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Abstract

The distance distributions between successive occurrences of the same
oligonucleotides in chromosomal DNA are studied, in different classes of
higher eucaryotic organisms. A two-parameter modeling is undertaken
and applied on the distance distribution of quintuplets (sequences of size
five bps) and hexaplets (sequences of size six bps); the first parameter k

refers to the short range exponential decay of the distributions, whereas
the second parameter m refers to the power law behavior. A 2-dimensional
scatter plot representing the model equation demonstrates that the points
corresponding to the distance distribution of oligonucleotides containing
the CG consensus sequence (promoter of the RNA polymerase II) cluster
together (group α), apart from all other oligonucleotides (group β). This
is shown for the available chordata Homo sapiens, Pan troglodytes, Mus

musculus, Rattus norvegicus, Gallus gallus and Danio rerio. This clus-
tering is less evident in lower Animalia and plants, such as Drosophila

melanogaster, Caenorhabditis elegans and Arabidopsis thaliana. More-
over, in all organisms the oligonucleotides which contain any consensus
sequence are found to be described by long range distributions, whereas
all others have a stronger influence of short range decay.

Various measures are introduced and evaluated, to numerically char-
acterize the clustering of the two groups. The one which most clearly
discriminates the two classes is shown to be the Proximity Factor.

∗Corresponding author. E-mails: P. Katsaloulis pkatsaloulis@chem.demokritos.gr; A.

Provata aprovata@chem.demokritos.gr
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1 Introduction

In recent years there has been great improvement in biological DNA decoding
tools, in terms of speed and efficiency (Altschul et al. 1990, 1997; Pearson and
Lipman 1988; Higgins et al. 1992; Thompson et al. 1994). This growth produced
a spectacular increase of biological data, especially in decoding chromosomes
from different organisms. The analysis has been extended from Homo sapiens
(Venter and al 2001) to various mammals, birds, insects and plants. This rapid
growth made obvious the need of management and evaluation tools, while the
main objective remains to estimate the functional role of the DNA. To address
this question approaches have been proposed, which combine computational
tools with statistical methods.

The use of computation tools in parallel with methods originating from equi-
librium and non-equilibrium statistical mechanics have revealed a number of
unexpected features in the primary genomic structure. The most striking one
was the observation of long range correlations discovered in 1992 in the non-
coding DNA of higher organisms (Peng et al. 1992; Li and Kaneko 1992; Voss
1992). Later-on, other researchers verified and further explored the existence
of nontrivial structural correlations in genomic sequences (Karlin and Brendel
1992; Ebeling and Nicolis 1992; Buldyrev et al. 1993; Li et al. 1994; Czirok et al.
1995; Arneodo et al. 1996; Hao 2000; Yu et al. 2000; Li and Holste 2005; Li and
Miramontes 2006; Bernaola-Galvan et al. 2002; Carpena et al. 2007; Scafetta
et al. 2002; Allegrini et al. 1995). Some of these nontrivial characteristics were
used for identification of functional units in DNA sequences of unknown origin
(Hackenberg et al. 2006; Carpena et al. 2002).

In previous studies in the primary structure of DNA, scaling behavior was
observed within the noncoding DNA areas, whereas short range behavior is
found in the coding ones (Almirantis and Provata 1997, 1999; Provata and
Almirantis 1997, 2000; Katsaloulis et al. 2002, 2005, 2006). In these studies, the
form of the size distribution of noncoding DNA segments was shown to include
a major long range contribution of the form:

P (Snon−cod) ∼ S
−1−μ
non−cod (1)

where Snon−cod is the length of a noncoding region, P (Snon−cod) the length dis-
tribution of noncoding regions and μ is the critical exponent of the distribution.

It is noted here that with the term ”noncoding DNA segments” we mean
collectively all introns and intragenic regions(Provata and Oikonomou 2007).
Both introns and intragenic regions can suffer modifications during evolution
which can be moderate, mostly in the case of introns, and/or extensive, mostly in
the case of intragenic regions. This ”open-to-environmental-influence” structure
of the introns and intragenic regions is in the origin of the long range, power
law behavior, which is more prominent in the length scales characterizing the
intragenic regions.

The size distribution of introns in particular, has been the subject of earlier
studies and short range features, analogous to the ones of the coding regions,

2



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

have been reported (Alberts et al. 1994; Hawkins 1988; Deutsch and Long 1999;
Lander and et al. 2001; Lim and Burge 2001; Sakharkar et al. 2002; Carpena
et al. 2007). Introns may also present some long range characteristics, due to
the fact that their structure is open to environmental influence (Provata and
Oikonomou 2007).

Coding regions, or exons, mostly conserve their structure through evolution
and thus are compatible with short range characteristics as has been extensively
reported in the literature. Gaussian-type distributions, skew distributions, log-
normal and exponential type, this is not an exhaustive list of functions used
to describe the exon size distributions (Hawkins 1988; Lander and et al. 2001;
Sakharkar et al. 2002; Carpena et al. 2007). As in most cases of short range
behavior, the tails of the coding regions can be approximated by an exponential
decay, of the form:

P (Scod) ∼ e−aScod (2)

where a is the positive parameter characterizing the decay law.
Eucaryotic organisms, were considered to obey the distributions 1 and 2

for their noncoding and coding parts, respectively. Since the RNA polymerase
promoter marks the beginning of a coding region, and the size of a coding
region is much smaller compared to a noncoding region (Alberts et al. 1994;
Etienn-Decant 1988; Vinogradov 1999), the hypothesis was formulated that the
distance distribution between two consecutive consensus sequences of the pro-
moter should follow the distance distribution of the corresponding noncoding
regions. This hypothesis was elaborated in references (Katsaloulis et al. 2005,
2006), where it was shown that oligonucleotides containing the signature of
a consensus sequence follow long range distributions, while all other oligonu-
cleotides follow short range distributions. The consensus sequences with the
major contributions are the CG box for all animals and plants, and the TATA

box for the plant Arabidopsis thaliana (Blake et al. 1990; Hoffman et al. 1987).
The distance distribution of consensus sequences includes a strong long range
contribution in the tails of the form:

P (Sp) ∼ S−1−μ
p (3)

where Sp is the distance between two consecutive appearances of the oligonu-
cleotides containing the promoter consensus sequence, P (Sp) is the distance
distribution of the oligonucleotides and μ is the critical exponent of the distri-
bution. As in the case of the size distributions of noncoding regions, the value
of the critical exponent μ is calculated based on the form of the tails of the
distribution. When the tails in the noncoding area are characterized by values
of μ in the range 0 ≤ μ ≤ 2 the corresponding size distributions are classified
as long range.

This approach does not sufficiently cover the majority of the cases. Some
distributions of oligonucleotides, especially in evolutionary newer organisms, do
not have a well developed, observable tail, and have a mixed behavior charac-
terized both by long range tails and short range decay. This mixed behavior
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may be explained by the many different evolutionary mechanisms which have
acted upon the genome during evolution.

Summing up the behaviour of the size distribution between different types
of oligonucleotides we note the following:
A) Oligonucleotides which do not have any specificity in the genome can appear
in any part part of the genome (coding or noncoding), are not expected to have
any peculiar characteristics in their distribution throughout the chromosomes
and can thus be modeled by short range (exponential like) distributions in all
scales.
B)Specific oligonucleotides containing the CG or other promoter signatures
maybe encountered in the chromosomes in the following two cases:

• They may appear randomly (such as in coding areas where almost all
combinations are found equiprobably). These will enter with a short range
type of distribution. Because they can be found within the coding areas
which are relatively short in sizes, or maybe separated by introns (also
relatively short), they will be always separated by short distances. This
indicates that in the short scales, short range behaviour is expected.

• They may designate the presence of a promoter and then their distribu-
tions would carry the power law correlations (this property is connected
with the fact that they are separated by at least one noncoding region, as
noted earlier).

Because in the very-very long scales, finite size effects are expected to cover up
the long range behaviour, the power law property is expected to be detectable
mostly in the intermediate scales. Thus for the oligonucleotides which carry the
promoter signature we expect i) short range (exponential decay type) behaviour
at the short scales, ii) mixed short and long range behaviour at the interme-
diate scales and iii) short range decay, due to finite size effects in the very
long scales. The mixed behaviour, at the intermediate scales, need then to be
modeled, using a mixed law containing long-range (power like) and short range
(exponential like) parts. In this case the oligonucleotides which contain the pro-
moter signature are expected to present most important power law regions in
the intermediate scales.

To address this problem it is unavoidable to take into account more than
one parameters. In particular, we introduce here a phenomenological mixed de-
scription, which includes long range power law terms together with exponential
decay ones. The results of this method are presented in this study, where we
have examined and compared the forms of the distributions P (Sp) in various
chromosomes and in different classes of organisms.

Using this 2-parameter approach, we have shown certain tendencies for clus-
tering in the parameters characterizing the distributions of the oligonucleotides.
In most cases oligonucleotides tend to accumulate in two distinct areas, which
correspond to different parameters. We examined this phenomenon in terms of
evolution, by taking into account organisms varying from mammals and chor-
data in general, to insects, nematodes and plants. We have found that this
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clustering is static, although in evolutionary newer organisms is more evident.
For the quantitative study of the clustering property various clustering measures
were tested and we ended up with selecting the Proximity Factor (PF) as the
one which could distinguish between classes of organisms. We have shown that
the measure PF identifies clusters and is able to discriminate between newer
and older organisms.

This work deals mostly with the qualitative and quantitative study of the
clustering tendency of the oligonucleotide distribution parameters and focuses
on the mathematical properties of the distributions, for understanding the struc-
ture and functionality of DNA. In this respect, this work distinguishes interest-
ing sequences based only on their distribution on the genome - a pure mathemat-
ical approach. We have also tried to verify these observations from a biological
point of view, by noting that the prominent sequences are actually consensus
sequences of the RNA polymerase promoter. Although these findings could be
used to annotate oligonucleotides, and thus specific DNA areas, we do not opt
to present here a prediction tool. Our aim is to present a comparative study
of the clustering across organisms and to show how this property fades away in
evolutionary older organisms.

In the next section the methodology involving the 2-parameter modeling
of the oligonucleotide distribution is described. In section 3 the analysis of
the chromosomes of various organisms is presented. In section 4 quantitative
measures of the oligonucleotide clustering are proposed and validated. In section
5 the main conclusions are recapitulated and open problems are discussed.

2 Two-parameter phenomenological description

of clustering

Since the value of the critical exponent μ is not adequate to describe the behavior
of the distance size distribution of the oligonucleotides, we need to enrich formula
3 which describes the from of the distributions. Many oligonucleotides do not
demonstrate a clear linear region in their histogram (in double logarithmic scale)
but a curved line, indicating mixed short as well as long range features.

