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01187 Dresden, Germany

Andrew M. Edwards

Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay
Road, Nanaimo, British Columbia, V9T 6N7, Canada

Ulrike Feudel

Institut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität,PF
2503, 26111 Oldenburg, Germany.

Abstract

Weakly density-dependent effects, characterized by fractional scaling exponents
close to one, are rarely studied in the ecological literature. Here, we consider the
effect of an additional weakly density-dependent term on a simple competition
model. Our investigation reveals that weak density-dependence opens up an “in-
visible niche”. This niche does not constitute a new mechanism for coexistence,
but is a previously unexplored consequence of known mechanisms. In the invisible
niche a weaker competitor can survive at very low density. Coexistence thus requires
large habitat size. Such niches, if found in nature, would have a direct impact on
species-area laws and species-abundance curves and should therefore receive more
attention.
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1 Introduction

Density dependence is ubiquitous in ecological interactions. However, in mod-

els it is generally only taken into account if it is sufficiently strong to be

directly evident in experiments. This is particularly obvious in the mathe-

matical treatment of mortality. Out of convention, mortality terms in models

are often taken to be linear plus an optional quadratic term. Other possi-

ble choices, such as terms with non-integer exponents, are only rarely used

(Steele and Henderson, 1992; Caswell and Neubert, 1998; Edwards and Yool,

2000; Edwards and Bees, 2001). By contrast, results from physics suggest that

in complex systems fractional exponents are the rule rather than the excep-

tion (Mandelbrot, 1967; Bak, 1996; Wilson, 1975)). In this paper, we argue

that weakly density-dependent mortality, characterized by fractional expo-

nents slightly greater than one, could potentially have a strong qualitative

impact on ecological dynamics; their investigation may shed new light on im-

portant current questions such as species-abundance curves and species-area

laws. We illustrate this point by investigating the effect of weakly density-

dependent mortality terms on one of the oldest and most fundamental ecolog-

ical concepts: the competitive exclusion principle.

The competitive exclusion principle states that the number of populations that

can coexist indefinitely cannot exceed the number of ecological niches in the

system (Hardin, 1960). In modern literature this insight is often attributed to

Gause (1934), who provided evidence from laboratory experiments. However,
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when Gause stated the principle it already “had been expressed often in the

naturalist literature and was felt to be obvious and therefore unremarkable”

(Kingsland, 1988, p. 146). Indeed, the competitive exclusion principle had

been addressed by Nägeli (1874) and Grinnell (1904, 1917) and was treated

mathematically by Haldane (1924) and Volterra (1926) and also, in a different

way, already by Nägeli (1874).

In order to comprehend the way in which the concept of competitive exclu-

sion has shaped the thinking of ecologists even before Gause’s time, consider

Darwin’s theory of evolution. Although the focus of the theory is on indi-

viduals rather than populations the notion of survival of the fittest, coined

by Herbert Spencer, already implies the exclusion of the others. This depen-

dence of Darwinian evolution on competitive exclusion illustrates the role of

the competitive exclusion principle as a conceptual cornerstone of ecological

theory.

It is interesting to note that Gause’s work was often cited in the 1930s to ad-

vocate the need for more laboratory experiments, while the ecological implica-

tions for real world ecosystems were hardly ever discussed (Kingsland, 1988, p.

162-3). Kingsland (1988, p. 158) offers the explanation that the competitive ex-

clusion principle was perceived as a “laboratory curiosity” with little relevance

to natural systems. Only in response to Gause’s restatement of the principle

in 1939 and subsequent works by Lack (1947) and Hutchinson (1947) it was

realized that the competitive exclusion principle may hold the key to the struc-
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ture of ecological communities. This insight inspired further work by Slobodkin

(1961), Odum (1961), McArthur and Levins (1964), Rescigno and Richardson

(1965), and others who extended the mathematical models on which the com-

petitive exclusion principle is based.

A more detailed investigation of the competitive exclusion principle revealed

that the number of species is not necessarily limited by the number of lim-

iting resources in the system (as Gause had claimed), but by the number of

“niches”. However, stating that the number of populations that can persist

in a system cannot exceed the number of niches is tautological, since a niche

is generally defined as some parameter space in which persistence is possible

(Slobodkin, 1961; Levin, 1970). It has been pointed out by Hutchinson (1961)

and Slobodkin (1961) that – despite its tautological nature – the competi-

tive exclusion principle is nevertheless useful if it is understood as a working

guideline to investigate the cases in which it apparently fails. Indeed, in many

real world ecosystems the stable coexistence of very similar species seems to

be the rule (Hutchinson, 1959). Perhaps the most well known examples are

Lack’s work on ground finches (Lack, 1947), MacArthur’s study of warblers

(MacArthur, 1958) and Hutchinson’s paradox of the plankton (Hutchinson,

1961).

