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Increasing community size and connectance can increase stability in competitive 

communities. 

Mike S. Fowler 

Integrative Ecology Unit, Department of Biological & Environmental Sciences, P.O. Box 65, 

Viikinkaari 1, Helsinki University, FIN-00014 FINLAND. 5 

Tel: +358 (0)9 191 57730 

Fax: +358 (0)9 191 57694 

e-mail: mike.fowler@helsinki.fi 

ABSTRACT: The relationship between community complexity and stability has been the 

subject of an enduring debate in ecology over the last 50 years. Results from early model 10 

communities showed that increased complexity is associated with decreased local stability. I 

demonstrate that increasing both the number of species in a community, and the connectance 

between these species results in an increased probability of local stability in discrete-time 

competitive communities, when some species would show unstable dynamics in the absence 

of competition. This is shown analytically for a simple case and across a wider range of 15 

community sizes using simulations, where individual species have dynamics that can range 

from stable point equilibria to periodic or more complex. Increasing the number of 

competitive links in the community reduces per-capita growth rates through an increase in 

competitive feedback, stabilising oscillating dynamics. This result was robust to the 

introduction of a trade-off between competitive ability and intrinsic growth rate and changes 20 

in species interaction strengths. This throws new light on the discrepancy between the 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 2

theoretical view that increased complexity reduces stability and the empirical view that more 

complex systems are more likely to be stable, giving one explanation for the relative lack of 

complex dynamics found in natural systems. I examine how these results relate to diversity-

biomass stability relationships and show that an analytical solution derived in the region of 

stable equilibrium dynamics captures many features of the change in biomass fluctuations 5 

with community size in communities including species with oscillating dynamics. 

Keywords: Stability, Complexity, Community, Competition, Connectance, Intrinsic growth 

rate, Periodic dynamics 
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INTRODUCTION 

The debate surrounding complexity and stability in community dynamics remains an 

enduring ecological discussion, with both theoretical and empirical evidence for qualitatively 

different stability-diversity relationships (Ives and Carpenter, 2007; McCann, 2000). Many of 

the discrepancies can be put down to the huge variety of definitions used to describe what 5 

different authors mean by complexity, diversity and stability (Grimm and Wissel, 1997; Ives 

and Carpenter, 2007). Of the results from model communities, the most convincing 

mathematical argument for decreased dynamical (local asymptotic) stability with increasing 

complexity (in terms of community size) was put forward by May (1972; 1973). He showed 

that increasing the number of links between species in randomly assembled communities 10 

and/or the strength of interactions between these species led to a decrease in the tendency for 

such communities to be locally stable, i.e., for species densities to return to their equilibrium 

level following a small perturbation. Empirical tests of simple randomly assembled 

microcosm systems have supported May’s general theoretical findings (e.g., Fox and 

McGrady-Steed, 2002; Weatherby et al., 1998).  15 

The community framework has generated a large body of theoretical work (reviewed in 

Berlow et al., 2004; Ives and Carpenter, 2007). For example, some work attempts to 

corroborate the universality of May’s result (Chen and Cohen, 2001; Sinha and Sinha, 2005) 

while others suggest that the relationship is not as general as suggested (Cohen and Newman, 

1985) or that increased complexity can both decrease and enhance stability (Rozdilsky and 20 

Stone, 2001). Other research has demonstrated the various results through analysis of the 

mean and variance of interaction coefficients (Jansen and Kokkoris, 2003), community 

assembly methods (Wilmers et al., 2002), or examined what conditions are required to 
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produce maximally stable communities (Haydon, 2000). Ives and Carpenter (2007) have 

recently shown that of 13 potential diversity-stability relationships tested in competitive 

communities, only four indicated a positive relationship: two were related to biomass stability 

(characteristic return rate and size of biomass fluctuations); one to increased compensation 

(increased abundance of surviving species) following species removal; and the last to an 5 

increase in the number of attempts required for an invader to successfully enter a community.  

Increased stability with increasing complexity has been noted under various conditions in 

multitrophic foodwebs (Brose et al., 2006; De Angelis, 1975; Fussman and Heber, 2002; 

McCann and Hastings, 1997; McCann et al., 1998; Neutel et al., 2007; Otto et al., 2007; 

Williams and Martinez, 2004). While these foodweb studies include systems with non-10 

equilibrium dynamics, little work has so far been carried out on non-equilibrium systems 

focusing on direct competition. Most trophically structured foodwebs assume logistic growth 

at the basal level, often with direct competition between basal species for shared resources, 

therefore understanding processes occurring at this level is of crucial importance. Recent 

evidence from a study of bacterial diversity has highlighted high levels of ecotype diversity 15 

within the same bacterial clades (Koeppel et al., 2008), further emphasizing the need to 

understand functional relationships within a trophic level (Berlow et al., 2004). Previous 

theoretical work has shown that variation in species intrinsic growth rate in the community 

may (Ruokolainen et al., 2007) or may not (Fowler and Lindström, 2002) lead to qualitative 

differences in community responses following different disturbances in simulated 20 

competitive communities. These two studies only examined under- and/or damped 

overcompensatory dynamics in the stable equilibrium range. While consumer-resource 

studies have traditionally been interested in investigating cycling systems, it is surprising how 

little work has investigated non-equilibrium dynamics in competitive systems. 
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Here, I investigate how the probability of finding deterministic, locally (asymptotically) 

stable communities varies with the number of species present, or the connectance among 

species in the community. I examined the limits to the classical result that increasing the 

complexity of competitive communities through changes in the number of links or interaction 

strength leads to a reduction in (local) stability; and results from more recent studies that 5 

show that while increased connectance can both reduce and enhance stability, larger 

communities are less stable than smaller (Chen and Cohen, 2001; Fussman and Heber, 2002; 