In a previous study (Katsaloulis et al. 2006) a two-parameter model was used
to describe the behavior of the distribution . Since both long range and short
range distribution tendencies were detected, it appeared natural to experiment
with a phenomenological formula which includes both. The proposed equation
takes the following form:

P (So) = AS−1−m
o e−kSo (4)

where So is the distance between two consecutive appearances of the same
oligonucleotide o, P (So) is the distance distribution of the oligonucleotides o and
A, m and k are the parameters used to describe this distribution. Eq. 4 contains
both a power law expression (S−1−m

o ) and an exponential term (exp[−kSo]). We
have to note that the parameter m corresponds to the critical exponent μ of

5



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Eq. 3. Parameter A is mostly used for normalization. This parameter does not
appear to affect the results, and thus we will take into account only the other
two parameters (m and k).

Two examples of the fit using the phenomenological Eq. 4 are given in Figs.
1 and 2 . To reduce the noise in the data and have a better fit, the cumulative

6 7 8 9 10 11 12
ln[ So ]

0
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4

6

8

10

ln
[ P

(S
o) ]

Parametric curve
AATAGC

Figure 1: Cumulative distance distribution of the Mus musculus sequence
AATAGC, chromosome 16 (symbol X). The solid line represents the correspond-
ing fitted curve. The value of (−1−m) and −k of this sequence is −3.956 and
−2.267× 10−05. The value of correlation coefficient is 0.975

form of the size distributions are used(Provata and Oikonomou 2007). Figure 1
corresponds to the oligonucleotide sequence AATAGC. The value of m = 2.956 > 2
and k = 2.267× 10−5 indicate clearly that the behavior is of exponential decay
type, purely short ranged (the correlation coefficient of this fit is r = 0.975).
The form of the figure also does not include any noticeable power law region. On
the other hand, Figure 2 corresponds to the distribution of the oligonucleotide
CGATCG, a sequence which contain twice the CG complex. This figure clearly
indicates a power law region. The solid line is drawn for comparison and has
slope -1.6. The calculated parameter values m = 0.532 < 2 and k = 9.507 ×
10−7 ∼ 0 indicate clearly that the behavior is purely long ranged (the correlation
coefficient of this fit is r = 0.984). Similar features are observed in all other
oligonucleotide sequences.

For each chromosome of the selected set we calculate the cumulative distance
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Figure 2: Cumulative distance distribution of the Mus musculus sequence
CGATCG (chromosome 15). Values of (-1-m), -k and correlation coefficient are
-1.315, 5.256 · 10−7 and 0.98 respectively.

distributions between all oligonucleotides o of fixed length(Katsaloulis et al.
2006). The curve of the distribution is used to calculate the values of parame-
ters A, m and k, using a combined Levenberg-Marquardt with Gauss-Newton
method (Levenberg 1944; Marquardt 1963). Finally, we form a 2-dimensional
scatter plot of all oligonucleotides of the same length for each chromosome, tak-
ing into account the exponent values of (−1 −m) versus (−k). In the current
study we computed all oligonucleotides with fixed length of five (quintuplets)
and six (hexaplets) base pairs.

In order to quantify the quality of the curve fitting, we have also calculated
the value of correlation coefficient (Cc)(see relative discussion of Figs. 1 and 2).
As an example, in chromosome 15 of Mus musculus the value of Cc is between
0.955 and 1 for all oligonucleotides, with average value of 0.995. Similarly, in
chromosome 16 Cc takes values between 0.94 and 1, with average of 0.979.

Although in some cases the exponential parameter k takes negative values,
these values are very-very small and are expected to be rounding errors of the
curve fitting algorithm. Due to computer precision limitations, these values
are almost zero and thus have minimum or non existing contribution to the
size distribution of oligonucleotides. In the presented graphs we retain this
information though, for completeness reasons.
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For evolutionary newer organisms it is shown that the parameters appear to
cluster, as will be discussed in the next section. In all plots presented hereafter,
the sequences which include the sub-sequence CG (Bernaola-Galvan et al. 2004)
will be marked with the symbol X (group α), while all other sequences will be
marked with the symbol O (group β), to make the clustering property more
obvious.

3 Comparative clustering in exponent plots

Tests have been performed in the chromosomes of various organisms for which
long decoded chromosome sequences already exist. An effort was undertaken
to analyze organisms of as many different classes as possible. The organisms
that were studied are the following: Homo sapiens, Pan troglodytes, Mus mus-
culus, Rattus norvegicus, Gallus gallus, Danio rerio, Drosophila melanogaster,
Caenorhabditis elegans, Arabidopsis thaliana. The complete chromosome data
was obtained from the NCBI server (ftp://ftp.ncbi.nih.gov/genomes).

3.1 Mammals

The first group of organisms that was studied was the Mammals and especially
chromosomes 19, 21 and 22 of Homo sapiens (Katsaloulis et al. 2006), chromo-
somes 1 and 2 of Pan troglodytes, chromosomes 15 and 18 of Mus musculus and
chromosome 1 of Rattus norvegicus (see corresponding Figs. 3 , 4 , 5 and 6 ).
The analysis was performed solely for the quintuplets and hexaplets of these
chromosomes.

We have found that sequences which include the binucleotide CG (and belong
to group α) are completely separated from all other oligonucleotides (group β).
The situation on quintuplets and hexaplets is exactly the same; the two groups
in both cases are clearly separated from one another (see Figs. 3-6).

This behavior persists also across organisms and chromosomes. In all cases
we have studied, the separation between the two groups is always evident. Al-
though the distance between these two groups may vary, the separation is always
quite obvious.

