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When the exception becomes the rule:

the disappearance of limiting similarity in the Lotka–Volterra model

György Barabás1 & Géza Meszéna1

Department of Biological Physics, Eötvös University2

Pázmány Péter sétány 1A, H-1117 Budapest, Hungary3

phone: 36-1-372-2795, fax: 36-1-372-27574

email: dysordys@umich.edu, geza.meszena@elte.hu5

Abstract We investigate the transition between limiting similarity and coexistence of a con-6

tinuum in the competitive Lotka–Volterra model. It is known that there exist exceptional cases7

in which, contrary to the limiting similarity expectation, all phenotypes coexist along a trait axis.8

Earlier studies established that the distance between surviving phenotypes is in the magnitude of9

the niche width 2σ provided that the carrying capacity curve differs from the exceptional one signif-10

icantly enough. In this paper we studied the outcome of competition for small perturbations of the11

exceptional (Gaussian) carrying capacity. We found that the average distance between the surviv-12

ing phenotypes goes to zero when the perturbation vanishes. The number of coexisting species in13

equilibrium is proportional to the negative logarithm of the perturbation. Nevertheless, the niche14

width provides a good order of magnitude for the distance between survivors if the perturbations are15

larger than 10%. Therefore, we conclude that limiting similarity is a good framework of biological16

thinking despite the lack of an absolute lower bound of similarity.17

Keywords: competitive exclusion, continuous coexistence, niche width18
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1 Introduction19

The species packing problem is one of the oldest issues of mathematical ecology. Based on the20

investigation of the Lotka–Volterra competition model, MacArthur and Levins (1967) proposed21

that species should not be too similar if they are to coexist (limiting similarity). The minimal22

difference was assumed to be related to the niche width 2σ of the species, i.e. to the width of their23

resource utilization function. This insight turned out to be useful in interpreting empirical data in24

simple cases of resource competition (Schluter, 1982; Grant and Schluter, 1984; Grant, 1999).25

Unfortunately, the näıve version of limiting similarity was not confirmed by further theoretical26

studies. May and MacArthur (1972); May (1973) found that the minimal trait difference can be27

arbitrarily small if the carrying capacities are properly tuned. Even worse, Roughgarden (1979)28

(p. 534-536) demonstrated that even a continuum of phenotypes may coexist in the Lotka–Volterra29

model. These results were seen by many as the end of the road to limiting similarity (Rosenzweig,30

1995; Maynard Smith and Szathmáry, 1995).31

However, Abrams (1983) proposed a different viewpoint. As there is no such thing as an absolute32

lower limit of allowed similarity, one should instead study the relationship between similarity and the33

likelihood of coexistence. In the competitive Lotka-Volterra model it is easy to see that increasing34

similarity shrinks the parameter range allowing for coexistence (May, 1973; Vandermeer, 1975). This35

relationship was formally proven in a model-independent way by Meszéna et al. (2006). Coexistence36

of similars is not impossible, but it is sensitive to external perturbations and is therefore improbable.37

This way, the idea of limiting similarity can be rescued as a basis of biological thinking, despite the38

lack of an absolute lower bound of similarity.39

In line with the perturbation approach of Meszéna et al. (2006), Gyllenberg and Meszéna (2005)40

demonstrated that continuous coexistence, like the one in Roughgarden (1979)’s model, is always41

structurally unstable, i.e. it can be destroyed by an arbitrarily small perturbation. This result is42

also independent of the specific model (see Sasaki and Ellner, 1995; Sasaki, 1997, for earlier, related43

1



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

studies).44

With this background, Szabó and Meszéna (2006) reinvestigated the Lotka–Volterra competition45

model and numerically reproduced the cases of continuous coexistence as well as limiting similarity.46

Provided that the competition function is a Gaussian, the Gaussian carrying capacity represents47

the special situation allowing coexistence on the whole continuum. Any significant departure from48

the Gaussian shape of the carrying capacity resulted in a clear discretization of the coexisting types.49

With reassuring resemblance to the original idea of MacArthur and Levins (1967), the typical trait50

difference between the neighbouring types is in the order of magnitude of, and is proportional to,51

the niche width 2σ.52

Here we continue this investigation by studying the transition between continuous coexistence53

and limiting similarity. We know from the analytical result of Gyllenberg and Meszéna (2005) that54

an arbitrarily small perturbation of the continuous case results in a discrete distribution. Can we55

also conclude that the 2σ prediction for the neighbour-distance is also applicable after an arbitrarily56

small departure from the continuous case? Or will the distance increase gradually from zero? In57

the latter case, how much perturbation is needed to ensure the validity of the classical picture?58