Ives and Carpenter, 2007; Rozdilsky and Stone, 2001). I relaxed the commonly applied 

assumption that species share a common intrinsic growth rate, and for the first time, to my 

knowledge, explicitly allowed growth rates to vary over a range of qualitatively different 10 

species-specific population dynamics within the community (although this has been done in a 

continuous time predator-prey context elsewhere, e.g., Drake, 1990; Kondoh, 2003); from 

under- and overcompensatory stable point equilibrium, to periodic and more complex 

oscillations. For the first time, I highlight that increasing species numbers and/or connectance 

can actually increase the probability of local stability in competitive communities. These 15 

results were examined under a range of conditions and the general result was found to be 

robust to variations in the model framework. I also examined how biomass fluctuations are 

affected under a stochastic version of this model framework, and show that a solution derived 

under the assumption of stable equilibrium dynamics (Ives and Hughes, 2002) captures many 

of the relationships between the variability in biomass fluctuations and community size under 20 

different correlation structures of environmental variation. 

 

METHODS 
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To model community dynamics, I assumed a discrete-time Ricker model incorporating 

Lotka-Volterra type interspecific interactions between species. The population density N for 

each species i in an m-species community can be calculated over consecutive time-steps t as  

  

Ni,t +1 = Ni,t exp ri 1−
α ij N j ,tj=1

m∑
Ki

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ ε i,t

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, (1) 

where ri represents species specific intrinsic growth rates, Ki is species specific carrying 5 

capacity in the absence of competitors and αij is the species interaction coefficient. For 

simplicity, all Ki = 1, scaling all population sizes to their equilibrium density in the absence 

of interspecific interactions. The environmental fluctuations experienced by different species 

are represented by εi,t and were only set to non-zero values for the study of variability in 

biomass fluctuations described below. All intraspecific interaction terms αii were set to unity. 10 

Values for αij (i ≠ j) were drawn at random from a beta distribution with parameters p and q 

selected to generate distributions where weak interactions dominate, which is thought to be 

the case in natural communities (Berlow et al., 2004; McCann, 2000; McCann et al., 1998). 

Specifically, parameter values used here were p = 1 and q = 9 giving an expected value μ = 

0.1 and variance σ2 = 9/1100. Other values were chosen to examine the effect of changing the 15 

mean and variance of the distribution independently (see Supporting Material). The beta 

distribution was chosen as it provides this flexibility and produces values in the range 0 < αij 

< 1 without having to curtail the distribution. 

The vector of equilibrium population densities of these communities can be found as N* = A-

1K, where A is the m by m interaction matrix of α-values, and K is the m element column 20 

vector of carrying capacities (May, 1973). Communities with all Ni* ≥ 0 are termed feasible, 
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and local stability can be found from the absolute value of the dominant eigenvalue, |λ1|, of 

the Jacobian matrix (J) of this system of linked equations (eqn. 1), evaluated at equilibrium 

(e.g. Ranta et al., 2006), where 

⎥
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J . (2) 

Each element in the Jacobian matrix, Jij, represents the effect of a small perturbation of the 5 

density of species j on the population growth rate of species i. When the absolute value of the 

dominant eigenvalue |λ1| < 1, the community is said to be locally stable in a discrete time 

system (May, 1973). Any small perturbation to the species density will therefore result in the 

density returning to equilibrium. Conversely, if |λ1| > 1, the system is said to be locally 

unstable and any small perturbation from equilibrium will grow over time until the system 10 

arrives at a new attractor state. In some cases, this will lead to species loss from the system, 

as at least one species will settle to a new equilibrium density at the extinction boundary, Ni* 

= 0. Alternatively, all species persist, yet some may oscillate with positive densities. These 

communities are locally unstable but persistent, with a stable periodic or more complex 

attractor. As real species cannot have negative densities, they cannot ever reach the 15 

equilibrium point at which local stability would be evaluated for an unfeasible community, 

therefore I focus only on the local stability of feasible communities here. Different methods 

exist to test for permanence in ecological communities (see, e.g., Ebenman et al., 2004; Law 

and Morton, 1993).  
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In the first section of the results, Analytic Results, I present an analysis of simplified two 

species communities that vary in connectance and ri values, deriving conditions for stability 

when one community member would have unstable (fluctuating) dynamics in the absence of 

the other member, giving a locally unstable community. I start with symmetric competition 

(αij = α, i ≠ j) and extend this analysis to examine the biologically more plausible case of 5 

asymmetric competition (αij ≠ αji). To ensure that only considering 2 unconnected species as 

a community and comparing that to a partially or fully connected 2 species community did 

not represent a special case, I examined the generality of this result by studying the effects of 

increasing species number and connectance when m > 2 in the Simulation Results section.  