The investigation of examples of species coexistence has revealed a num-

ber of ways in which competitive exclusion can be avoided. These include

selective predation (Holt and Lawton, 1994; Vandermeer and Maruca, 1998;
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Chase et al., 2002), the presence of parasitoids (Hastings and Godfray, 1999),

certain types of social behavior (Hutchinson, 1947) which enable stationary

coexistence, as well as several mechanisms that allow coexistence in non-

stationary states, such as self-organized population dynamics (Koch, 1974b;

Armstrong and McGehee, 1976b,a; McGehee and Armstrong, 1977; Armstrong and McGehee,

1980; Huisman and Weissing, 1999), external forcing (Koch, 1974a; Ebenhöh,

1994; Abrams, 2004) and spatio-temporal dynamics (Solé et al., 1992; Bracco et al.,

2000; Chesson, 2000; Roy et al., 2004; Wilson and Abrams, 2005).

The works cited above have provided many answers to the question of why

coexistence of similar species is possible despite the competitive exclusion

principle. In this article we do not propose a new mechanism but rather focus

on a different question: Why are there so many different factors that enable

the coexistence in nature, while exclusion seems to be almost unavoidable in

laboratory experiments? One answer to this question is that many experi-

ments by design exclude some factors that can enable coexistence. Here we

show that another, less obvious, answer may exist. Weakly density-dependent

effects may enable coexistence depending on the system size; consequently co-

existence becomes possible in large natural systems, but is impossible in small

laboratory-sized systems.

We start in Sec. 1 by restating some previous results on coexistence in a more

general way. In Sec. 2 we study density-dependent mortality in a realistic gen-

eral model. These investigations reveal apparently discontinuous behavior in
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the limit of weakly density-dependent mortality. These findings are then il-

lustrated in a specific example in Sec. 3. The same example system is used

in Sec. 4 to investigate the nature of the discontinuity in more detail. In par-

ticular we show that coexistence through weakly density-dependent mortality

is strongly dependent on the system size. Finally, in Sec. 5, we discuss the

potential role of weakly density-dependent effects in nature.

2 Competitive exclusion in mathematical models

In this section we review some well known results on the competitive exclusion

principle from a different perspective. In particular we focus on the by-now

canonical reasoning for competitive exclusion in density-independent models

and the way it is avoided in density-dependent models. While this provides

only few new insights it restates the known results with greater generality,

illustrates important concepts, and sets the stage for the new results presented

in the subsequent sections.

2.1 Competitive exclusion in density-independent models

A typical setup in which competitive exclusion is studied consists of two pop-

ulations of consumers who compete for a single limiting resource. We denote

the density of the consumers by X and Y , respectively and the density of the

resource by R. In a simple conceptual model the dynamics of the consumers
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can be described by the ordinary differential equations

Ẋ = gx(R)X −mxX,

Ẏ = gy(R)Y −myY,
(1)

where gx and gy denote the functional response of the consumer populations

and mx and my denote their mortality rates. In addition to the two equations

given above, there has to be at least one additional algebraic or differential

equation that governs the dynamics of the resource. However, for the discus-

sion presented in this paper, this additional equation is only of secondary

importance and will not be stated explicitly. The reasoning presented here is

therefore valid for biotic as well as abiotic resources.

While the conceptual model in Eq. (1) provides only a very abstract picture of

natural systems, it describes several paradigmatic models discussed in ecologi-

cal literature. For example it reduces to Volterra’s model for competition for an

abiotic resource (gx(R) = cxR, gy(R) = cyR, R = Rmax − F (X, Y ), with posi-

tive constants cx, cy and Rmax and a monotonically increasing response func-

tion F (X, Y )) (Volterra, 1926). Or, Armstrong and McGehee’s example for co-

existence on a single biotic resource (gx(R) = ηxcxR, gy(R) = ηycyR/(Rs +R),

dR/dt = rR(1−R/K)−Xgx(R)/ηx−Y gy(R)/ηy) (Armstrong and McGehee,

1976b).