For the study of the separation of the two groups in a straightforward way,
it is possible to consider the two axes separately. By calculating the average
value of < ki > for the two groups (i = {CG}, {nonCG}) and the corresponding
standard errors σki

, the clustering in the k−direction (y-axis) would be signifi-
cant if < ki >>< kj > +1.96 × σkj

or < ki ><< kj > −1.96 × σkj
, for i �= j.

In the same way one can approach the x-axis (| − 1−m|-direction). A distinct
example is the case of Chromosome 15 of Mus musculus (see Fig. 5) where <

k{CG} >= 0.000018 and σk{nonCG}
= 1.02× 10−5, while < k{nonCG} >= 0.0002

and σk{nonCG}
= 0.9×10−5. In this case the < k >-value of the oligonucleotides

containing CG is outside the critical interval of the oligonucleotides not contain-
ing CG and thus clustering is evident on the y-axis. Other cases might not be so
evident and composite clustering in both axes must then be taken into account.
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Figure 3: 2-dimensional exponent plot of organism Homo sapiens, chromosome
21, hexaplets

Quantitative cluster analysis taking into account both axes will be undertaken
in section 4.

Another interesting observation is the positioning of the two groups, which
mirrors the values of the parameters −1 −m and −k. The value of parameter
| − 1 − m| in group α is between the limits [0,2] and we have a direct corre-
spondence with the critical exponent of μ in Eq. 1. This is in accordance with
earlier observations that the subsequence CG marks oligonucleotides with the
smaller values of |μ| (Katsaloulis et al. 2005, 2006), since they are marked with
a consensus sequence of the promoter. On the other hand, parameter |k| is very
close to zero, which displays the minor role of the exponential term e−kSo . In
other words group α seems to be influenced almost completely from the power
law factor with minor contribution from the exponential one.

The situation in group β is different. The values of |−1−m| are larger than
in group α, while the value of |k| has broader spectrum and is non zero. Thus
the key role here is played by the exponential factor. This behavior differs from
that of group α and reflects the fact that the distributions are different for these
oligonucleotides. The oligonucleotides which do not contain the CG sequence
follow short range distributions, such as exponential decay, as expected (Peng
et al. 1992; Li and Kaneko 1992; Almirantis and Provata 1997, 1999; Katsaloulis
et al. 2006).
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Figure 4: 2-dimensional exponent plot of organism Pan troglodytes, chromosome
1, hexaplets

3.2 Other chordata

Studies have been performed on the organisms Gallus gallus (bird) and Danio
rerio (fish), which are the only chordata with fully decoded chromosomes up
to now. Fig. 7 presents the results for quintuplets of chromosome 1 of Gallus
g. and Fig. 8 presents the results for Danio r.. The observation for both
organisms is the same, as in mammals. Two distinct areas are presented again,
group α, which consists solely of oligonucleotides with the signature CG of the
consensus sequence of the RNA polymerase promoter, and group β of all other
oligonucleotides. Group α again appears to have the smallest values of |−1−m|,
while the |k| parameter takes values around zero, which means it is more affected
by the power law factor of Eq. 4. Group β has again a similar behavior as in
mammals. Still, the value of the −1 −m parameter is larger than in group α

and thus we assume that these sequences follow short range distribution.
All these observations show that in the evolutionary recent organisms we

have studied, all oligonucleotides which have the consensus sequence CG seem
to follow long range distributions. On the other hand, the sequences which do
not posses CG follow short range distributions, such as the exponential one.
This observation persists across organisms, for mammals, birds and fish, and
we expect it will appear in all evolutionary newer organisms.
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Figure 5: 2-dimensional exponent plot of organism Mus musculus, chromosome
15, hexaplets

3.3 Evolutionary older organisms and plants

Evolutionary older organisms were analyzed, such as Drosophila melanogaster,
Caenorhabditis elegans and the plant Arabidopsis thaliana. We have tested
quintuplets and hexaplets of the regions NT 033777 and NT 037436 from chro-
mosome 3 of Drosophila m., chromosome I ( area NC 003279 ) of Caenorhabditis
el. and chromosome 1 ( area NC 003070 ) of Arabidopsis th. (see Figs. 9 , 10
and 11 ).

The results from these organisms differ from those of mammals and birds.
The separation of the two groups α and β is no longer evident and the two
regions appear close to each other. In hexaplets of Arabidopsis th. these two
groups seem to form different structures. Since Arabidopsis th. is evolutionary
newer than the other two animals, we would expect that this behavior is due to
the evolutionary age difference of these organisms.

Although the cluster separation in the above organisms is not so obvious,
the values of the equation parameters appear to be in agreement with those of
mammals, birds and fish. Oligonucleotides that include the consensus sequence
CG are found in the region where the value of the parameter |k| is near zero, while
the value of parameter | − 1−m| is between zero and two. On the other hand,
oligonucleotides that do not include the CG sequence, have larger values for the
parameter | − 1−m|. In other words, oligonucleotides with the signature of the
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Figure 6: 2-dimensional exponent plot of organism Rattus norvegicus, chromo-
some 1, hexaplets

consensus sequences of RNA polymerase seem to follow long range distributions,
while all other sequences appear to be affected mainly by the exponential term.

Another example for the study of the separation of the two groups, is also
presented here, considering both axes separately. In the case of area NC 003070
of Arabidopsis thaliana (see Fig. 11), the averages and standard errors in the
k−direction, for the two groups, are calculated as < k{CG} >= 0.000028 and
σk{nonCG}

= 2.3× 10−5, while < k{nonCG} >= 0.000030 and σk{nonCG}
= 3.3×

10−5. In this case the clustering is not prominent, the average value of one
cluster falls inside the critical area of the other cluster, thus the two clusters
seem to overlap. More detailed, quantitative cluster analysis taking into account
both axes will be undertaken in section 4.