Here, I tested the effect of drawing species’ intrinsic growth rates (ri) from different ranges 10 

on the probability of randomly assembled communities being feasible and locally stable, 

across communities of different sizes. Maximum community size used in all cases was m = 

16 species. I selected ri values for all m species in the different sized communities either 

randomly from a uniform distribution with limits [rMIN, rMAX], or equally spaced across the 

same range. rMIN = 0.1 in all cases examined here, while rm = rMAX for the second case and 15 

rMAX was varied between 1 and 3.5. The remaining community members were assigned ri 

values on intervals of (rMAX - rMIN )/(m - 1). Thus individual species dynamics were drawn 

from the entire region of under- to overcompensatory to periodic and more complex 

dynamics allowable within the range of rMAX. Increasing community size therefore reduced 

the variance in ri values in the community. However, all such communities had the same 20 

mean value of r, independently of community size. I then determined the feasibility and local 

stability of each community for a given number of species. I also examined the effect of 

varying the connectance (c) within the interaction matrix, defined as the proportion of non-
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zero αij elements in the interaction matrix, excluding intraspecific feedback terms (i ≠ j). A 

high connectance indicates a rich web of links between species (Rozdilsky and Stone, 2001). 

When c < 1, αij = 0 with probability (1 - c). Specifically, for a given community size, I varied 

c by finding the number of elements that corresponded to the minimum non-zero 

connectance, 1/(m2 - m), and assigned an interaction value to a randomly selected off-5 

diagonal element. This process was repeated by consecutively increasing the number of off-

diagonal elements in the interaction matrix that were to be non-zero for increasing 

connectance values. 

I tested the effect of a simple ri vs. Ni* trade-off, where the community member with the 

lowest equilibrium density (i.e., the poorest competitor) was assigned the highest ri value 10 

from the distribution, with increasing equilibrium densities being assigned decreasing ri 

values. This type of trade-off can arise when individuals within a species are selected for a 

trait that either maximises intrinsic growth rate (density independent factors) or competitive 

ability (density dependent factors) but cannot simultaneously maximise both, similar to the 

concept of r and K strategists. Ranking community members by equilibrium density has also 15 

been shown to be useful in predicting community response to other disturbances (Fowler, 

2005). As community size increased, new ri values were randomly selected before being 

assigned, as introducing new species to the system changed the equilibrium densities of 

existing community members. I also tested the effect of varying the mean and variance of the 

distribution of αij-values, but this did not qualitatively change the results (see Supplementary 20 

material). 
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For each scenario, 10,000 replicate communities were generated for each community size, 

connectance value and/or value of rMAX. Feasibility and local stability was recorded for each 

community.  

Variability in Biomass Fluctuations 

The magnitude of variability in biomass fluctuations is another measure of community 5 

stability that is of considerable interest to ecologists. Here, community biomass at any time is 

defined as xt = ΣNi,t, and a common measure of its variability over time is given as the 

coefficient of variation (CV),  

  
CV x( )=

σ xT( )
μ xT( ), T  = 1...200 , (3) 

where σ is the standard deviation and μ is the mean of the time series. Ives and Hughes 10 

(2002) derived the following solution for a broad class of community models to describe the 

variation in biomass fluctuations when species were not perfectly correlated in their response 

to environmental variation (their eqn. 7), 

  

CV x '( )=σ p

1+ m − 1( )ρ

m 1− 1− r( )2⎡
⎣⎢

⎤
⎦⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

1
2

,  (4) 

where x′(t) = ΣNi,t – Ni* and σp = σε/N* scales the standard deviation of the environmentally 15 

driven variation in the population growth rate by the average number of individuals in the 

population (Ives and Hughes, 2002). Environmental variation εi,t was generated here as 

normally distributed white noise (autocorrelation = 0), with mean 0, σε = 0.135 and a 
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correlation structure of ρ = 0, 0.5 or 1. This was incorporated into eqn. (1), communities were 

assembled following the same rules as above, checked for persistence, then initiated at 

equilibrium and simulated over 200 time-steps for different community sizes and values of 

rMAX and ρ. The CV(x) from these simulated time-series was calculated and the mean taken 

from 10000 replicated communities for each value of m and rMAX and compared with 5 

predictions based on equation (4), where the mean value of αij (0.1) was used to determine 

σp, while r was taken as the mean value of ri values across the community, i.e., (rMIN + 

rMAX)/2. 

 

RESULTS 10 

Analytic Results 

Initial insight can be gained by examining the eigenvalues of simple two species 

communities. Here I assumed that one species has an ri value that produces stable point 

equilibrium dynamics in the absence of competition (0 < ri < 2), while the second species 

shows sustained periodic (or more complex) oscillations (rj > 2). When there is no interaction 15 

between species (αij = αji = 0), the eigenvalues are [1 - ri, 1 - rj] and the system will be 

unstable, as the stability determining (dominant) eigenvalue will always have absolute value 

|1 – rj| > 1. Here, species j will oscillate while i has stable point equilibrium dynamics.  

