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Stochastic sampling of interaction partners versus

deterministic payoff assignment

Benno Woelfing and Arne Traulsen

Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön,

Germany

Abstract

Evolutionary game dynamics describes how successful strategies spread in a population.

In well mixed-populations, the usual assumption, e.g. underlying the replicator dynamics,

is that individuals obtain a payoff from interactions with a representative sample of the

population. This determines their fitness. Here, we analyze a situation in which payoffs

are obtained through a single interaction, so that individuals of the same type can have

different payoffs. We show analytically that for weak selection, this scenario is identical to

the usual approach in which an individual interacts with the whole population. For strong

selection, however, differences arise that are reflected in the fixation probabilities and lead

to deviating evolutionary dynamics.

Key words: Evolutionary game theory, frequency dependent selection, payoff assignment,

deterministic versus stochastic payoffs, evolutionary dynamics

1 Introduction

If individual fitness depends on the relative abundances of the different pheno-

types in the population, frequency-dependent selection is acting. In nature, the

outcome of interactions affecting fitness usually depends on the types of individ-

uals involved, so that frequency-dependent selection is common. Prominent ex-

amples include assortative mating, reduced viability of mixed pair offspring, self-
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incompatibility alleles in plants and competition for resources with neighbouring

conspecifics. In social interactions, individuals can either cooperate - that is behave

in a way beneficial to a conspecific - or defect. An individual’s fitness depends on

the strategies of its interaction partners. Thus, frequency-dependent selection un-

derlies the evolution of cooperation. Apart from interactions between conspecifics,

the population composition as a whole can mediate frequency-dependent selection.

Here, individuals do not interact with single partners, but ”play against the field”

(Maynard Smith, 1982). For an example consider coevolving species. Pathogens

adapting to common host genotypes can select for rare, resistant host genotypes.

Similarly, search image formation in predators can lead to frequency-dependent

selection on prey morphs. Pollinator preferences for a common flower morph can

exert positive frequency-dependent selection on a plant population.

The evolutionary dynamics of frequency-dependent selection can be explored by

evolutionary game theory. In this approach, fitness is determined by the payoff

obtained in an evolutionary game, which allows to address very general cases of

frequency dependent selection. Traditional evolutionary game theory assumes that

population size is infinite, so that stochastic effects can be neglected and determin-

istic differential equations are obtained. The stable fixed points of the dynamics

are the evolutionary stable states (Zeeman, 1980; Taylor and Jonker, 1978; May-

nard Smith and Price, 1973; Maynard Smith, 1982; Weibull, 1995; Hofbauer and

Sigmund, 1998; Sandholm, 2007).

While some important aspects arising from the finiteness of a population have been

realized for a long time (Riley, 1979; Schaffer, 1988; Kandori et al., 1993; Fogel

et al., 1998; Ficici and Pollack, 2000; Schreiber, 2001), the concept of weak se-

lection has only recently been transferred from population genetics to evolutionary

game theory (Nowak et al., 2004; Taylor et al., 2004). This leads to randomness in

birth and death processes. Thus, evolutionary dynamics becomes stochastic.

The traditional concept of evolutionary stable states no longer applies, because neu-

tral drift can lead away from these states. Hence, new definitions of evolutionary

stability in finite populations have to be developed (Schaffer, 1988; Fogel et al.,
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1998; Nowak et al., 2004; Wild and Taylor, 2004; Lessard and Ladret, 2007; Miek-

isz, 2008). Instead of fixed points, now the evolutionary dynamics is characterized

by the probability of fixation in a particular state and the associated time until fixa-

tion (Nowak et al., 2004; Antal and Scheuring, 2006).

Most analytical approaches for evolutionary game dynamics assume that the pro-

cess that assigns payoffs to individuals is deterministic. This approach is appropri-

ate if an individual’s payoff depends only on the composition of the population and

not on specific interaction partners. In this case, all individuals using one strategy

have the same payoff. Models of this type are good approximations if individu-

als (e.g. wind-pollinating plant species) interact with all other individuals in the

population or with a representative fraction of the population. By contrast, if indi-

viduals mate only once or compete with few conspecifics for resources, individuals

using the same strategy may have different payoffs, depending on the types of their

interaction partners.