2 Model definition59

Following MacArthur and Levins (1967), the Lotka–Volterra model describing competition for a60

resource continuum is investigated. Each species is characterized by a single continuous trait de-61

scribing the species’ resource optimum.62

For L different species, the population dynamics is specified as63

dni(t)

dt
=

⎛
⎝K(xi)−

L∑
j=1

a(xi, xj)nj(t)

⎞
⎠ ni(t) (i = 1, . . . , L), (1)

where ni(t) and xi are the density and the phenotype of the ith species, respectively. It reads as64

dn(x, t)

dt
=

(
K(x)−

∫
a(x, y)n(y, t) dy

)
n(x, t) = 0 (2)
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for a continuum of phenotypes. (Note that the concepts of phenotype and species are equivalent in65

a model of clonal inheritance.)66

The competition function is specified to be a Gaussian of the trait difference:67

a(xi, xj) = exp

(
−

(xi − xj)
2

2σ2

)
. (3)

As a(x, x) = 1 for all x, the equilibrium population size of a species, when alone, is K(x). Therefore,68

K(x) is referred to as the carrying capacity function. It is assumed to have the Gaussian form69

K(x) = exp

(
−

x2

2ω2

)
, (4)

as the reference case. Then for ω > σ the continuous distribution70

n(x) =
ω√

2πσ2(ω2 − σ2)
exp

(
−

x2

2(ω2 − σ2)

)
, (5)

of the phenotypes satisfies the equilibrium equation71

K(x)−

∫
a(x, y)n(y, t) dy = 0 (6)

for the continuous case (Roughgarden, 1979; Szabó and Meszéna, 2006).72

We will modify the reference form of the carrying capacity by a perturbing function f(x) as73

K(x) = exp

(
−

x2

2ω2

)
+ εf(x), (7)

where the parameter ε is used to tune the strength of perturbation. As proven in Gyllenberg and74

Meszéna (2005), for an appropriate choice of the perturbing function, an arbitrarily small ε destroys75

the possibility of the coexistence of a whole continuum of phenotypes.76

For the simulations the interval x ∈ [−1, 1] was divided into 1001 partitions of equal length. We77

integrated the so discretized version of Eq. (2) by the Euler method with Δt = 1.6. Our initial78

conditions at t = 0 were n(x, t) = 0.01 for all x ∈ [−1, 1]. The simulations were terminated when79

the number of coexisting species equlibrated.80
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In order to be able to determine more precisely when equilibrium was reached, our program81

had two other features not inherent to solving the differential equations. First, every species whose82

density decreased below a critical level was considered dead, i.e. its density was numerically set83

to zero. In our simulations this threshold was n ≤ 10−6. Second, we recorded the number of84

phenotypes (out of L = 1001) with nonzero density every 1000 iterations (a typical run of the85

program consisted of a few million cycles, or even more for very small perturbations). We could get86

a good guess on how far we were from reaching equilibrium, since the convergence of the number87

of phenotypes with nonzero density (that is, the number of surviving species) to a certain value88

marked the point from where nothing interesting would happen. By watching this convergence89

diagram we were able to stop the running of the program when it became necessary.90

3 Results91

The simplest choice for the perturbation function f(x) is92

f(x) = δ̂(x) (8)

where δ̂(x) is a kind of characteristic function: it is equal to 1 at x = 0, zero elsewhere. It can be93

considered as a small ξ limit of exp(−x2/(2ξ2)) and should not be confused with the Dirac delta94

function which has an infinite value at x = 0 (this characteristic function is very convenient for95

numerical investigations, but one should be careful about a näıve analytical application to Eq. (2)96

as the ξ → 0 limit may lead to problems).97

The left pane of Fig. 1 presents the equilibrium solution with this type of perturbation. One98

can observe the discreteness of species distribution, as predicted by the theory. A very simple mech-99

anism, which is easy to follow by observing the simulations, leads to this discretization. Without100

the perturbation, the whole range of phenotypes could coexists. However, the central peak of K101

gives a distinct advantage of the phenotype at x = 0. Increased density of this population results in102
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heightened competition against the similar types. Therefore, species die out in a phenotype range103

around the species preferred by the perturbation.104

The right pane shows the dependence of the number of surviving phenotypes m on the pertur-105

bation amplitude ε. It can be fitted very well with the function106

m = α− β ln ε. (9)