When amensal competition is introduced, such that the species with the higher intrinsic 

growth rate suffers competition from the other, but not vice-versa (αij = 0, αji > 0; c = 0.5), 20 

the eigenvalues are [1 - ri, rj αji + 1- rj]. The eigenvalue associated with species i will always 
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have absolute value |1 - ri | < 1 and stability will depend on the other eigenvalue. Here, if |rjαji 

+ 1- rj | < 1 the community will be stable. By solving λj = rjaji + 1 - rj = ± 1, we can find 

inequalities for rj that satisfy stability at both limits. Thus, when 0 < rjaji < 2, the oscillations 

that would arise from species j having a high intrinsic growth rate are damped by competition 

from species i. The upper limit of 2 is required here to prevent a competitive exclusion 5 

instability (fold bifurcation) occurring when λj > 1. This shows that there is an increase in the 

parameter space associated with stable dynamics with increasing connectance (or number of 

species) in a competitive community.  

This can be further illustrated by examining two species competition in a fully connected 

community with diffuse competition (αij = αji = α, 0 < α  < 1, Fig. 1a & b). Here the 10 

eigenvalues are  

  
λi, j =

1
2

2α + 2 − ri − rj ± ri
2 + rj

2 − 2rirj + 4riα
2rj

α + 1
,  (5) 

therefore, assuming that ri < 2, conditions for local stability can again be found by solving λi,j 

= ±1, leading to the following inequality for locally stable systems 

  
rj < 2

2α − ri + 2
riα − ri + 2

 .  (6) 15 

Thus, when ri < 2 and 0 <α < 1, it is possible for local stability to arise when rj > 2 as the 

dominant eigenvalue shifts from being less than to greater than -1 (Fig. 1a), which would lead 

to unstable, oscillating dynamics in the absence of competition. Decreasing ri increases the 

parameter space of rj associated with local stability (Fig. 1b).  
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The result for local stability with asymmetric competition between two species (αij ≠ αji), 

otherwise under the same conditions, is  

  
rj < 2

2α ijα ji + ri − riα ij − 2
riα ijα ji + 2α ji + ri − riα ij − riα ji − 2

,  (7) 

as illustrated in Fig. 1c, which shows the maximum rj value associated with stability (-1 < λ1 

< 1) given particular interspecific interaction strengths (αij, αji). In a simple 2 species case, 5 

positive equilibrium densities (feasible communities) are found for all αij < 1. Increasing the 

strength of competition from species i on j (αji) leads to an increase in the value of rj that is 

associated with locally stable dynamics. Increasing competition from species j on i (αij) 

reduces the parameter space of rj associated with local stability. 

These results highlight the importance of considering the actual, rather than the absolute 10 

value of the dominant eigenvalue of the system (e.g., eqn. 5, Fig. 1a). A dominant eigenvalue 

(λ1) that shifts from being greater than to less than -1 indicates a loss of stability through a 

period-doubling (flip) bifurcation, leading to unstable population dynamics with a periodic or 

more complex attractor. This can arise here with rj values > 2. An eigenvalue of λ1 > +1 

indicates an instability associated with the competitive exclusion of at least one species via 15 

strong competition (high αij values), which is known as a fold bifurcation. Therefore, 

knowing whether the absolute value of λ1 corresponds to +1 or -1 gives us important 

dynamical information about how the unstable system will respond to perturbation from the 

equilibrium, either leading to persistent fluctuations (λ1 < -1) or species loss (λ1 > 1).  Other 

types of bifurcations exist, but are not relevant for this simple case (αij = α), e.g., complex 20 

eigenvalues (associated with a Hopf bifurcation) cannot arise in the parameter ranges 
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considered here as the term inside the square root in eqn. (5) is always positive given the 

assumptions about parameter values used here: 0 < ri < 2, rj > 2 and 0 ≤ α < 1. Thus, as long 

as ri
2 + rj

2 + 4riαrj > 2rirj, the square root term in eqn. (5) will be positive and the eigenvalue 

will not be complex, a condition which always holds given the limits defined here. 

These analyses may also be applied to more general interpretations of eqn. (1), which can 5 

include exploitation and interference (e.g., Case and Casten, 1979; De Angelis, 1975; Drake, 

1990; Kondoh, 2003), but that requires a variety of further assumptions to be made about 

trophic structure and is beyond the scope of the current work.  

 

Simulation Results 10 

In all scenarios studied in deterministic communities where rMAX ≤ 2, increasing the number 

of species in the community always eventually led to a reduction in the probability of 

communities being feasible and locally stable (Figure 2). None of the communities were 

feasible but locally unstable in this range (rMAX ≤ 2), thus those large communities that were 

not locally stable were unfeasible. This result was tested further and found to hold in 15 

communities with up to m = 50 species. When rMAX > 2, increasing community size was 

associated with an increase in the probability of finding locally stable communities, a result 

that arose across all different methods of community formation. This result was more 

pronounced when ri values were distributed evenly across community members (Fig. 2b) 

compared to randomly selected ri values (Figs. 2a). While some communities with rMAX > 2 20 

were found to be feasible and locally unstable (Fig. 3a), this instability was always generated 
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by crossing a period doubling (flip) bifurcation (λ1 < -1) and never lead to species loss (λ1 > 

1). This was tested and also found to be true even in very large communities (m = 50). 