For the special cases mentioned above, it is well known that competitive exclu-

sion generally prevents the stationary coexistence of the consumer populations

(Levin, 1970). Following a widely accepted line of reasoning, we can show the
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same for our general model. Setting the time derivatives of both population

densities to zero, yields the conditions

0 = gx(R
∗)X∗ −mxX

∗,

0 = gy(R
∗)Y ∗ −myY

∗,
(2)

where the asterisks indicate densities in the stationary state. Since we are

interested in solutions with strictly positive densities, we can divide the con-

ditions by X∗ and Y ∗, respectively. In the two resulting equations

0 = gx(R
∗)−mx,

0 = gy(R
∗)−my

(3)

the resource density R∗ is the only remaining variable. We are thus, faced with

a system of two equations that depend only on one variable. Such a system

is over determined and hence can not be solved except in certain degenerate

cases. The chances of finding such a degenerate case in nature are of measure

zero, unless another mechanism, such as, say, evolution, favors the degeneracy.

In the case of competitive exclusions no such mechanism has been described.

Hence, it is safe to restrict the investigation to the generic cases. In the fol-

lowing we focus therefore only on the structurally stable solutions. Since a

structurally stable solution to Eq. (3) does not exist, coexistence is generically

impossible.

While the reasoning presented above is certainly elegant, it contains a subtle

flaw: the conclusion was based on the fact that an over determined system has

no structurally stable solutions. However, the condition stated in Eq. (2) was
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not over determined. In general it is not possible to transform a system that

is not over determined into an over determined one. In the example above

the overdeterminedness arose since we were able to eliminate two variables

completely from the system, which in turn was only possible because of the

assumption that the growth and the mortality terms of the populations depend

on the population density in exactly the same way, e.g., the exact density

independence of both mortality and growth rates in the consumer population.

The critical dependence of the reasoning on the exact linearity of the functions

shows that the model on which the conclusions are based is in itself structurally

unstable.

To make this clear: on the one hand we have argued that in general only

structurally stable solutions should play a role in nature. On the other hand

we have focused on a model which is in itself structurally unstable, and for the

very same reason may describe real world systems incorrectly. This problem

does not arise from the fairly general way of treatment presented here, but is

inherent in many proofs of the competitive exclusion principle, which apply a

similar reasoning.

2.2 Coexistence in simple density-dependent models

As we have already mentioned it can be justified to focus on a structurally un-

stable situation, if there is some mechanism that favors that specific situation.

This will be discussed in more detail below. For the moment let us assume that
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there is no biological requirement that demands exactly density-independent

growth and mortality terms.

In nature many mechanisms are observed that give rise to density dependence,

these mechanisms include overcrowding, diseases, predator interference, prey

defense, social interactions, parasites, degradation of resource quality, and the

consumer’s dependence on other additional resources. Note that these mecha-

nisms generally give rise to a less-than-linearly increasing growth rates and/or

more-than-linearly increasing mortality rates. It appears therefore highly un-

likely that in any species both the growth and the mortality term exhibit

exactly the same dependence on population density.

For the sake of simplicity we keep the growth rate in this paper density-

independent and focus on the case of density-dependent mortality rates. While

the case of density-dependent growth rates is mathematically equivalent and

therefore completely analogous, the underlying mechanisms are less clear from

an ecological point of view.

If density-dependent effects are taken into account, the structural instability

in the model vanishes and stationary coexistence becomes possible. This can

be illustrated in the following system:

Ẋ = gx(R)X −mxX
px,

Ẏ = gy(R)Y −myY
py .

(4)

In contrast to the model from the previous section we have added the ex-

ponents px > 1 and py > 1 on the mortality terms to reflect the density

10
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dependence. In analogy to Eq. (2) we obtain the conditions

0 = gx(R
∗)X∗ −mxX

∗px,

0 = gy(R
∗)Y ∗ −myY

∗py .
(5)

Solving for the population densities reveals the feasible steady state

X∗ = px−1

√
gx(R∗)/mx,

Y ∗ = py−1

√
gy(R∗)/my.

(6)

Further investigations show that this steady state is in general dynamically

stable in a large parameter space (Gross, 2004).

This model seems to imply that unconditional coexistence is possible. How-

ever, the per-capita mortality rates vanish for small population densities.