There are different ways to incorporate stochasticity into payoff assignment. Fig. 1

shows an overview over some typical scenarios. One possibility is to let individuals

have different, stochastic numbers of interactions (Sánchez and Cuesta, 2005; Roca

et al., 2006; Traulsen et al., 2007b). Another possibility is to let every individual

have only a small number of interactions. In the extreme case, fitness would be de-

termined by only a single interaction. If each individual interacts only with a single

other individual drawn randomly from the population, individuals using the same

strategy can differ in their payoff-values. This approach is sometimes used in sim-

ulations (Doebeli et al., 2004; Hauert et al., 2007, 2008) and often leads to remark-

able agreement with analytical calculations in which an individual interacts with

all others in the population . In this manuscript we discuss when simulations (based

on single interactions) and analytical calculations (based on interactions with all

individuals in the population) are expected to give similar results. This leads to the

question under which circumstances deterministic versus stochastic payoff assign-

ment results in different evolutionary dynamics. To tackle this question we compare

the fixation probabilities for deterministic and stochastic payoff assignment for dif-

ferent evolutionary processes under frequency-dependent selection.
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2 Evolutionary game dynamics

We study symmetric two-player games. The two players are assigned payoffs ac-

cording to the payoff matrix

⎛
⎜⎝

A B

A a b

B c d

⎞
⎟⎠. (1)

A player of type A obtains a in interactions with other A players and b in interac-

tions with B players. Equivalently, B players obtain c in interactions with A and

d in interactions with B. Thus, the payoffs are determined by the players’ own

phenotypes and the phenotypes of the interaction partners.

In our “All Interaction” scenario (AI) for deterministic payoff assignment, each in-

dividual interacts with all other individuals in the population. Thus, the payoff is

the average payoff from all interactions. The all interaction scenario is also a good

approximation if the number of interactions per individual is so high that the indi-

vidual payoffs are close to the average payoff. This standard approach is used in

the majority of studies of evolutionary game dynamics in unstructured populations.

To capture the consequences of stochasticity in payoff assignment, we compare

this scenario to the extreme case in which a single interaction determines the re-

productive fitness of an individual. In this case (termed SI for single interaction),

each individual is randomly assigned an interaction partner. The individual’s fitness

depends only on this single interaction.

Next, we have to specify the evolutionary process which determines how strategies

spread in the population. We consider two different birth-death processes. In the

pairwise comparison process, two individuals, a focal individual and a role model,

are randomly drawn from the population in each round. The focal individual adopts

the strategy of the role model with probability p, depending on a payoff compari-

son. The probability p is given by the Fermi function p = (1 + e+w(πfocal−πrole))−1

(Blume, 1993; Szabó and Tőke, 1998; Traulsen et al., 2007a; Sandholm, 2007).

Here, w determines the intensity of selection. For strong selection, w � 1, a better
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strategy is always adopted, regardless of the payoff difference. For weak selection,

w � 1, we have p ≈ 1
2
− w

πfocal−πrole

4
. In this case, the payoffs represent only a

small linear disturbance to random strategy adoption.

In the Moran process a single individual reproduces and a randomly selected indi-

vidual dies in each round (Moran, 1962; Nowak et al., 2004). The probability that

a specific individual is chosen for reproduction is proportional to its fitness, which

is a function of the payoff obtained in the evolutionary game. Individual fitness f

can be evaluated as

(i) a convex combination of background fitness (usually set to one) and payoff π,

f = 1− w + wπ (Nowak et al., 2004) or

(ii) an exponential function f = e+wπ of payoff π (Traulsen et al., 2008).

In both cases, w is the strength of selection and small w corresponds to weak selec-

tion.

3 Stochastic payoff assignment

3.1 General remarks

Let T±(j) denote the probability that the number of A individuals in a population

of size N changes from j to j ± 1. If a population consists of i individuals of

strategy A the probability of fixation in the all-A state φi is given by (Karlin and

Taylor, 1975; Nowak, 2006)

φi =
1 +

∑i−1
k=1

∏k
j=1

T−(j)
T+(j)

1 +
∑N−1

k=1

∏k
j=1

T−(j)
T+(j)

. (2)

Fixation probabilities can only differ between the AI and the SI scenario, if stochas-

ticity in payoff assignment affects the ratio γ(j) = T−(j)
T+(j)

. Formally φi is the expec-

tation value of a random variable X that characterizes the evolutionary outcome.