We have to note that, in these organisms, there is a difference concerning
consensus sequences, compared with evolutionary recent organisms. It is known
that, in Arabidopsis th. for example, important role as consensus sequences is
played by other sequences as well, such as TATA and CAT (Campbell and Gowri
1990). This property might be mirrored on the position of the oligonucleotides,
since now the promoting is not basically attributed to the CG sequence but also
to other competitive sequences. This phenomenon might influence the presented
graphs, since oligonucleotides which do not have the CG sequence might have
values of |−1−m| between [0,2] and parameter |k| ∼ 0. Still, the importance of
CG is high and thus we still see oligonucleotides with the CG sequence to appear
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Figure 7: 2-dimensional exponent plot of the organism Gallus gallus, chromo-
some 1, quintuplets

in the same position in the diagram, as in mammals, birds and fish.

4 Cluster quantitative analysis

In an attempt to comprehend the degree of overlapping between the two cluster
areas α and β, we introduce some distance measures between the two clusters.
Calculating a distance between areas α and β can be used as a measure of
proximity and furthermore as a way to quantify the coverage between the two
groups.

We have computed the positions in two dimensional space of every point,
and the group to which this point belongs. Points of group α are defined as
�pi = (−1−ma

i ,−ka
i ), with i belonging to group α and 1 ≤ i ≤ na, where na is

the total number of oligonucleotides in group α. Similarly, the points of group β

are defined as �qj = (−1−mb
j ,−kb

j) with j belonging to group β and 1 ≤ j ≤ nb,
where nb is the total number of oligonucleotides in group β. The basic distance
used between two points is Euclidean.

It is noted that the scale of the two axes differs by many orders of magnitude
which can introduce proximity errors. For example, two points can be distant
on the axis with the smaller scaling and relatively proximate on the other. The
distance between these points will be smaller than that for two other points,
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Figure 8: 2-dimensional exponent plot of the organism Danio rerio, chromosome
1, hexaplets

which are very close in the small-scale axis and not so proximate on the large-
scale axis. In order to minimize scaling errors, the data has been normalized
in both axes, thus 0 ≤ m̃a

i ≤ 1 and 0 ≤ m̃b
j ≤ 1, where m̃a

i and m̃b
j is the

normalized value of −1 − ma
i and −1 − mb

j respectively. Similarly, we define

0 ≤ k̃a
i ≤ 1 and 0 ≤ k̃b

j ≤ 1, where k̃a
i and k̃b

j is the normalized value of −ka
i

and −kb
j respectively. The position of the points is then defined as

�pi = (m̃a
i , k̃a

i ) and �qj = (m̃b
j , k̃

b
j) (5)

The Euclidean distance between two points pi, qj (where 1 ≤ i ≤ na and
1 ≤ j ≤ nb ) is defined as:

d(�pi, �qj) =
√

(m̃a
i − m̃b

j)
2 + (k̃a

i − k̃b
j)

2 (6)

Various distance measures have been used and computed here, to represent
the distance of the two groups:

• Average Distance (AD):

AD =

na∑
i=1

nb∑
j=1

d(�pi, �qj)

nanb

(7)
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Figure 9: 2-dimensional exponent plot of the organism Drosophila melanogaster,
chromosome 3, area NT 033777, hexaplets

• Average Minimum Distance (AMD):

AMDa =
1

na

na∑
i=1

mini[d(�pi, �qj)]|
nb

j=1 (8)

where mini[d(�pi, �qj)]|
nb

j=1 is the minimum of all distances between one point
�pi in group α and all points �qj of group β. Likewise :

AMDb =
1

nb

nb∑
j=1

minj [d(�pi, �qj)]|
na

i=1 (9)

To compare clustering distances between different data-sets and organ-
isms, we take into account the minimum (AMDmin = min(AMDa, AMDb))
and maximum (AMDmax = max(AMDa, AMDb)) of these two numbers.

• Proximity Factor (PF):

PF =
1

na + nb

⎛
⎝ na∑

i=1

Sa
i +

nb∑
j=1

Sb
j

⎞
⎠ (10)
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Figure 10: 2-dimensional exponent plot of the organism Caenorhabditis elegans,
chromosome I, area NC 003279, quintuplets

where

Sa
i =

{
1, if min[d(�pi, �pl)]|

na

l=1,l �=i ≤ min[d(�pi, �qj)]|
nb

j=1

0, otherwise
(11)

Sb
j =

{
1, if min[d(�qj , �qg)]|

nb

g=1,g �=j ≤ min[d(�qj , �pi)]|
na

i=1

0, otherwise
(12)

�pl is a point of group α excluding self, �qg is a point of group β excluding
self, min[d(�pi, �pl)] is the minimum of all distances between point �pi and all
other points of group α. The other min[. . .] functions are likewise defined.

The function Sa
i takes the value 1 if the minimum distance between a

specific point of group α and all points of group α is smaller than the
minimum distance between this point and all points of group β. Likewise
the value Sb

j is computed. These measures are representative of the relative
distances between the two groups. Larger values indicate that points are
more proximate to the same group. Maximum value is 1, which means
that the closest neighbor to any point belongs to the same group as itself,
while 0.5 indicates that the points are randomly distributed.
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Figure 11: 2-dimensional exponent plot of the organism Arabidopsis thaliana,
chromosome 1, area NC 003070, hexaplets

• Average Distance Factor (ADF):

ADFa =

∑na

i=1

∑nb

j=1
d(�pi, �qj)

nanb∑na

i=1

∑na

l=1,l �=i
d(�pi,�pl)

(na−1)na

(13)

and

ADFb =

∑na

i=1

∑nb

j=1
d(�pi, �qj)

nanb∑nb

j=1

∑nb

g=1,g �=j
d(�qj , �qg)

(nb−1)nb

(14)

where �pl is a point of group α excluding self and �qg is a point of group β

excluding self. For comparison we take into account again the minimum
(ADFmin = min(ADFa, ADFb)) and maximum (ADFmax = max(ADFa, ADFb))
values among these numbers.