Hence, the observed coexistence may be artificial and ‘unbiological’. While we

will study a more realistic model in the following, note that competitive exclu-

sion only occurs in the degenerate density-independent case (pX = pY = 1),

while generic models, even with arbitrarily weak density dependence (px, py

close to 1), predict stationary coexistence.

3 Density dependence in a realistic model

In the previous section we have shown that the canonical proof of competitive

exclusion is based on a structurally unstable model. Furthermore, we have

shown that when the structural instability is removed, coexistence is generi-

cally possible. Let us now investigate the coexistence of competing populations

11
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in a more realistic model

Ẋ = g(R)X −mxX
px − dxX,

Ẏ = g(R)Y −myY
py − dyY,

(7)

where we have for the sake of simplicity assumed that both competitors ex-

hibit the same functional response g(R). In addition to the density-dependent

mortality terms we have included density-independent mortality terms which

correspond to per-capita losses of dx and dy, respectively. These terms model

basic metabolic costs and natural old-age mortality; they ensure that the per-

capita mortality can not drop below a certain minimum value.

3.1 Conditions for stable coexistence

In our model, it is apparent that one or both populations become extinct if dx

and/or dy are chosen in such a way that they surpass the growth rate in the

steady state. Unconditional coexistence can therefore not be expected. This

notion can be confirmed by computation of the non-trivial steady state, which

reveals

X∗ = px−1

√
g(R∗)−dx

mX
,

Y ∗ = py−1

√
g(R∗)−dy

mY
.

(8)

Positive solutions for Eq. (8) exist if g(R∗) ≥ dx, g(R∗) ≥ dy.

We can imagine three possible stationary outcomes: a) extinction: both com-

petitors go extinct; b) competitive exclusion: the stronger competitor survives,

but lowers the equilibrium resource level R∗ so far that the weaker competitor

12
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becomes extinct; c) coexistence: the competitors approach an equilibrium in

which their per-capita mortality rates match up g(R∗) = mxX
∗px−1 + dx =

myY
∗py−1 + dy and long-term coexistence is possible.

In this paper our focus is on cases b) and c). Let us assume that there are

sufficient resources in the system to permit the survival of at least one of

the populations. In order to determine whether coexistence is possible we ask

whether the populations can invade in a system, in which the other is already

established.

Let us first assume that population X is the stronger competitor. We denote

the stationary density of X in the absence of Y by X+ and the corresponding

resource density by Rx. In order for Y to invade, the per-capita growth rate of

Y at an arbitrarily low density Y0 has to be positive. This yields the invasibility

condition

g(Rx)−mxX+
px−1 − dx = 0 < g(Rx)−myY0

py−1 − dy, (9)

and therefore

mxX+
px−1 −myY0

py−1 > dy − dx (10)

By considering the case where Y is the resident X is the invader we find the

analogous condition

mxX0
px−1 −myY+

py−1 < dy − dx (11)

13
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Combining Eq. (10) and Eq. (11) we obtain

mxX0
px−1 −myY+

py−1 < δ < mxX+
px−1 −myY0

py−1 (12)

where

δ := dy − dx (13)

denotes the difference in the density-independent mortality rates. For px > 1

and py > 1 the density-dependent mortality terms at arbitrarily small densities

X0 and Y0 can be ignored. This yields the simplified condition

−myY+
py−1 < δ < mxX+

px−1 (14)

Since the left hand side of this inequality is negative while the right hand

side is positive, there is always a finite interval for δ in which each of the

species can invade a system in which the other species is present. Mutual

invasibility implies that there is a stable attractor on which the population

densities are positive. Consequently the coexistence of similar species, which

differ only moderately in their density-independent mortality is generically

possible. Since the attractor is not necessarily a steady state, one could ar-

gue that this may be just another example of the well-known coexistence

on a limit cycle Armstrong and McGehee (1980). Note however, that coexis-

tence via the Armstrong-McGehee mechanism is impossible for predators with

identical functional responses. Based on the analogy to the simpler model in-

vestigated in the previous section, it is therefore reasonable to assume that
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the stable attractor in the model is – at least in a large parameter space – the

steady state described by Eq. (8).

3.2 The limit of weak density dependence

It is well known that strong density dependence can enable the coexistence of

populations. However, among similar populations strong density-dependent ef-

fects which affect the populations separately are relatively rare. However, weak

density dependence can arise in numerous ways, since no ecological interac-

tion is likely to be exactly linear. In the following we investigate the impact of

weakly density-dependent functions on coexistence in the framework proposed

above.