Here, X = 1 if fixation occurs at the all-A state and X = 0 if fixation occurs at

5



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

the all-B state. Could stochasticity in payoff assignment maintain φi but change

higher moments of X (e.g. the variance)? In other words, could we miss effects of

stochastic payoff assignment if we only analyze φi and do not take higher moments

into account? Since X is Bernoulli-distributed, all moments of X only depend on

φi (the variance is e.g. given by φi(1 − φi)). Therefore, stochasticity that does not

change γ(j) can neither change the fixation probability φi nor the distribution of

X .

Thus, we concentrate on stochastic effects that affect the evolutionary outcome

by altering γ(j). The ratio γ(j) determines into which direction the system will

move from state j: For γ(j) < 1 the number of A individuals is more likely to

increase. For γ(j) > 1 the number ofA individuals is more likely to decrease. In the

following, we analyze for which parameter values the single interaction scenario

changes the γ(j) of the all interaction scenario.

3.2 Pairwise comparison process

First, we consider the case in which strategies spread according to a pairwise com-

parison process.

In the simplest scenario each individual interacts with all individuals in the popula-

tion (abbreviated as AI for all interactions). In this case, A and B individuals have

payoffs

πA =
j

N
a +

N − j

N
b (3)

πB =
j

N
c +

N − j

N
d. (4)

Note that we have not excluded self-interactions here to keep things as simple as

possible. The probability that the number of A individuals increases from j to j +1

is T+
AI(j). The number of A individuals j can only increase if a B individual com-

pares itself to an A individual. This happens with probability j
N

N−j
N−1

. To obtain

T+
AI(j) this probability has to be multiplied by the probability that the focal (B)
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individual accepts the role model’s strategy (A). The probability T−AI(j) that j de-

creases by one is calculated analogously. This yields

T±AI(j) =
j

N

N − j

N − 1

1

1 + e∓w(πA−πB)
. (5)

The ratio of the transition probabilities γAI(j) is then given by

γAI(j) =
T−AI(j)

T+
AI(j)

= e−w(πA−πB) = e−w( j
N

a+ N−j
N

b− j
N

c−N−j
N

d). (6)

Now, we compare this result for deterministic payoff assignment with the scenario

in which each individual interacts only with a single other individual in each round

(abbreviated as SI for single interaction). The probability that a B individual com-

pares itself to an A individual is j
N

N−j
N−1

, the same value as in the AI-scenario dis-

cussed above. The acceptance probability depends on the payoffs of the focal in-

dividual and the role model. Both partners in the comparison process can interact

with A individuals, one can interact with an A individual while the other interacts

with a B individual or both partners can interact with B individuals. This leads to

the transition probabilities

T±SI(j) =
N − j

N

j

N − 1

[ (
j

N

)2 1

1 + e∓w(a−c)
+

j

N

N − j

N

1

1 + e∓w(b−c)

+
j

N

N − j

N

1

1 + e∓w(a−d)
+
(

N − j

N

)2 1

1 + e∓w(b−d)

]
.

(7)

A Taylor expansion for weak selection, w � 1, leads from Eq. (7) to

T±SI(j) =
N − j

N

j

N − 1

[
1

2
± w

πA − πB

4

]
. (8)

This is identical to the weak selection expansion of T±AI(j), cf. Eq. (5). Again, we

denote the ratio of transition probability with γSI(j) =
T−

SI
(j)

T+

SI
(j)
. For weak selection,

we have γSI(j) = γAI(j) for all j. Thus, the fixation probabilities in the scenario

with stochastic payoff assignment are the same as in the scenario with deterministic

payoff assignment (compare Fig. 2).

If selection is strong, however, the exponential function cannot be linearized. Then,

γSI(j) = γAI(j) only holds, if a = b and c = d. But in this special case, payoffs do
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not depend on interactions at all and thus, selection is frequency independent. For

all other payoff values, i.e. whenever selection is frequency dependent, the fixation

probabilities in the SI scenario can differ from those obtained with the AI scenario.

For example, in coordination games with a > c and b < d, this can change the point

j∗ where the direction of selection changes, i.e. the solution of T+(j) = T−(j).