The nominators in Eqs. 13 and 14 represent the average distance between
the two groups, as described in Eq. 7. The denominator is the average
distance between the points of the same group. If this factor is near 1,
means that the average distance between the two groups is the same. If
clustering appears and clusters are apart from each other, then this factor
should have values greater than 1, since the distances between the two
groups should be greater than the distances within the same group.
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The results for each of these measures are presented in Table 1 for chromo-
somes of different organisms.

We observe that some measures better describe the relative position and
separation of the two groups than others. The average distance (AD) is unable
to distinguish the two groups in organisms Drosophila m. and Arabidopsis th.
The reason for this is the geometry of the clusters. The distances between points
belonging to the same group might be greater or smaller than the distances
between points of different groups.

The AMDmin and AMDmax measures demonstrate a clear tendency for
larger values in chordata, but still the separation is not absolute. The reason
for this is that, in general, the distance between two points in different groups is
smaller when the groups intermix and larger when they are separate. We note
that we also calculate the average maximum distance between the two groups,
which is defined similarly to the AMD, but taking the maximum instead of the
minimum. Again, the data produced fails to distinguish the two groups, due to
their geometry.

The metric which better describes the clustering of the oligonucleotides is
PF . This factor represents the percentage of the points, for which their nearest
neighbor belongs to the same group. It is clear that when we have obvious
clustering, as in chordata this factor is near 1. In Arabidopsis th. and Drosophila
m. this factor decreases. Even in these last two organisms, the PF factor is
away from the value of 0.5, which defines the case of random mixing between
the two groups α and β, thus clustering is present in all cases.

Factors ADFmin and ADFmax also distinguish the two groups. When these
factors are equal to 1, the average distance between the points of one group
is the same as the average distance between the points from different groups.
In other words, all distances between points are the same, on average, for all
points. If this factor is greater than one then the average distance is larger
for points belonging to different groups than for points belonging to the same
group. The more obvious the clustering is, the larger the value of ADFmin. In
rare cases, as in Drosophila m., we also find that the ADFmin factor is less than
1, which could be due to the geometry of the graph, in which large distances
appear even within the same group.

As a result we propose the measures PF , ADFmin and ADFmax to charac-
terize the clustering of the two groups. These factors are able to demonstrate
the clustering and provide a quantitative approach for describing the group
geometry.

5 Discussion

In this study the distance size distribution between oligonucleotides is studied
in many model organisms, using a two-parameter model to take into account
short and long tail tendencies (see Eq. 4). The characteristic parameters are de-
picted in a 2-dimensional scatter plot where clustering appears. It is shown that
oligonucleotides tend to cluster depending on their composition, in evolutionary
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newer organisms and particularly in mammals, birds and fish. Oligonucleotides
which include the consensus sequence of the promoter CG (group α) have the
smallest value of the | − 1 − m| parameter. These values correspond to the
smallest value of the critical exponent |μ| and they follow long range distribu-
tions. All other oligonucleotides (group β) seem to follow exponentially decay-
ing distributions or, in general, short range distributions. These two groups
of oligonucleotides appear to be completely separated in evolutionary newer
organisms.

In evolutionary older organisms and in plants, the clustering of the oligonu-
cleotides is not so evident. Although there appears to be some difference between
these two groups, they tend to overlap. The statistical behavior though remains
similar. Oligonucleotides of group α still demonstrate values of | − 1 −m| be-
tween [0,2], while the value of |k| ∼ 0. We recall that in these organisms other
prominent consensus sequences coexist (such as TATA) apart from the CG se-
quence.

This behavior becomes clear when we numerically calculate the distance
between groups α and β. By using the Proximity Factor (PF ) metric we can
clearly demonstrate the clustering. The situation is also mirrored in older organ-
isms, where the clustering is not so obvious, but there is still a small structure
present. These results are also supported by other distance metrics introduced
here, although not so clearly.

Although the clustering of the distribution parameters is more evident in
evolutionary newer organisms, we would like to stress that this behaviour is
present in all organisms studied. It seems that the distribution of oligonu-
cleotides containing the CG sequence is conserved and is evolutionary stable,
since all organisms inherited and kept it. The distribution of the CG-containing
sequences differs from all other sequences, across organisms, and follows power
law statistics.

We also propose that the difference between chordata on the one hand and
insects and plants on the other might have evolutionary roots. Organisms which
appear later than insects seem to have different distribution of small sequences.
It seems that the importance of the CG sequence has been “upgraded” by evo-
lutionary forces. This hypothesis is corroborated by the various quantitative
analysis measures, which demonstrate not only the clustering described above,
but also quantify the differences between evolutionary newer and older organ-
isms.

Unfortunately, DNA decoding for chromosomes of organisms between insects
and chordata has not yet begun. For this reason we are unable to draw a line
and propose the evolutionary stage in which this separation appeared for the
first time. This question remains open and is a future objective for investigation.