In order to simplify notation let us assume that the density-dependent mor-

tality terms are identical for both competitors. This assumption is not critical,

since it will become clear in the following that for the questions considered

here only the density-dependent mortality term of the stronger competitor is

of importance. Furthermore, let us assume that the magnitude and exponent

of the density-dependent mortality are identical for both populations, that

is m = mx = my and p = px = py. We can write the mutual invasibility

condition, Eq. (14) as

−m(Y+)p−1 < δ < m(X+)p−1 (15)

In the model proposed above, the density dependence can be weak in two
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different ways: First, the magnitude m of the nonlinear mortality term can be

small compared to that of the density-independent term (m � d); we call this

weak density-dependent mortality. Second, the exponent of the nonlinear term

can be small, so that the density dependence in the nonlinear term is weak

(p = 1 + ε with 0 < ε� 1); this is called weakly density-dependent mortality.

The limit of weak density-dependent mortality corresponds to Eq. (15) for

m → 0. As we decrease m, the non-competitive densities X+ and Y+ increase,

since lower density-dependent mortality generally entails higher equilibrium

densities. However, if the system under consideration is a well-posed ecological

model, X+ and Y+ converge to a finite limiting value for m → 0. Therefore

Eq. (15) shows that the permissible range for δ shrinks linearly as we approach

m = 0. In the limit m → 0 structurally stable coexistence becomes impossible.

This is shown in the left panel of Fig. 1.

In the following our focus is on the case of weakly density-dependent mortality.

As we take the limit p→ 1 the densities X+ and Y+ can change. Note however,

that we have assumed that the stronger competitor can survive in the system

if the weaker competitor is absent. This implies X+ > 0 and Y+ > 0. Apart

from pathological cases we can expect that the stronger competitor reaches

a significant finite density even for p = 1. We can therefore straightforwardly

compute the limit of Eq. (15), which yields

−m < δ < m (16)
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Note that even in the limit p → 1 structurally stable coexistence is possible

in a finite interval for δ. However, based on the results of the previous section

it is apparent that structurally stable coexistence is impossible for p = 1.

This apparent contradiction is resolved if we take the density of the weaker

competitor into account. As we approach the density-independent limit the

equilibrium density of the weaker competitor decreases. In the limit p → 1 the

density of the weaker competitor approaches zero. Therefore the transition

from the weakly density-dependent to the density-independent case is still

smooth in a certain sense. This point will become clearer in the example

considered in the next section.

4 An illustrative Example

Let us consider the specific example system described by the equations

Ṙ = (cin − R)r −Gx(R)X −Gy(R)Y,

Ẋ = ηxGx(R)X −mxX
p − dxX,

Ẏ = ηyGy(R)Y −myY
p − dyY,

(17)

where Gx(R) = AxR/(kx + R) and Gy(R) = AyR/(ky + R). This system

of equations describes the exploitative competition between two predators

with Holling Type-II functional response for an abiotic nutrient, e.g., in a

chemostat. The parameters cin and r denote the concentration of nutrients

in the inflow and the turnover rate respectively, while ηx and ηy denote the

efficiency of biomass conversion.

17
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In the following we focus on the case r = 3, cin = 20, ηx = ηy = 1, mx =

my = 0.2, Ax = Ay = 2, kx = 4.5, ky = 5, dy = 1 and dx = d. Note that

we have chosen the half saturation constants of the uptake kinetics in such

a way that population X has a slight advantage. This was done in order to

demonstrate that the results of the previous section do not depend critically

on the assumption of identical uptake kinetics.

In order to compute the stationary solutions we set the left hand sides of

Eqs. (17) to zero. In addition we divide the second and third line by the

respective population density in order to remove the trivial solutions from the

system. This yields

0 = (cin −R)r −Gx(R)X −Gy(R)Y

0 = Gx(R)−mxX
p−1 − d

0 = Gy(R)−myY
p−1 − 1

(18)

We can now set the density of the weaker competitor to zero and solve the

remaining system of two equations to compute the minimum value of p, pcrit,x,

that is necessary for coexistence. For the case in which X is the weaker com-

petitor we find

pcrit,x =
log Z0,x + log Z1,x

log Z0,x
, (19)

where

Z0,x =
r

2

(cin(d− 2) + kxd)(ky(d− 2) + kxd)

(d− 2)dkx

Z1,x =
1

my

ky(d− 2) + kxd

kxd− ky(d− 2)

(20)