 Introducing a trade off between competitive ability (equilibrium density) and intrinsic 

growth rates between species did not qualitatively affect the results (Fig. S2). Increasing the 

mean while keeping the variance constant led to an increase in stability across much of the 5 

parameter space, whilst increasing the variance in αij while keeping a constant mean reduced 

the probability of stable communities (Fig. S2).  

Increasing the connectance was also found to increase stability across all community sizes 

(Fig. 2c), which is accompanied by a decrease in the probability of being feasible but locally 

unstable (Fig. 2d). Increasing connectance also led to an increase in the probability that 10 

communities were unfeasible with high m, explaining the levelling off of feasibility and local 

stability in a 16 species community (Fig. 2c). Increasing m also lowers the minimum possible 

(non-zero) connectance in a community [1/(m2 - m)]. The probability of being F-LS decreases 

with increasing m in low (and zero) connectance communities, related to the increased 

probability that at least one species has ri > 2 (giving an unstable community) when sampled 15 

randomly from a uniform distribution. There are many other ways in which species could 

differ and a more complete invasion analysis would provide an interesting extension to this 

work.  

An increase in the number of competitive links in the community, either through increasing c 

or m, leads to an asymptotic increase in the total biomass (ΣNi
*, Fig. 3b). As community size 20 

increases, the total competitive feedback increases at a decreasing rate. This allows a 

reduction in the per-capita growth rate which stabilises any deterministically fluctuating 
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(unstable) dynamics and can be seen as an increase in the locally stable parameter space. This 

is illustrated in Fig. 4a, with locally stable parameter combinations above and to the left of 

the lines for different sized communities. Eventually, competition becomes so severe it 

causes the community to become unfeasible, i.e., N* contains negative equilibrium densities 

for at least one species (Fig. 4b). Variation in the maximum intrinsic growth rate (rMAX) has 5 

no effect on the feasibility results (recall, N* = A-1K). However, variation in rMAX does 

change the probability that communities are locally unstable (eqns. 3 - 5). When rMAX > 2, 

small communities have a non-zero probability of being locally unstable. Increasing the 

number of species always leads to a reduction in the probability of being locally unstable, 

faster than the increase in unfeasibility occurs.  10 

The effect of increasing community size on the dominant eigenvalue, |λ1|, is illustrated 

numerically for increasing community size in Fig. 4b. In communities with diffuse 

competition (αij = α, i ≠ j), increasing community size leads to an increase in the parameter 

space associated with stable dynamics (|λ1| < 1, Fig. 4a). An example from a randomly 

assembled community highlights the initial effect of introducing new species into an initially 15 

unstable two species community (Fig. 4b). In low diversity communities, any species with a 

high ri can dominate the population dynamics, producing fluctuating, persistent, locally 

unstable communities (λ1 < -1). The addition of further species leads to a reduction in |λ1|, 

eventually dropping below the critical threshold, |λ1| = 1 (Fig. 4b). Adding extra species or 

links will tend to reduce the absolute value of any element in J (eqn. 2), as Ni* is generally 20 

reduced through increasing m. This indicates that a change in density of species j will have a 

smaller effect on the response of the population density of species i than before, however, the 
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increase in the number of species feeding back more than compensates for this reduction, 

stabilising dynamics.  

The change from locally unstable to locally stable communities is illustrated in terms of the 

resultant dynamics of locally unstable communities, which may respond to small 

perturbations from the internal equilibrium (N*) in different ways, in Figs. 4c & d. 5 

Communities may fluctuate with some characteristic period around the equilibrium following 

a disturbance (Fig. 4c). Adding species to these communities leads to an increase in the 

strength of density dependent feedback (ΣNi), which dampens oscillations through a 

reduction in per-capita growth rates, changing communities from being locally unstable with 

oscillating population densities to locally stable with damped oscillations following 10 

disturbance (Fig. 4d). This can occur even though new species entering the community have 

relatively high ri values.  

In terms of the variability of biomass fluctuations, larger CV(x) values represent lower 

biomass stability (i.e., greater values of 1/CV show greater biomass stability), simulations of 

eqn. (1) show that CV(x) varied with m, rMAX and the environmental correlation (ρ) (Figs. 5a 15 

- c). Substituting the single r-value used to derive the CV(x') in Ives & Hughes (2000), with 

mean(ri) (eqn. 4) allows us to generate reasonable predictions of how community biomass 

will fluctuate under environmental variation when ρ < 1 (Figs. 5d - e). Increasing m always 

leads to an increase in biomass stability for the simulated system (1/CV, Fig. 5a - c). For any 

given community size, the maximum biomass stability is seen with a mean r value of 1 (rMAX 20 

≈ 1.9). When ρ < 1, eqn. (4) tends to overestimate the simulated values of 1/CV. When all 

species experience the same environment (ρ = 1), eqn. (4) captures the general relationship 

between variation in rMAX and 1/CV, but does not predict the increase in biomass stability 
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seen with increasing community size, particularly noticeable in communities with high rMAX 

(Fig. 5c). Thus eqn. (4) underestimates biomass stability in larger communities. Potential 

mechanisms leading to this result are discussed below (see also Fig. S3). 