For the AI scenario we obtain analytically j∗AI = (d − b)N/(a− b − c + d) for all

intensities of selection. In the SI scenario j∗ depends on the intensity of selection

and can be determined numerically. While j∗SI ≈ j∗AI for small w, higher intensities

of selection can lead to differences (compare Fig. 2). For w →∞, only the payoff
ranking is of importance, as one can infer from the transition probabilities under

strong selection, Eq. (7). For example, for payoff matrices with a > d > c > b,

we have j∗SI → N/2. For payoff matrices with a > d > b > c, we have j∗SI →
(1− 1/

√
2)N ≈ 0.293N .

To explore in more detail how the choice of the interaction scenario affects the

fixation probabilities, we analyze the ratio R(j) of the transition probabilities in

the SI scenario and the transition probabilities in the AI scenario.

R(j) =
γSI(j)

γAI(j)
> 1 for 0 < j < N ⇒ B favoured in single interaction

(9)

From the general form of R(j), it is not obvious whether R(j) > 1 or R(j) < 1.

For frequency independent selection, a = b and c = d, there is no difference

between the scenarios, leading to R(j) = 1. For neutral selection, w = 0, we have

R(j) = 1 for all j. Next, we study general payoff matrices under weak selection by

expanding R(j) in a Taylor Series.

R(j) ≈1 +
j(N − j)

12N3

[
j(a− b− c + d)3 (10)

+ N
(
a3 + 2b3 − c3 − 2d3

)
+ 3N

(
d2(b + c)− b2(a + d) + 2bd(a− c) + bc2 − a2d

) ]
w3

8
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Interestingly, both the linear and the quadratic terms of the Taylor expansion in w

are zero. Thus, the cubic term determines whether R(j) is larger or smaller than

one for weak selection. This implies that selection does not have to be extremely

weak to make the difference between AI and SI vanish. As a concrete example, let

us consider the special case in which the fitness of strategy A, is constant, a = b.

For 3a > c+2d, theR(j) > 1 for all j, so thatB is favored in the single interaction

scenario compared to the all interaction scenario. Interestingly, this is equivalent to
d−b

a−b−c+d
< 1

3
, i.e. the unstable equilibrium of a coordination game has to be closer

to B than 1
3
for B to be favored in the single interaction scenario compared to the

all interaction scenario, which reminds of the 1/3-rule (Nowak et al., 2004; Ohtsuki

et al., 2007).

In the above equations, pairs for payoff assignment are formed by drawing individ-

uals with replacement. This means that both the focal individual and the role model

could interact with the same individual. Moreover, we allowed self-interactions in

order to keep the calculations as transparent as possible. In Appendix A, we derive

expressions for the ratios of the transition probabilities that take into account that

each individual interacts with exactly one other individual. Our main conclusions

also hold in this more sophisticated scenario: If selection is weak, γSI(j) = γAI(j)

for all j and the fixation probabilities are identical. For strong selection, however,

we have in general γSI(j) 	= γAI(j) and the two scenarios will lead to different

fixation probabilities.

3.3 Moran process

In the Moran process, T+(j) is the probability to choose an A individual propor-

tional to fitness for reproduction and to choose a B individual at random for death.

The probability that an A individual is chosen for reproduction is given by the sum

of all fitness values of A individuals divided by the sum of the fitness values of all

individuals in the population. Since the probability that a B individual dies is N−j
N
,

9
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we obtain

T+(j) =

∑
fA∑

fA +
∑

fB

N − j

N
. (11)

Here,
∑

fA is the sum of all fitness values of A individuals and
∑

fB is the sum of

all fitness values of B’s.

If each individual interacts with all other individuals and fitness is a linear function

of payoff, the all interaction scenario leads to

∑
fA = j

(
1− w + w

[
j − 1

N − 1
a +

N − j

N − 1
b
])

(12)
∑

fB = (N − j)
(
1− w + w

[
j

N − 1
c +

N − j − 1

N − 1
d
])

. (13)

For the transition probabilities, we obtain

T+
AI =

j
(
1− w + w

[
j−1
N−1

a + N−j
N−1

b
])

N(1− w) + w
[
j
(

j−1
N−1

a + N−j
N−1

b
)

+ (N − j)
(

j
N−1

c + N−j−1
N−1

d
)]N − j

N

(14)

T−AI =
(N − j)

(
1− w + w

[
j

N−1
c + N−j−1

N−1
d
])

N(1− w) + w
[
j
(

j−1
N−1

a + N−j
N−1

b
)

+ (N − j)
(

j
N−1

c + N−j−1
N−1

d
)] j

N
.