18
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For the analogous case in which Y is the weaker competitor we obtain

pcrit,y =
log Z0,y + log Z1,y

log Z0,y
, (21)

where

Z0,y =
r

2

(cin − kx)(ky + kx)

kx

Z1,y = − 1

mx

ky(d− 2) + kxd

kx + ky

(22)

The stability boundaries described by Eqs. (19,21) are plotted in Fig. 2. The

figure confirms our expectations based on the more general results shown in

Fig. 1. In particular in the limit p → 1 there is a finite range for d in which

coexistence is technically possible. The size of this range is approximately

2m = mx + my as can be expected from Eq. (16). Note however that the

range is not centered around d = 1 (δ = 0) since the uptake kinetics were

chosen differently for the two competitors. The asymmetry of the plot in Fig. 2

for larger p arises from the presence of a limiting value for d beyond which

the density-independent mortality rate of the weaker predator exceeds the

maximum growth rate.

5 Coexistence in systems of finite size

The results presented above show that a finite coexistence region exists in

models in which the density dependence is arbitrarily weak (px, py close to 1),

but is absent in density-independent models. The enigma presented by this

apparent discontinuity is resolved if we consider coexistence in finite systems.
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So far we have implicitly assumed that positive equilibrium densities – no

matter how small – are sufficient for coexistence. However, in finite systems

the discreteness of individuals and demographic stochasticity introduce finite

cut-off densities below which stochastic effects lead to rapid exclusion of one

of the species.

In the following we take the finite size of the system into account and demand

that the weaker competitor exceeds a given threshold density. In reality this

density depends on the physical size of the habitat as compared to the individ-

uals. Below we derive a formula that relates the permissible disadvantage of

the weaker species δ to the threshold density that is required. We focus partic-

ularly on the threshold density of 10−3 and 10−30. The rationale for choosing

these is the following: Compared to the density of the stronger competitor

which is roughly of the order of one the density of 10−30 is so small that per-

sistence is certainly impossible. Even if the stronger competitor were one of

the most common microbial species and the system considered is of the size of

the earth then the population of the weaker competitor consisted only of a few

cells at best and rapidly went extinct because of demographic stochasticity.

By contrast a density that is 10−3 that of the stronger competitor is still rare

but certainly detectable if the competitor is a common species.

Let us return to the model introduced in the previous section and compute

the parameter range in which both species exceed a given threshold density.

This question is slightly more complicated than the one considered before,
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since straight forward computation of the corresponding conditions leads to a

polynomial of fifth order. Also, naive numerical solutions are not feasible since

terms of strongly different orders of magnitude arise and the computation of

weakly linear exponentials is prone to give rise to numerical artifacts. We avoid

these difficulties by deriving an implicit condition using the symbolic algebra

software Maple.

Starting from Eq. (18) we first compute the value of R∗ that is consistent

with a given set of population densities X∗, Y ∗ by solving the first line for R∗.

Note, that for fixed X∗, Y ∗ the corresponding R∗ is independent of d and p.

For R = R∗ we can now compute the consistent value of p = p∗ that is required

to obtain the chosen X∗, Y ∗ by solving the third line of Eq. (18) for p. The

result of this computation is independent of d. Finally we find the consistent

value of d = d∗ by substituting R∗ and p∗ into the second line of Eq. (18) and

solving for d.

The procedure described above provides us with analytical functions that

map a given stationary state X∗, Y ∗ to the corresponding parameter values

p∗(X∗, Y ∗), d∗(X∗, Y ∗). The computation of these values is technically simple,

involving only factorization of polynomials of degrees one and two. Neverthe-

less the resulting functions are relatively lengthy and are therefore omitted

here. For details please consult the maple worksheet that can be downloaded

from the authors web page (Gross, 2007).

In the functions p∗(X∗, Y ∗), d∗(X∗, Y ∗) we set the density of the weaker com-
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petitor, say X, to a small value q and vary the density of the stronger com-

petitor over a reasonable range. The resulting line in parameter space bounds

the parameter region in which the stationary density of X exceeds q. Repeat-

ing this procedure for both species and for different values of q we obtain the

diagram shown in Fig. 3.

Figure 3 shows that the transition at p = 1 is continuous in a certain sense.

The density of the weaker predator smoothly approaches zero as the exponent

of closure is lowered. Thus, in finite systems in which demographic stochas-

ticity introduces a density threshold, the permissible range of d for which

coexistence is possible smoothly approaches zero as p → 1. Nevertheless note

that relatively weak nonlinearities such as p = 1.05 still allow for coexistence

in a substantial range of d, albeit at low densities of the weaker competitor.