 

DISCUSSION 5 

In the debate over how species diversity affects community stability, results from model 

randomly assembled competitive communities have previously shown that increased species 

number and/or connectance always leads to reduced probability of finding locally 

(asymptotically) stable communities (May, 1972; May, 1973). For the first time, to my 

knowledge, I have shown that independently increasing species number and/or connectance 10 

in competitive communities can increase stability across a range of community sizes. This 

result arises when the assumption that all species in the community share the same intrinsic 

growth rate which results in locally stable dynamics in the absence of competition is relaxed. 

Earlier results are confirmed here under a certain parameter range (rMAX ≤ 2), yet stability 

increases with complexity when rMAX > 2 over a wide range of different scenarios, 15 

connectance and community sizes (Figs. 1 – 3, S2). Results were most pronounced when 

species’ ri values were distributed evenly across the whole community, although this method 

was associated with an increase in variation across all ri’s with increasing community size. 

Introducing a trade-off between competitive ability (Ni
*) and ri reduced the effect in 

communities with random ri values, but it remained clear when ri was equally distributed 20 

across the community (Fig. S1). Increasing the expected value of αij or the variance of the 

distribution of αij values had a quantitative but not qualitative effect on the relationship, with 
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increased mean αij leading to an increase in stability, while an increase in variance decreased 

stability over most of the parameter space (Fig. S2).  

Relaxing the assumption that all species have stable equilibrium dynamics in the absence of 

competition leads to results that oppose earlier findings that were based upon this assumption 

(Chen and Cohen, 2001; May, 1972; May, 1973; Rozdilsky and Stone, 2001). While 5 

Rozdislky and Stone (2001) clearly showed an initial decrease followed by an increase in the 

probability of feasibility and stability with increasing connectance, communities with more 

species were always less likely to be stable than those with fewer species under their 

conditions, whenever differences occurred. The main difference between the results I show 

here and those in Rozdislky and Stone (2001) is that I show an increase in stability with 10 

complexity through a switch from feasible, locally unstable communities to those that are 

feasible and locally stable, through period halving across a flip bifurcation (λ1 = -1). 

Rozdislky and Stone’s (2001) results rely on a switch in feasibility – from feasible (and 

locally stable) to unfeasible communities or vice-versa with increasing complexity. Chen & 

Cohen (2001) examined different measures of stability in model food webs; local and global 15 

stability, and permanence, finding that all three measures predicted the same qualitative 

relationship of decreasing stability with increasing complexity in the Lotka-Volterra cascade 

model. 

All communities that were not locally stable here were either unstable or unfeasible. All 

unstable communities produced under the conditions used in this study were persistent, 20 

oscillating around their equilibrium densities, confirmed through long-term simulation of 

these randomly assembled communities (e.g. Figs. 4c & d) - all unstable communities had a 

dominant eigenvalue λ1 < -1. In other words, while period halving (reverse flip) bifurcations 
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occurred here, fold bifurcations (λ1 > 1, associated with species loss) never occurred. Flip 

bifurcations are a feature of the discrete-time formulation of this model, that do not occur in 

continuous time versions. Increasing the number of species in the community does not have 

any effect on the persistence of those communities that were feasible, as species loss would 

only occur in unfeasible communities. Considering the effect of adding species to the 5 

community on the eigenvalues of the Jacobian matrix (Figs. 1, 4), it can also be seen that 

adding additional species to small communities reduced the absolute value of the dominant 

eigenvalue (increased the value associated with λ1 < -1)  and increased the parameter space 

within which stable dynamics were possible. The additional density dependent feedback 

terms (ΣαijNj) are more important to system stability than the additional ri values associated 10 

with new species. 

Increasing community size generally leads to a reduction in biomass variability (Fig. 5), often 

termed increased community biomass stability (Ives and Hughes, 2002). This result relies 

upon the assumption that species do not respond to environmental variation in a perfectly 

correlated way, a phenomenon known as the “portfolio effect” (Ives et al., 1999; Stearns, 15 

2000). The result derived by Ives & Hughes (2002) was shown to apply more generally than 

first thought (Fig. 5), i.e., to communities where species differ in their intrinsic growth rates 

(ri) and when some species show unstable dynamics in the absence of competition. Even 

when species respond to the environment in the same way, increasing community size leads 

to an increase in biomass stability (Fig. 5c). There are two mechanisms associated with this 20 

increase in biomass stability with m in simulated communities (Fig. S3). (i) Differences in ri 

values mean that species with very low or high ri will exhibit differences in their per-capita 

response to the environment, even though they experience the same exogenous forcing. This 
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leads to a reduction in synchrony across species, which is translated into an increase in 

biomass stability. (ii) Increasing m can change the underlying local stability of the 

community. Initially unstable, persistent communities can become stable with increasing m, 

which would be associated with an increase in biomass stability. The basic model framework 

used here is used to examine biomass variability in autocorrelated stochastic environments 5 

more carefully elsewhere (Ranta et al., 2008a; Ranta et al., 2008b, in revision). 