One may observe that m diverges for small perturbations, just as it should. However, for ε > 0.1 the107

dependence is weak because the logarithm function barely changes at all in that regime. The number108

of coexisting species is essentially independent of the perturbation, provided that the perturbation109

(i.e. ε) is not very small. This ε-dependence is also obviously linear when m is considered as a110

function of ln ε. The two parameters α and β therefore correspond to the parameters of a linear111

fit. Thus it was convenient to determine these parameters in terms of the above linearity.112

As the discretization proceeds outward from the central peak, we used the following trick for113

counting the coexisting species. Instead of waiting until a perfect equilibrium was reached along the114

whole interval, the simulation was run until the first few survivors around the perturbation peak115

were built up. Then, we measured the distance in phenotype between the survivor at the point of116

the perturbation and its nearest neighbour and divided the total phenotype interval [−1, 1] by this117

distance to obtain the number of surviving phenotypes. Since the survivors are more or less evenly118

spaced, as one can check on the left pane of the Figure, this method provides just as good results119

as the straightforward peak counting when ε goes to zero.120

To check whether this result is an artefact of the non-smooth nature of the perturbing function,121

we repeated the simulations with122

f(x) = exp(−x2/(2ξ2)) (10)

using a finite ξ that was smaller than σ. The results are exactly the same as before (Fig. 2). That is,123

a narrow peak of perturbation destroys continuous coexistence just like the infinitely narrow one.124

5



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Note that the linear nature of the equilibrium equation (7) implies that continuous coexistence125

exists for ξ > σ with the phenotype-distribution126

n(x) =
ω√

2πσ2(ω2 − σ2)
exp

(
−

x2

2(ω2 − σ2)

)
+ ε

ξ√
2πσ2(ξ2 − σ2)

exp

(
−

x2

2(ξ2 − σ2)

)
. (11)

The possibility for continuous coexistence disappears when ξ < σ.127

This behavior becomes understandable when one consider that the equilibrium distribution128

of continuous coexistence is to be calculated from the equilibrium equation (7) by deconvolution129

(Gyllenberg and Meszéna, 2005). That procedure breaks down when the carrying capacity function130

has higher significant Fourier components than the competition kernel does. That is, discretization131

is related to the changes of the carrying capacity function that are sharper than of the competition132

kernel. While we did not investigate this in detail, it seems that coexistence shrinks immediately133

to the equivalent of ξ = 0 when ξ becomes less than σ.134

A similar analysis to the single-peak case with similar results is presented in Fig. 3 for an135

asymmetrically located perturbing peak, i.e. for136

f(x) = δ̂(x− x0). (12)

Here the same species counting method was applied as before with using the average of the distances137

to the two nearest neighbours. Looking at Fig. 3 one may think this method would not work here138

since the distance between the “privileged” phenotype and its nearest neighbours is obviously greater139

than the rest of the distances. That is true, but only because the perturbation in this case is very140

large (it is in the order of magnitude of the original carrying capacity). For small perturbations141

(ε � 0.1) the distances equalize. Therefore this method is actually no worse than the one discussed142

in the previous case.143

Fig. 4 represents the results for the two-peaked perturbation144

f(x) = δ̂(x + x0) + δ̂(x − x0). (13)
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In this case we have more than one “seed” of discretization which, therefore, proceeds much faster.145

The species were directly counted after full convergence.146

As we learned above, discretization is related to the sharp changes of the carrying capacity147

function, i.e. to the high Fourier components of the perturbation. To get a balanced picture it148

is necessary to study a perturbation that is somehow mid-way between being smooth and rough.149

From this reason, following Szabó and Meszéna (2006), we study a fractal-like perturbing function:150

f(x) = exp

(
−

(x− x0)
2

2ω2

)
·

⎛
⎝ M∑

j=1

j−η cos(jx + ϕj)

⎞
⎠ . (14)

Here η = 1.5 is the critical exponent determining the mixing ration of the different Fourier com-151

ponents. The ϕjs are random phases and M = 1001 is the number of partitions of the phenotype152

axis.153

The qualitative conclusions are the same in all cases. The surviving species are distanced roughly154

according to the niche-width except when we are very close to the structurally unstable situation155

where ε = 0.156

Reaching equilibrium takes longer and longer time with decreasing perturbation. Could it be157

that the higher number of survivors for smaller perturbation is just an artifact of not waiting long158

enough to allow competitive exclusion to proceed? In Fig. 6 we present a comparison between two159

equilibrated population distributions for different perturbation amplitudes. Here the perturbation160

function161

f(x) =

20∑
j=1

δ̂(x− 1 + 0.1j) (15)

was applied. The results demonstrate clearly that extra species are present in equilibrium for small162

perturbations.163

The fitting parameter α gives the number of coexisting populations for ε = 1. It also provides164

a reasonable approximation of m for any value of ε above 0.1. The average distance between165

the nearest neighbours equals to Δx = 2/α. The dependence of the so-calculated Δx on the σ166
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parameter is presented on Fig. 7. One can observe strict proportionality between the two variables.167