The central message we can get from the analysis of the model proposed here

is the following: In systems with strictly density-independent mortality and

growth the system size does not have a strong impact on the coexistence of

species. In these systems coexistence at any finite density is generically im-

possible. Likewise, the size of the system is not important in systems with

strongly density-dependent mortality. Here a competitor that is able to sur-

vive generally does so at a substantial density, and is therefore unlikely to

be excluded because of demographic cut-offs. However, in the case of weakly

density-dependent mortality there is a large parameter range in which coex-

istence is possible at very low densities. Therefore the size of the effective pa-
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rameter range in which coexistence is possible depends strongly on the relative

size of the system (Fig. 4). For instance a planktonic species which manages

to persist at, say 10−5 times the density of a stronger competitor can still

reach high population numbers in an ocean, but would comprise of only a few

individuals at most in a laboratory experiment. It could thus persist in the

ocean, but would suffer demographic extinction in the laboratory.

6 Discussion: Weakly density-dependent mortality in nature

In this paper we have argued that weakly density-dependent effects in ecolog-

ical interactions could open up an invisible niche: A population persisting in

this niche is likely to have a small abundance and therefore could easily escape

attention. Moreover, because of the niche’s dependence on system size, coex-

istence in the invisible niche is probably not reproducible in laboratory-sized

experiments. Finally, the weak nonlinearities that open up the niche are very

difficult to measure by direct observation.

Despite the absence of direct evidence, invisible niches, if they exist, could play

an important role in nature and thus may be detectable indirectly via their

consequences. Coexistence induced by weakly density-dependent effects could

play an important role in the maintenance of biodiversity. In particular in

large ecosystems invisible niches might enable the persistence of many species

at very low population density and might thus offer an answer to the enigma

posed by species-abundance curves. In smaller systems the weaker competitors
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would be excluded. This not only offers an answer to our initial question,

why coexistence seems to be the rule in nature while exclusion is commonly

observed in the laboratory, but suggests a direct impact on species-area laws.

It is conceivable that weakly density-dependent effects are thus detectable by

their signature in species-area and species-abundance relationships. However,

to determine this signature more theoretical work is certainly necessary.

In past models, linear and quadratic mortality terms have been used in part for

simplicity and in part out of convention. Furthermore, it has been argued that

the linear and quadratic mortality can be regarded as the first terms of a Taylor

expansion of more complex functions. Note however, that weakly density-

dependent functions are not Taylor expandable around the origin. Their effect

can therefore not be captured by any combination of linear and quadratic

terms.

In order to explore the impact of weakly density-dependent effects on species-

abundance and species-area laws the present results have to be extended to

multiple species. For many of the arguments used here, this extension should

be relatively straight forward. Recall that the competitors interact by lowering

the level of the shared resource. But, in the presence of a strong competitor,

the impact of weak competitors on the resource level will be minor as weakly

density-dependent effects limit them to persist at very low density. The de-

rived coexistence condition should therefore be approximately valid for multi-

ple weak competitors independently, enabling the coexistence of an arbitrary
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number of populations.

Note that our model has every population suffering from a separate density-

dependent mortality term. As every one of these terms constitutes a limiting

factor, we would observe the coexistence of an arbitrary number of species

only with the same number of limiting factors, which is hardly surprising. We

should therefore ask whether it is necessary for coexistence to have a separate

density-dependent mortality term for each of the weak competitors. On the one

hand we were able to ignore the weakly density-dependent terms for the weaker

competitor entirely in our derivation of the mutual invasibility conditions. On

the other hand, one could argue that if such terms were neglected, the weak

competitors themselves formed a system in which the classical competitive-

exclusion principle applies. While this latter point is certainly valid, one could

suspect that the presence of a strong competitor could fix the resource level

very rigidly and thereby effectively decouple weaker competitors. However,

more investigations in this directions are certainly necessary before anything

can be said with certainty.

Although an empirical proof for the existence of weakly density-dependent

effects will most likely be found in an indirect way, a direct search for weakly

density-dependent processes would also be desirable. To our knowledge no

such attempt has ever been undertaken. Although the functional form and in

particular the scaling behavior at small densities is difficult to measure directly,

the attempt to do so would at least reveal upper bounds for the strength of
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weakly density-dependent effects for the species under consideration.