(15)

Thus, the ratio of the transition probabilities in the all interaction scenario is

γAI(j) =
T−AI(j)

T+
AI(j)

=
1− w + w

[
j

N−1
c + N−j−1

N−1
d
]

1− w + w
[

j−1
N−1

a + N−j
N−1

b
] . (16)

In the single interaction scenario anA individual can have fitness fAA = 1−w+wa,

if it interacts with anotherA, or fAB = 1−w+wb, if it interacts withB. Similarly,

a B individual can have fitness fBA = 1 − w + wc or fBB = 1 − w + wd. In

this scenario
∑

fA and
∑

fA +
∑

fB are random variables. Since these two random

variables are not independent of each other, the ratio of the expected values does

not give the expected value for the ratio, i.e. T+
SI(j). To derive an expression for

T+
SI(j), we use the assumption that each individual interacts with exactly one other

individual per round. A similar scenario was discussed by Miekisz (2005).

10
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Thus, N must be even. Consider the case where also j is even. It follows that the

number of mixed pairs can only be even. We calculate the probability that exactly

2k mixed pairs (anA and aB individual interact with each other) are formed. There

are
(

N
j

)
possibilities to arrange the j type A individuals among the N individuals.

The number of possibilities to arrange the 2k mixed pairs among the N
2
pair posi-

tions is
(

N
2

2k

)
. Since each mixed pair can be written in two ways (AB and BA), we

multiply by 22k. The remaining j− 2k typeA individuals form j−2k
2

AA pairs. The

number of possibilities to arrange these AA pairs among the remaining N
2
−2k pair

positions is
(N

2
−2k

j

2
−k

)
. Hence, we arrive at

T+
SI(j) =

1(
N
j

) j/2∑
k=0

(
N
2

2k

)
22k

(
N
2
− 2k

j
2
− k

)
(17)

× (j − 2k)fAA + 2kfAB

(j − 2k)fAA + 2kfAB + 2kfBA + (N − j − 2k)fBB

N − j

N
.

T−SI(j) and equations for uneven j can be calculated analogously (see Appendix

B). In general, we find T±AI(j) 	= T±SI(j). The single interaction scenario does have

an effect in the Moran process with linear payoff to fitness assignment, because

this process depends not only on the fitness of a focal individual, but also takes

the background fitness into account. Again, for weak selection, w � 1, the tran-

sition probabilities of the two scenarios lead to the same dynamics (compare Fig.

3). Thus, the effect of the single interaction scenario is only important for strong

selection. The transition probabilities are also identical if selection becomes fre-

quency independent, a = b and c = d, because payoffs become independent of the

interaction partner in this case.

Fluctuations around the expected fraction of mixed pairs decrease with increasing

population size N . The expected k is given by

kexpected(j) =
1(
N
j

) j/2∑
k=0

(
N
2

2k

)
22k

(
N
2
− 2k

j
2
− k

)
k =

j

2

N − j

N − 1
. (18)

The expected fraction of mixed pairs is thus

2kexpected(j)
N
2

=
2j

N

N − j

N − 1
. (19)

11
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If we replace the average over k in Eq. (17) by kexpected(j), we obtain

T+
SI(j) =

j(fAA(j − 1) + fAB(N − j))

j(fAA(j − 1) + fAB(N − j)) + (N − j)(fBAj + fBB(N − j − 1))

N − j

N
.

(20)

This is equal to T+
AI(j). In large populations where stochasticity of pairing has

no effect, the transition probabilities (and thus the fixation probabilities) of the

two scenarios are identical if fitness is a linear function of payoff. However, if

fitness is an exponential function of payoff, the single interaction scenario leads to

higher average fitness values. This can be shown by comparing the average fitness

of an individual in the AI scenario fAI(x) = exπ1+(1−x)π2 to the average fitness

of an individual in the SI scenario fSI(x) = xeπ1 + (1 − x)eπ2 . Here, x = j
N
is

the proportion of A individuals and π1 and π2 are the individual’s payoffs upon

interaction with an A or B individual respectively. The linear function fSI(x) and

the exponential function fAI(x) intersect at exactly two points: x0 = 0 and x1 = 1.