The value δ = 2 of the proportionality constant would correspond to a precise 2σ rule. While the168

real δ differs from this value, its order of magnitude allow us to consider the species separation by169

niche width as a good rule of thumb. Note that δ becomes smaller for the fractal case, presumably170

because smoother perturbations allow for denser packing.171

4 Discussion172

Here we contributed to the understanding of the long-standing issue of species packing by analyzing173

the transitional regime between continuous coexistence and limiting similarity in the competitive174

Lotka–Volterra model. Analytical studies have made it clear already that continuous coexistence175

is structurally unstable (Gyllenberg and Meszéna, 2005), but a kind of limiting similarity is the176

generically expected behaviour (Meszéna et al., 2006). However, these results are far from sufficient177

to guiding biological intuition properly. Is limiting similarity a solid ground of biological thinking,178

or a shaky one, after all?179

This question cannot be put to rest without combining the analytical insights with extensive180

studies of specific models. As the Lotka–Volterra model is the classical workhorse of these studies,181

it is a meaningful starting point. In this context Szabó and Meszéna (2006) demonstrated that182

the niche-width 2σ is a good guess for the typical distance between neighbouring surviving species183

provided that we are far from the situation of continuous coexistence. Here we studied the transition184

regime.185

As continuous coexistence is structurally unstable (i.e. it can be destroyed by an arbitrarily186

small perturbation of the model definition) one could conjecture that an arbitrarily small departure187

from this exceptional case would lead us to the “roughly 2σ” regime. In this case it would be188

expected that the transition to continuous coexistence consists of slower and slower relaxation to189
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the final distribution. Our simulations demonstrated that this is not the case. The real transition190

goes through denser and denser discrete equilibrium distributions until the continuous distribution191

is reached as a limit at the zero value of ε.192

This conclusion is in line with the overall picture of limiting similarity. It was demonstrated193

early on for two, or three, species in the Lotka–Volterra model that increasing similarity narrows194

the parameter range allowing them to coexist (May and MacArthur, 1972; May, 1973). Higher195

similarity is allowed, if we are satisfied with a more parameter-sensitive coexistence. Abrams (1983)196

observed this “similarity-coexistence relationship” to be quite general, while Meszéna et al. (2006)197

proved it in a model-independent way (see also Szilágyi and Meszéna, 2008, 2009, in prep. about198

generalizations for structured populations and fluctuations).199

On a first glance, the possibility for the coexistence of a continuum of species seems to be200

surprising. Nevertheless, it is evident that any predefined set of species can be made coexisting by201

properly tuning their K values. Even more is true: by tuning the Ks one can arrange coexistence202

with any predefined density distribution. Specifically, if the competition function in the Lotka–203

Volterra model is chosen to be Gaussian and the required species distribution is also a Gaussian,204

then the carrying capacity curve must also be a Gaussian, calculated as a convolution of the205

other two functions. Then this Gaussian carrying capacity is the one that, exceptionally, supports206

continuous coexistence with that specific distribution. However, as there are species arbitrarily207

close to each other, there exists an arbitrarily small perturbation of the carrying capacity curve208

after which the continuum of coexisting phenotypes no longer exist. Nevertheless, the Gaussian209

nature of the functions plays no specific role here: the cases of exceptional continuous coexistence210

could be constructed from other functions as well.211

These arguments consider the robustness of the existence of the coexisting fixed point against212

the perturbation of the model. The dynamical stability of the fixed point (if it exists) is a separate213

question. From this point of view the shape of the competition function does matter. Pigolotti214
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et al. (2007, 2008) demonstrated that continuous coexistence in the Lotka–Volterra model is dy-215

namically stable only if the competition function is positive definite, i.e. if its Fourier transform is216

positive everywhere. From this point of view the Gaussian shape is a borderline case. If a different217

competition function does not meet this criterion, then the continuous coexistence, constructed in218

the way mentioned above, will be unstable. This possibility further strengthens the conclusion that219

the continuous coexistence is not expected to be an observed behaviour.220

It is obvious that any extinction threshold sets a limit to similarity in itself (May and MacArthur,221