It would also be interesting to investigate the oligonucleotide statistical be-
havior of evolutionary old organisms, such as procaryotes, in which multifractal
characteristics have been found (Yu et al. 2001). These organisms have differ-
ent DNA constitution, in terms of coding / noncoding DNA, as well as different
consensus sequences. It is unlikely though to find extreme differences from the
eucaryotes, since the general transcription mechanism remains the same.
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The current study is also limited by the availability of data characterising
many organisms within one class. Usually one or two organisms have been
decoded within each class, especially in the case of higher eucaryotes which
have many long chromosomes. Still, all the available organisms are used in
Modern Biology as “model organisms”, representing their class. Certainly, our
goal is to improve this study with more organisms, as soon as they become
publicly available in the genomic databases and to compare the distribution
details between organisms belonging to the same class.

Finally, even though the proposed model is a good description of the distri-
bution of oligonucleotides, there are cases (especially Arabidopsis th.) where it
is not adequate. Sometimes the distance size distribution appears to have one
(or more) plateau. Although this type of distribution is rather rare, it would be
interesting to further investigate this phenomenon. A possible solution would
be to use more parameters in our model, in an effort to distinguish more clearly
oligonucleotides according to their functionality.

6 Acknowledgments

The authors would like to thank Drs. Th. Oikonomou and D. Verganelakis for
helpful discussions.

References

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. 1994.
Molecular Biology of the Cell. Garland Publishing Inc., New York.

Allegrini, P., Barbi, M., Grigolini, P., and West, B. J. 1995. Dynamical model
for dna sequences. PHYS REV E 52, 5281.

Almirantis, Y. and Provata, A. 1997. The ’clustered structure’ of the
purines/pyrimidines distribution in DNA distinguishes systematically be-
tween coding and non-coding sequences. Bull. Math. Biol. 59, 975.

Almirantis, Y. and Provata, A. 1999. Long- and short-range correlations in
genome organization. J. Stat. Phys. 97, 233.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990.
Basic local alignment search tool. Mol Biol 215, 403.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller,
W., and Lipman, D. J. 1997. Gapped blast and pslblast: a new generation of
protein database search programs. Nucleic Acids Research 25, 3389.

Arneodo, A., d’Aubenton Carafa, Y., Bacry, E., Graves, P. V., Muzy, J. F., and
Thermes, C. 1996. Wavelet based fractal analysis of DNA sequences. Physica
D 96, 291.

20



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Bernaola-Galvan, P., Carpena, P., Oman-Roldan, R., and Oliver, J. 2002. Study
of statistical correlations in DNA sequences. Gene 200, 105.

Bernaola-Galvan, P., Oliver, J. L., Carpena, P., Clay, O., and Bernardi, G. 2004.
Quantifying intrachromosomal GC heterogeneity in prokaryotic genomes.
Gene 333, 121.

Blake, M. C., Jambou, R. C., Swick, A. G., Kahn, J. W., and Azizkhan, J. C.
1990. Transcriptional initiation is controlled by upstream GC-box interactions
in a TATAA-less promoter. Mol Cell Biol 10, 6632.

Buldyrev, S. V., Goldberger, A. L., Peng, C. K., Simons, M., and Stanley, H. E.
1993. Generalized levy-walk model for DNA nucleotide sequences. Phys. Rev.
E 47, 4514.

Campbell, W. H. and Gowri, G. 1990. Codon usage in higher plant, green algae
and cyanobacteria. Plant Physiol 92, 1.

Carpena, P., Bernaola-Galvan, P., Coronado, A., Hackenberg, M., and Oliver,
J. 2007. Identifying characteristic scales in the human genome. PHYS REV
E 75, 032903.

Carpena, P., Bernaola-Galvan, P., Roman-Rodlan, P., and Oliver, J. 2002. A
simple and species-independent coding measure. Gene 300, 97.

Czirok, A., Mantegna, R. N., Havlin, S., and Stanley, H. E. 1995. Correlations
in binary sequences and a generalized Zipf analysis. Physical Review E 52,
446.

Deutsch, M. and Long, M. 1999. Exon-intron structures of eukaryotic model
organisms. Nucleic Acids Research 27, 3219.

Ebeling, W. and Nicolis, G. 1992. Word frequency and entropy of symbolic
sequences: a dynamical perspective. Chaos, Solitons and Fractals 2, 635.

Etienn-Decant, J. 1988. Genetic Biochemistry - From gene to protein. Ellis
Horwood Limited, N.Y.

Hackenberg, M., Previti, C., Luque-Escamilla, P., Carpena, P., Martinez-Aroza,
J., and Oliver, J. 2006. CpGcluster: a distance-based algorithm for CpG-
island detection. BMC Bioinformatics 7, 446.

Hao, B. L. 2000. Fractals from genomes - exact solutions of a biology-inspired
problem. Physica A 282, 225.

Hawkins, J. D. 1988. A survey on intron and exon lengths. Nucleic Acids
Research 16, 9893.

Higgins, D. G., Bleasby, A. J., and Fuchs, R. 1992. Clustal V: improved software
for multiple sequence alignment. CABIOS 8, 189.

21



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Hoffman, E. P., Gerring, S. L., and Corces, V. G. 1987. The ovarian, ecdys-
terone, and heat-shock-responsive promoters of the Drosophila melanogaster
hsp27 gene react very differently to perturbations of DNA sequence. Mol Cell
Biol 7, 973.

Karlin, S. and Brendel, V. 1992. Chance and statistical significance in protein
and DNA sequence analysis. Science 257, 39.