The presence of complex population dynamics in natural systems remains an interesting 

ecological discussion. There are examples of field and laboratory populations with cyclic or 

more complex dynamics, similar to those generated by the Ricker function, among plants 

(Crone and Taylor, 1996; Tilman and Wedin, 1991), insects (Dey and Joshi, 2006; Dixon, 10 

1990; Hassell et al., 1976; Mueller and Joshi, 2000; Turchin, 2003) and other taxa (Zeng et 

al., 1998). The Ricker function represents a simple unstructured population model, however, 

the results presented here indicate that when individual species may have the potential to 

show stable periodic or more complex dynamics, these may not always be seen in real 

ecosystems due to interspecific feedback. Many insect species have the capacity to reproduce 15 

at very high rates, corresponding to high ri values, and are likely to compete over resources to 

some degree with closely related species. If competition occurs with other species that show 

very different growth rates, then the current modelling framework should be able to capture 

these differences. There is no a priori reason to assume that all species in natural systems will 

have intrinsic growth rates < 2 (i.e. in the stable region), although most of the theory that 20 

deals with population and/or biomass stability rests upon that assumption. In the absence of 

simple, general analytical tools to relate complexity to different stability measures (e.g., 

Hughes and Roughgarden, 2000; Ives and Hughes, 2002; May, 1972; May, 1973), 

simulations become a useful tool to explore these relationships. Other methods have been 
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proposed to predict, e.g., Variance-Covariance relationships in structured population models 

(Greenman and Benton, 2005) which can be used to evaluate the biomass variability, but 

these methods are limited to conditions close to the equilibrium, i.e., with very weak 

environmental forcing (Ruokolainen and Fowler, 2008). 

Cohen & Newman (1985) suggested some counter-examples to question the generality of the 5 

negative diversity-(local) stability relationship. They utilised a simple, general approach to 

studying the problem that did not include any information about specific dynamical 

properties of the different community members. The examples they introduce relied upon 

decreased connectance with increasing number of species in the community. This feature was 

assumed as it was thought that “increasingly severe constraints must be imposed on the 10 

distribution of the interspecific interaction coefficients to assure the stability of the 

community.” (Cohen and Newman, 1985, p. 153). My approach differs in at least one crucial 

way. Decreased connectance with increasing community size effectively means that species 

in a large community interact (on average) with the same number of species as those in a 

smaller community. Therefore, increasing community size does not have a great effect on 15 

diversity, as it does not lead to any change in the average number of interactions within the 

community. This modelling framework is similar to that used to model limiting similarity 

mentioned above. I vary community size and connectance independently, showing that the 

probability of communities being stable can be increased through increases in either measure 

of complexity. I also include specific details about species dynamics in the absence of 20 

competitors. Cohen & Newman (1985) dealt only with random matrices that would be 

equivalent to matrix J in my work, in a similar manner to Haydon (2000); the mean value of 

elements of J is not assumed to be zero here. All matrix elements are expected to become 

smaller (more negative) with any increase in rMAX, with the main diagonal decreasing faster 
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than off-diagonal elements, due to the relatively stronger within-species competition (αii = 1). 

The main diagonal elements may be positive for large communities, but off-diagonal 

elements are always negative. Increases in community size tend to increase the value of both 

the main- and off-diagonal elements of J (approaching one or zero, respectively) through a 

reduction in Ni*, with main diagonal elements increasing faster than off diagonals. 5 

Natural food-webs are made up of species that show a great variety of life-history strategies. 

While some species within a large community or food web may have discrete or non-

overlapping generations, others will almost certainly have overlapping generations. 

Modelling these large systems with a single mathematical method, e.g., discrete- or 

continuous-time growth functions, represents a necessary simplification in the approach used. 10 

Relating the complexities of scaling different birth and death rates among different species to 

different modelling methodologies represents an intriguing future challenge for community 

ecology. Case & Casten (1979) demonstrated how the multispecies (Lotka-Voterra) Logistic 

function can be generalised to incorporate trophic structure without any change to its 

formulation. Examination of a trophically structured version of the model presented here 15 

through selection of appropriate parameter values would represent an interesting avenue for 

further exploration, extending the generality of the results presented here. While trophically 

structured models have previously shown positive diversity-stability relationships (e.g., De 

Angelis, 1975), these generally come at the expense of an increase in the number of model 

parameters and potential functional forms, which can become increasingly difficult to 20 

estimate from natural systems (Abrams, 2001). This generates an interesting conflict in terms 

of model parsimony – when a simple model that lacks components of some natural systems 
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and more complex models can both generate the same qualitative predictions of population 

dynamics, we must decide which provides the most useful insight? 

Various features of randomly drawn communities have been shown to differ to communities 

drawn using sequential assembly rules (Virgo et al., 2006), while Haydon (2000) has 

demonstrated the conditions required to produce maximally stable communities. However, 5 

randomly assembled communities have proven a popular starting point when asking 

questions of community stability (Chen and Cohen, 2001; Cohen and Newman, 1985; Ives 

and Hughes, 2002; Ives and Carpenter, 2007; Ives et al., 1999; Ives et al., 2000; Jansen and 

Kokkoris, 2003; Rozdilsky and Stone, 2001) and can serve as a useful null hypothesis for 

comparison with communities assembled under different ecological and evolutionary rules. 10 

Investigating different assembly rules in communities whose component species differ in 

their intrinsic dynamics also represents an interesting avenue for further research. 