Since the exponential function has positive curvature, fAI(x) < fSI(x) for 0 <

x < 1.

To explore which strategy is favoured in the single interaction scenario in large

populations where the stochasticity of pairing is negligible, we analyze R(x) (the

ratio of the transition probabilities in the SI scenario and the transition probabilities

in the AI scenario).

R(x) =
γSI(j)

γAI(j)
≈

∑
fSI

B∑
fSI

A∑
fAI

B∑
fAI

A

> 1 for 0 < x < 1 ⇒ B favoured in single interaction

For the exponential payoff to fitness mapping we find for R(x)

R(x) = e
N

N−1
w(x(a−b−c+d)+ d−a

N
+b−d) xewc + (1− x− 1

N
)ewd

(x− 1
N

)ewa + (1− x)ewb
. (21)

The 1
N
corrections only arise because we explicitly excluded self-interactions. The

population composition x and the payoff values determine if R(x) > 1 or R(x) <

1. For large N , we have R(0) = R(1) = 1. Only in special cases, R(x) will be

larger or smaller than one for all values of x. Consider the special case a = b,

in which strategy A always obtains the same payoff, regardless of x. The deriva-

tive dR(x)
dx

has only a single root, which means that R(x) either has a maximum or
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a minimum. Moreover, dR(x)
dx

∣∣∣
x=0

> 0, such that R(x) ≥ 1 for 0 ≤ x ≤ 1. Thus,

strategy B has a higher fixation probability in the single interaction compared to the

all interactions scenario for a = b. In other words, a strategy with frequency depen-

dent fitness is always favored by the SI scenario, whereas the strategy with constant

fitness is favored by the AI scenario. This is a stark contrast to the model based on

pairwise comparison discussed above. In the general case when both fitness values

are frequency dependent, it is more difficult to determine which strategy is favored

by the SI scenario.

4 Conclusion

Our results show that selection intensity determines if the evolutionary dynamics of

the all interaction scenario and that of the single interaction scenario differ. While

the fixation probabilities in the two scenarios become similar if selection is weak,

strong selection generally leads to differences. This finding holds for the pairwise

comparison process typically modelling cultural spreading of strategies and the

Moran process usually modelling Darwinian evolution.

Especially in economics, evolutionary game dynamics is typically treated as deter-

ministic and selection is strong. In this case, it can make a significant difference if

the payoff itself is determined by a single (or a few) interactions. The stochasticity

in the payoffs can render the whole dynamics stochastic, even if the intensity of

selection is very large.

How can we understand intuitively that the choice of the payoff assignment sce-

nario has an effect only if selection is strong? The expected payoff of each indi-

vidual is the same in the single and all interaction scenario. In the Moran process

the function mapping payoff to fitness can be approximated by a linear function if

selection is weak. In this case the expected fitness of each individual and hence the

fixation probabilities are identical in the two scenarios. Strong selection requires a

nonlinear mapping function that ensures that even small differences in payoff have

strong effects on fitness. Only in this case, the direction of the evolutionary dy-
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namics becomes deterministic. As the mapping function is nonlinear, the expected

fitness of an individual depends on the payoff distribution. As a result the fixa-

tion probabilities differ between the scenarios with stochastic versus deterministic

payoff assignment.

For the pairwise-comparison process an analogous reasoning applies. The expected

payoff difference between a randomly drawn A and a randomly drawn B individ-

ual is the same for the two scenarios. If selection is weak, transition probabilities

are a linear function of the payoff difference. By contrast, strong selection, which

is equivalent to nonlinear mapping, leads to different evolutionary outcomes for

stochastic versus deterministic payoff assignment.

To summarize, we have shown that for weak selection, the interaction scenario (cf.

Fig. 1) has a small influence on the system. But for strong selection, the choice of

the interaction scenario can change the resulting evolutionary dynamics.

A Interactions with exactly one other individual in the pairwise comparison

process

Here, we derive ’exact’ (that is, excluding self-interactions) expressions for the

transition probabilities in the pairwise comparison process with linear payoff to

fitness mapping. First, we consider the single interaction scenario. Since a focal B

individual with payoff c or d can compare itself to a role model of type A, which

can either have payoff a or b, we have to consider four cases that can lead to an

increase in the number of A individuals.

