differential equations is

d i dτ = -δ a + k∈N i (d 1 + E 1 ) i + (D 2 -E 2 ) k∈N i ik (B.2) d ij dτ = (D + E 1 )( i + j ) -E 3 ⎛ ⎝ l∈N i il + l∈N j jl ⎞ ⎠ + 2(-D 2 + E 2 + mE 3 ) ij . (B.3)
In Fourier space the system of equations is equivalent to

˙ k = -(D A + m(D + E 1 )) k + 2(D 2 -E 2 ) m/2 p=1 cos 1 2 k • e p k,p (B.4) ˙ k,p =2(D + E 1 ) cos 1 2 k • e p k -4E 3 cos 1 2 k • e p m/2 q=1 cos 1 2 k • e q k,q -2(D 2 -E 2 -mE 3 ) k,p . (B.5)
With the definition of σ k in Eq. 22, Eqs. B.4 and B.5 can be expressed as

⎡ ⎣ ˙ k σk ⎤ ⎦ = ⎡ ⎣ -(δ a + m(D + E 1 )) m(D 2 -E 2 ) (S(k) + 1)(D + E 1 ) -2(D 2 -E 2 + E 3 S(k)) ⎤ ⎦ ⎡ ⎣ k σ k ⎤ ⎦ . (B.6)
The characteristic equation for the matrix in the RHS of Eq. B.6 can only yield trivial positive eigenvalues as the coefficients in the quadratic equation are linear in S(k).

A c c e p t e d m a n u s c r i p t C Analysis of a model without PIN1 competition

A model where auxin feeds back directly on PIN1 in the membrane can be described by

dP ij dt = f + (a j ) -f -(a j )P ij , (C.1)
and represents a model without competition. The simplified auxin transport model is again described by Eqs. 12 and 13 with

P ij P total = W ij P * ij = W f P (a j ), where f P (a j ) = f + (a j ) f -(a j ) . (C.
2)

The linearized system of ordinary differential equations is

d i dτ = -(δ a + m(D + C 1 )) i -C 2 k∈N i k + D 2 k∈N i ik (C.3) d ij dτ =(D + C 1 + C 2 )( i + j ) -2D 2 ij , (C.4)
where C 1 = W f P h and C 2 = W f P h .

In Fourier space Eqs. C.3 and C.4 are equivalent to

˙ k = -(δ a + m(D + C 1 + C 2 S(k))) k + 2D 2 m/2 p=1 cos 1 2 k • e p k,p (C.5) ˙ k,p =2(D + C 1 + C 2 ) cos 1 2 k • e p k -2D 2 k,p . (C.6)
Using the definition of σ k in Eq. 22, Eqs. C.5 and C.6 can be expressed as

⎡ ⎣ ˙ k σk ⎤ ⎦ = ⎡ ⎣ -(δ a + m(D + C 1 + C 2 S(k))) mD 2 (D + C 1 + C 2 )(1 + S(k)) -2D 2 ⎤ ⎦ ⎡ ⎣ k σ k ⎤ ⎦ . (C.7)
The characteristic equation for the matrix in Eq. C.7 can only yield trivial positive Figure 3: Analytical prediction of dominating wavenumber. A) Eq. 29 plotted with contour curves. B) Numerical Fourier transform of a pattern generated using the parameter values from Table 1 on a lattice of size 465 × 536 cells. The red line marks the analytic prediction of the dominating wave vectors.

Figure 4: Two parameters are changed within two orders of magnitude around the set of parameters given by Table 1. Green crosses/blue circles mark simulations that resulted in an unstable/stable homogeneous fixed point. The red cross indicates the parameter values in Table 1. The line marks the boundary given by Eq. 27 and 28. A) Parameters K H and n are changed. B) Parameters p aH and p PIN are changed. For each unique set of parameter values ten numerical simulations were performed, and the average and standard deviation is plotted. The solid black line gives the analytical prediction of the dominating wavelength for the system close to the homogeneous fixed point. Red data points (marked with black arrows) mark simulations with the parameter values from Table 1. Black squares mark data points for whose convergence towards a stable fixed point were extremely slow. Dashed vertical lines show the analytical boundary between regions with stable/unstable homogeneous fixed points. The boundary is given by Eqs. 27 and 28. 1 except for the Hill coefficient, where the value n = 2 is used for patterns to form.

Table 1: Parameter values used for the unperturbed model. The parameter values are estimates from experiments where available, and taken from previous models [Kramer, 2004, Swarup et al., 2005, Jönsson et al., 2006, Heisler and Jönsson, 2006]. Values are not given for parameters without influence on our results. 