The results presented here show for the first time that increasing the number of species and/or 

the connectance between species in the community can increase local stability in randomly 

assembled communities, when some members have the potential to show oscillatory 15 

dynamics. The main finding is robust to changes in the mean and variance in the community 

interaction strengths, variation in the connectance of the interaction matrix and a trade-off 

between competitive ability (N*) and intrinsic growth rate. These results help to extend and 

clarify important elements of the complexity – stability discussion. 

 20 
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FIGURE CAPTIONS: 

Figure 1: Stability regions for simple, deterministic, two species communities, where one 

species shows stable equilibrium dynamics in the absence of competition (ri < 2) and the 

other has oscillatory dynamics (rj > 2). (a) The two eigenvalues (λ1,2) of a community with 

symmetric competition (αij = αji = α) vary with both α and rj. Instability of the whole system 5 

is driven by high rj values (λ1 ≤ -1), seen with combinations of high rj and low α-values. (b) 

The regions of stability (below the line) for the same system (ri = 1, dashed line) and with 

lower (ri = 0.1, solid line) and higher (ri = 1.9, dotted line) growth rates. (c) Asymmetric 

competition, with the surface showing the parameter combinations that lead to the bifurcation 

point between the stable (below the surface) and unstable (above) regions. Increasing the 10 

competitive pressure of the species with stable dynamics (ri = 1) on the species with unstable 

dynamics (αji > αij) increases the value of rj associated with community stability. In all cases, 

the unstable region is associated with persistent, oscillating dynamics across the community. 

Figure 2: The probability of finding feasible, locally stable communities increases with 

community size and/or connectance, when some community members show oscillatory 15 

dynamics in the absence of competition (rMAX > 2). Species’ intrinsic growth rates (ri) were 

drawn at random from a uniform distribution with limits [0.1, rMAX] (panels a, c & d) or 

equally distributed across the same range (b). A value of rMAX = 2.5 was used in panels (c – 

d) and all communities were formed with αij values drawn from a beta distribution with mean 

0.1, variance 9/1100, with results shown for 3 (solid line), 6 (dashed), 9 (dotted) and 16 (dash-20 

dot) species communities. 
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Figure 3: Community characteristics are affected differently by community size, rMAX or 

connectance. (a) The probability of communities being unfeasible increases with community 

size, but is unaffected by rMAX, however, both m and rMAX affect the probability of being 

feasible and locally unstable (F-LU). (b) The total equilibrium density increases 

asymptotically with community size (individual equilibrium densities therefore decrease with 5 

increasing m) and decreases with connectance, with results shown for 3 (solid line), 6 

(dashed), 9 (dotted) and 16 (dash-dot) species communities. All communities were assembled 

as in Fig. 2. N.B. The axes in panel (a) have been rotated to make viewing easier. 

Figure 4: The dominant eigenvalues (|λ1|) and population dynamics change with increasing 

community sizes. (a) Parameter space above and to the left of the lines shows stable point 10 

equilibrium dynamics in communities with diffuse competition (αij = α, i ≠ j), below and to 

the right are unstable (periodic or more complex) dynamics, therefore increasing community 

size from 2 to 11 species increases the size of the stable region. Panels (b – d) use the same 

example community to illustrate these effects with asymmetric competition, with rMAX = 2.75 

and all other parameter values drawn as in Fig. 2a. (b) Increasing the number of species leads 15 

to an initial reduction in |λ1| from being greater than, to less than one, the critical threshold 

for local stability. The solid line shows the randomly assembled community. Adding more 

species eventually leads to an unfeasible community (m = 16, marked *). Dotted line shows a 

diffuse competition community where α = 0.1, ri values linearly spaced linearly between 0.1 

and 2.75. (c) If at least one species in a small community has high ri values, populations may 20 

oscillate and the community is locally unstable. Here, r1 = 2.45; r2 = 1.16; r3 =  2.05. (d) A 

new species added to the community increases the strength of density dependent feedback, 
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which dampens population oscillations. In this case a further species was added to the same 

community shown in panel (c) (m = 4, r4 = 0.98), the new community is locally stable. 

Figure 5: The variability of fluctuations in community biomass (presented as 1/CV) changes 

with community size, rMAX and the correlation (ρ) in the environmental signals (εi,t) 

experienced by different species. Larger values of 1/CV relate to lower variability, i.e., 5 

greater stability in community biomass over time. Panels (a – c) show results from simulated 

communities (results show mean 1/CV from10000 different communities for each data 

point), with αij-values drawn randomly as described in the methods. Panels (d – f) show 

predictions from the analytical solution (eqn. 4) assuming α = 0.1, r = (0.1 + rMAX)/2. The 

correlation structure increases from left to right panels with (a, d: ρ  = 0), (b, e: ρ  = 0.5) and 10 

(c, f: ρ  = 1). The analytical solution captures many important features of the simulated 

results. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

 

 