Let us discuss the mechanisms by which weakly density-dependent effects

could arise. While simple mechanistic models in general do not lead to frac-

tional exponents, it known that scaling laws with such exponents often emerge

in complex systems. In ecology such systems exist at least on two levels. First,

fractional exponents could arise from complex internal processes in the in-

dividuals. For instance predators preying on the competitors will be more

experienced in capturing the common competitor than the rare one. While

learning can sometimes be described by sigmoid functional responses, the un-

derlying mechanisms are so intricate that they could easily exhibit weakly

density-dependent behavior at low prey densities. Second, even if the laws

governing individuals are linear, weakly density-dependent effects can appear

in the coarse-graining that is necessary to formulate equations on the popu-

lation level. Consider for instance the effect of a heterogeneous environment.

If the population density is low then the surviving individuals are likely to

be found in very advantageous locations where mortality is low. As the popu-

lation grows more dangerous locations have to be settled with corresponding

higher mortality rate. Even if the mortality rate is linear in every location

averaging over the whole settled space can yields a more complex scaling law

potentially characterized by fractional scaling exponents.

In summary we conclude that weakly density-dependent processes could exist

in nature. While no direct empirical evidence for such processes is presently
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available, the corresponding invisible niches may be evident indirectly. The

basic results which we have presented here can form a basis for future in-

vestigations which consider the effect of weakly density-dependent effects in

the context of evolutionary or assembly models and thereby establish a direct

connection to island biogeography.
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Nägeli, C., 1874. The displacement of plant forms by their competitors.

Sitzungsberichte der Bayerischen Akademie der Wissenschaften Mnchen 11,

reviewed in J. L. Harper: A centenary in population biology, Nature 252,

526-527 (1974) doi:10.1038/252526a0.

Odum, E. P., 1961. Fundamentals of ecology. Saunders, Philadelphia, NJ.

30



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Rescigno, A., Richardson, I. W., 1965. On the competitive exclusion principle.

Bull. Math. Biophys. 27, 85–89.

Roy, M., Pascual, M., Levin, S. A., 2004. Competitive coexistence in a dynamic

landscape. Theor. Pop. Biol. 66 (4), 341–53, doi:10.1016/j.tpb.2004.06.012.

Slobodkin, L. B., 1961. Growth and regulation of animal populations. Holt,

Rinehart & Winston, New York.
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Fig. 1. Sketch of weak density-dependent mortality in comparison to weakly den-
sity-dependent mortality. Left: Weak density-dependent mortality. As the magni-
tude m of the nonlinear mortality term is decreased the range of the competitive
advantage of X, δ = dy − dx, in which coexistence is possible, shrinks. In the limit
m → 0 coexistence in only possible at one specific value of δ = 0. Right: Weakly
density-dependent mortality. Decreasing the exponent of the nonlinear mortality
term likewise reduces the range of coexistence. However, even in the limit p → 1
coexistence is possible in a finite interval.Only at p = 1 the range of coexistence
shrinks to a single point in a discontinuous transition.

Fig. 2. Exploitative competition between two species X,Y in a specific example. The
regions of coexistence (light blue) and exclusion (dark red) are shown depending
on the density-independent mortality d of species X and the exponent p of the
density-dependent mortality term of both species. Even for p → 1 coexistence is
mathematically possible in a finite range.
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Fig. 3. Density of the weaker competitor in the competition between two species
X,Y. Coexistence is mathematically possible in the whole parameter space shown
(see Fig. 2). In the dark region on the left the density of the weaker competitor is
below 10−30. Every line marks an increase by a factor of 103 up to a density 10−3.
In the case of weakly nonlinear mortality (small p) the range of the parameter d
for which the weaker competitor can maintain high densities (e.g. light blue region)
becomes small. However, in a system of sufficient size coexistence at lower densities
is still possible in a wide range of d.
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Fig. 4. Effect of different cutoff densities on coexistence between two species. Species
coexistence is theoretically possible in the blue regions and impossible in the red
region. The shade of the blue indicates the density of the weaker competitor. Since
small densities effectively prohibit survival in small systems the effective coexistence
region depends on the size of the system. This size dependence is not of impor-
tance in systems with density-independent (p = 1) or strongly density-dependent
(say, p > 1.2) mortality, but is has a strong impact in systems with weakly den-
sity-dependent mortality, e.g., p = 1.05.
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