Katsaloulis, P., Theoharis, T., and Provata, A. 2002. Statistical distributions
of oligonucleotide combinations: applications in human chromosomes 21 and
22. Physica A 316, 380.

Katsaloulis, P., Theoharis, T., and Provata, A. 2005. Statistical algorithms
for long dna sequences: Oligonucleotide distributions and homogeneity maps.
Scientific Programming 13, 177.

Katsaloulis, P., Theoharis, T., Zheng, W. M., Hao, B. L., Bountis, A., Almi-
rantis, Y., and Provata, A. 2006. Long-range correlations of rna polymerase
ii promoter sequences across organisms. Physica A 366, 308.

Lander, E. S. and et al., L. M. L. 2001. Initial sequencing and analysis of the
human genome. Nature (London) 409, 860.

Levenberg, K. 1944. A method for the solution of certain problems in least
squares. Quart. Appl. Math. 2, 164.

Li, W. and Kaneko, K. 1992. Long-range correlations and partial 1/F-Alpha
spectrum in a noncoding DNA sequence. Europhys. Lett. 17, 655.

Li, W. T. and Holste, D. 2005. Universal 1/f noise, crossovers of scaling expo-
nents, and chromosome-specific patterns of guanine-cytosine content in dna
sequences of the human genome. Phys. Rev. E 71, 041910.

Li, W. T., Marr, T. G., and Kaneko, K. 1994. Understanding long-arnge corre-
lations in dna sequences. Physica D 75, 392.

Li, W. T. and Miramontes, P. 2006. Large-scale oscillation of structure-related
dna sequence features in human chromosome 21. Phys. Rev. E 74, 021912.

Lim, L. P. and Burge, C. B. 2001. A computational analysis of sequence features
involved in recognition of short introns. Proc. Natl. Acad. Sci. USA 98, 11193.

Marquardt, D. 1963. An algorithm for least-squares estimation of nonlinear
parameters. SIAM J. Appl. Math. 11, 431.

Pearson, W. R. and Lipman, D. J. 1988. Improved tools for biological sequence
comparison. Proc Natl Acad Sci U S A 85, 2444.

Peng, C. K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F.,
Simons, M., and Stanley, H. E. 1992. Long-range correlations in nucleotide
sequences. Nature 356, 168.

22



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Provata, A. and Almirantis, Y. 1997. Scaling properties of coding and non-
coding DNA sequences. Physica A 247, 482.

Provata, A. and Almirantis, Y. 2000. Fractal cantor patterns in the sequence
structure of DNA. Fractals 8, 15.

Provata, A. and Oikonomou, T. 2007. Power law exponents characterising the
human dna. Phys. Rev. E 75, 056102.

Sakharkar, M., Passetti, F., de Souza, J. E., Long, M., and de Souza, J. S. 2002.
Exint: an exon intron datbase. Nucleic Acids Research 30, 191.

Scafetta, N., Latora, V., and Grigolini, P. 2002. Levy scaling: the diffusion
entropy analysis applied to dna sequences. PHYS REV E 66, 031906.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix choice.
Computational Biology 22, 4673.

Venter, J. C. and al. 2001. The sequence of the human genome. Science 291,
5507.

Vinogradov, A. E. 1999. Intron-genome size relationship on a large evolutionary
scale. J Mol Evol 49(3), 376.

Voss, R. 1992. Evolution of long-range fractal correlations and 1/f noise in DNA
base sequences. Phys. Rev. Lett. 68, 3805.

Yu, Z.-G., Anh, V., and Lau, K.-S. 2001. Multifractal characterisation of length
sequences of coding and noncoding segments in a complete genome. Physica
A 301, 356.

Yu, Z.-G., Anh, V., and Wang, B. 2000. Correlation property of length sequences
based on the global structure of complete genomes. Physical Review E 63,
11903.

23



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Chromosome AD AMDmin AMDmax PF ADFmin ADFmax

Dros. m. 0.328223 0.0099115 0.0311811 0.733398 0.88209 1.39532
Arab. th. 0.332287 0.0083081 0.0171636 0.758545 1.08311 1.16287
Dan. r. 1,5 0.701532 0.0903898 0.125794 0.946289 2.42046 4.98622
Dan. r. 1,6 0.398682 0.0238059 0.0631456 0.9104 1.21719 1.92106
Dan. r. 25,5 0.440494 0.0497386 0.102181 0.923828 1.81863 4.15382
Gal. g. 0.459963 0.106491 0.309101 0.99707 1.42238 4.42571
Mus m. 0.418231 0.1424 0.317655 1 1.5331 2.79288
Pan t. 0.511827 0.0686806 0.434286 0.99707 1.60466 10.6364
Homo s. 21,5 0.363733 0.0960787 0.184398 0.998047 1.20283 3.58647
Homo s. 21,6 0.313492 0.0613419 0.178214 0.994385 1.28021 2.56637
Homo s. 22,5 0.752239 0.160707 0.186834 0.976562 3.25357 3.35892
Homo s. 22,6 0.387476 0.0698528 0.0929383 0.953857 1.17362 2.2189

Table 1: Numerical results of the various clustering measures. The chromo-
somes taken into account are quintuplets of area NT 037436 of Drosophila m.,
chromosome 1 hexaplets of Arabidopsis th., chromosome 1 quintuplets of Danio
r., chromosome 1 hexaplets of Danio r., chromosome 25 quintuplets of Danio r.,
chromosome 1 quintuplets of Gallus g., chromosome 19 quintuplets of Mus m.,
chromosome 1 quintuplets of Pan t. and chromosomes 21 and 22 quintuplets
and hexaplets of Homo s.
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