Tables

  14 and 15 is easier performed if transformed into Fourier space. The auxin fluctuations in the cells and walls are

  for the non-simplified model including wall compartments and apoplastic diffusion. By varying parameter values it is possible to change the wavelength of the pattern (e.g. Fig. 2B). More generally, it is of interest to see the model's capability of generating patterns other than peaks. As examples of this, additional patterns are presented in Figs. 2C and D, showing stripes and reentrant peaks, the latter being patterns with low-concentration spots. In Section 3.2 we will discuss parameter regions leading to different patterns. By investigating the characteristic equation for the system described by Eq. 23 we extracted requirements for the model to generate patterns. The characteristic equation yields an eigenvalue with a positive real part and a non-trivial solution if and only if the

  through reduced endocytosis generates patternsThe polarized transport models presented in previous works have focused on the hypothesis of PIN1 exocytosis (cycling rate from cytosol compartments to the wall membrane) regulated by auxin in neighboring cells. Here we look at a more general feedback model where either exocytosis or endocytosis (cycling from wall membrane to cytosol compartments) is regulated by auxin in neighboring cells. A reason for this general-

  on the feedback and efflux capability An important question is what kind of feedback functions can generate patterns. Since the feedback mechanism in plants is unknown it is important to know what the requirements are for phyllotaxis; also if the model is to be used for other biological systems these constraints on the feedback are of interest. Unexpectedly, the analysis shows that the requirement on the feedback is tightly connected to the mechanism for active efflux transport. Neglecting degradation of auxin (i.e. δ a = 0), a positive value for the parameter D with an unstable homogeneous fixed point (such that patterns are generated) is possible if and only if f (a)

  peaks, auxin-induced AUX1 acts oppositely and can stabilize the instabilities caused by auxin-induced PIN1. Here, we investigate how patterning capability (i.e. the instability of the homogeneous fixed point) depends on auxin-induced production of PIN1 and AUX1.

  We presented results showing that a model where auxin in the wall feeds back to PIN1 polarization, and a model where auxin feeds back directly to the PIN1 in the membrane without competition of PIN1 within a cell, and !!!both fail to generate desired patterns. Although proving that a simpler mechanism for regulated transport to be able to generate patterns is intractable, our analysis indicate that the proposed model includes the necessary features of a pattern generating model. All our attempts to simplify the model further have led to the loss of interaction from auxin in the next-neighboring cells, which is a requirement for the model to generate non-trivial patterns.

  'replaces' the need of intracellular nonlinear reactions and diffusion with a regulated active transport we do not regard it as a reaction-diffusion model. The regulated transport mechanism can be realized using a few elementary biochemical processes and hence provides a plausible mechanism for pattern formation in biology. Especially, the molecular data of phyllotaxis indicate the presence of this mechanism. Another system

  1952] Turing, A.M., 1952. The chemical basis for morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37-72.

Figure 1 :

 1 Figure 1: Illustration of the model. A) Transport of auxin. B) The hypothesis that leads to pattern generating dynamics.

Figure 2 :

 2 Figure 2: Model simulations. A) Using parameter values from experimental estimates of auxin transport the model generates peaks with a distance of around 5-7 cells. B) Changing parameter values changes the average distance between peaks. In this case the value of k 2 has been changed to 0.90 and the average distance between peaks has increased. Other patterns than peaks can be generated by adjusting parameter values, for example C) stripes (K M = 1.7) or D) a reentrant peak pattern (K H = 0.6).

Figure 5 :

 5 Figure 5: Sensitivity of predicted wavelength with respect to different parameters. A) Combined parameters used in the simulations. B) Original parameters. Parameters p AUX , f cell aH , f wall a -, K A , and k A1 /k A2 are integrated out of the equations and have no effect on the predicted wavelength.

Figure 6 :

 6 Figure6: Estimated wavelengths of generated patterns as functions of different parameters. The parameters D, k 1 , k 2 , K H , n, and K M are changed individually while keeping the other parameters fixed. For each unique set of parameter values ten numerical simulations were performed, and the average and standard deviation is plotted. The solid black line gives the analytical prediction of the dominating wavelength for the system close to the homogeneous fixed point. Red data points (marked with black arrows) mark simulations with the parameter values from Table1. Black squares mark data points for whose convergence towards a stable fixed point were extremely slow. Dashed vertical lines show the analytical boundary between regions with stable/unstable homogeneous fixed points. The boundary is given by Eqs. 27 and 28.

Figure 7 :

 7 Figure 7: A similar investigation as for figure 6, but for two parameters with regions of special interest. Colors indicate different pattern types: black (+) -peaks, green (×) -peaks and stripes, blue ( * )stripes, magenta ( ) -reentrant peaks.

Figure 8 :

 8 Figure 8: Simulation of a model without PIN1 competition. The resulting pattern has a wavelength of two. Parameter values used in this simulation are the same as in Table1except for the Hill coefficient, where the value n = 2 is used for patterns to form.
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