1972; Pigolotti et al., 2007). An infinitely dense assembly of finite populations would consist of222

infinitely many individuals, a contradiction. In our simulations we set the extinction threshold223

so low that it did not affect our results. We had to discretize the phenotype axis for practical224

reasons. Then, it was possible to choose the extinction threshold so low that allowed the dense225

packing determined by the discretization. Effectively, we studied the limit of similarity without the226

extinction threshold.227

Note also the contradictory nature of postulating a phenotype-continuum together with a sepa-228

rate threshold for each phenotype. Realistically, any kind of Alle effect should consider the similar229

types together – or the phenotype variable is not a complete characterization of the populations.230

Beyond the qualitative conclusions, a clear quantitative picture emerged: the number of sur-231

vivors is a linear function of the negative logarithm of the perturbation size. This result seems to be232

fairly general. The very same logarithmic rule (9) emerged for all kinds of perturbing functions we233

tested, from the simplest possible single peak to the most complex fractal function. In accordance234

with the continuous coexistence case, the function (9) goes to infinity when ε → 0. However, the235

transition from discrete to continuous happens quite fast, but still in a continuous way, for small236

εs. For ε � 0.1 one may rely on the intuition of a “niche width”.237

A numerical study of such a simplified model as the Lotka–Volterra acquires its relevance from238

the hope that the results are more general than the specific assumptions. Having the general239
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analytic theories both for continuous coexistence (Gyllenberg and Meszéna, 2005) and for limiting240

similarity (Meszéna et al., 2006) motivates us to conjecture the genericity of the transition regime241

between them as well. Unfortunately, we failed to find an analytic theory behind the observed242

logarithmic dependence. It is quite easy to derive analytic results for coexistence of two, or a few,243

species in the Lotka–Volterra model. However, we considered the coexistence of phenotypes, the244

number of which goes to infinity in the ε → 0 limit. Lacking the analytic insight, it is impossible245

to assess the validity of our conjecture without studying further models numerically.246

While further analysis of the problem is still necessary, our results give additional weight to the247

view that limiting similarity is a good starting point of biological thinking. Species packing, that248

is much denser than expected, seems to require quite specific model choices.249
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Figure 1: Perturbation with a single peak at x = 0. Simulation parameters here and in the other

figures, if not indicated otherwise: ω = 0.3, σ = 0.08. Left: Equilibrium solution with perturbation

amplitude ε = 0.1; the curve represents the carrying capacity K(x). Right: Number of survivors

as a function of ε. Dots are simulation results; the curve shows the best fit with the function

m = α− β ln ε. Fitting parameters: α = 11.5± 0.2, β = 1.08± 0.03.

Figure 2: A similar perturbation with a smooth, Gaussian peak of width ξ = 0.03 at x = 0. The

left pane shows the equilibrium distribution with ε = 0.1, the right pane shows the ε-dependence

of the number of species in equilibrium. Fitting parameters: α = 11.5± 0.2, β = 1.08± 0.03, which

are the same as on Fig. 1.

14



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Figure 3: Perturbation with an assymmetrically located peak at x = −0.5. Again, the left pane is

the equilibrium distribution (ε = 0.5), the right pane shows the ε-dependence. Fitting parameters:

α = 8.9± 0.2, β = 1.20± 0.03.

Figure 4: As before, but with a double-peaked perturbation at x = ±0.2. The example on the left

pane has ε = 0.1. Fitting parameters: α = 15.86± 0.19, β = 0.738± 0.027.
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Figure 5: Perturbation with the fractal function given by Eq. (14), η = 1.5. The value of ε on the

left is 0.01. Fitting parameters: α = 18.6± 0.9, β = 2.4± 0.1.

Figure 6: Equilibrium distribution for the multi-peaked perturbation of Eq. (15) with different

perturbation amplitudes. Left: ε = 0.1, right: ε = 10−5. Note the extra equilibrated species for

very small perturbations.
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Figure 7: The typical distance Δx = 2/α between the neighbouring species as a function of the half

niche-width σ. Fitting equation: Δx = γ+δσ. Left: perturbation with a single central peak; fitting

parameters: γ = 0.002 ± 0.002, δ = 2.13 ± 0.02. Right: fractal perturbation; γ = 0.000 ± 0.003,

δ = 1.30±0.05. Observe that the fitted γ = 0 represents strict proportionality. The proportionality

constant δ is situation dependent but is in the order of magnitude 1.
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