We only discuss one of them in detail here, because the remaining three cases fol-

low from analogous arguments. A B individual with payoff c as focal individual is

paired with an A individual with payoff a as a role model: With probability N−j
N
a

B individual is chosen as focal individual. This B individual interacts with an A

individual and thus obtains payoff c with probability j
N−1

. The probability that the

role model is not the focal individual’s interaction partner is N−2
N−1

. From the remain-
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ing individuals an A individual is drawn as a role model with probability j−1
N−2

. The

probability that the role model interacts with an A individual and obtains payoff a

is j−2
N−3

. The probabilities for the three other cases can be calculated analogously.

The transition probability T+
SI(j) is then given by

T+
SI(j) =

N − j

N

j

N − 1

N − 2

N − 1

j − 1

N − 2

j − 2

N − 3

1

1 + ew(c−a)
(A.1)

+
N − j

N

j

N − 1

(
1

N − 1
+

N − 2

N − 1

j − 1

N − 2

N − i− 1

N − 3

)
1

1 + ew(c−b)

+
N − j

N

N − j − 1

N − 1

N − 2

N − 1

j

N − 2

j − 1

N − 3

1

1 + ew(d−a)

+
N − j

N

N − j − 1

N − 1

N − 2

N − 1

j

N − 2

N − j − 2

N − 3

1

1 + ew(d−b)

=
j(N − j)

N(N − 3)(N − 1)2

[
(j − 2)(j − 1)

1 + ew(c−a)
+

j(N − j)− 2

1 + ew(c−b)

+
(j − 1)(N − j − 1)

1 + ew(d−a)
+

(N − j − 1)(N − j − 2)

1 + ew(d−b)

]
.

The probability T−SI(j) can be calculated in the same way. Next, we calculate the

corresponding transition probabilities for the AI scenario. We obtain

T±AI(j) =
j

N

N − j

N − 1

1

1 + e∓w( j−1

N−1
a+ N−j

N−1
b− j

N−1
c−N−j−1

N−1
d)

, (A.2)

which is significantly simpler than Eq. (A.1).

B Single interaction transition probabilities in the Moran process

Here, we present the transition probabilities in the scenario in which payoff assign-

ment is based on a single interaction and strategies spread according to a Moran

process. If the number of A individuals j is even, we have

T+
SI(j) =

1(
N
j

) j/2∑
k=0

(
N
2

2k

)
22k

(
N
2
− 2k

j
2
− k

)
(B.1)

× (j − 2k)fAA + 2kfAB

F (2k)

N − j

N
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T−SI(j) =
1(
N
j

) j/2∑
k=0

(
N
2

2k

)
22k

(
N
2
− 2k

j
2
− k

)
(B.2)

× (N − j − 2k)fBB + 2kfBA

F (2k)

j

N
.

The total fitness in a systemwith l interactions betweenA andB is given by F (l) =

(j− l)fAA + lfAB + lfBA + (N − j− l)fBB . For odd j, the transition probabilities

are given by

T+
SI(j) =

1(
N
j

) (j−1)/2∑
k=0

(
N
2

2k + 1

)
22k+1

(N
2
− (2k + 1)
j−(2k+1)

2

)
(B.3)

× (j − 1− 2k)fAA + (2k + 1)fAB

F (2k + 1)

N − j

N

T−SI(j) =
1(
N
j

) (j−1)/2∑
k=0

(
N
2

2k + 1

)
22k+1

(N
2
− (2k + 1)
j−(2k+1)

2

)
(B.4)

× (N − j − 1− 2k)fBB + (2k + 1)fBA

F (2k + 1)

j

N
.
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Caption Fig.1:

Four examples for interaction scenarios in a population of N = 20. In contrast to

games on fixed networks (Szabó and Fáth, 2007), interaction partners change in

each time step. (a) In the all interaction scenario, every individual interacts with all

other N − 1 individuals. The payoffs thus only depend on the type of the individ-

ual. (b) If every individual has a large number of interactions L � 1 (shown for
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L=5), each individual will interact with a representative fraction of the other types.

Consequently, the payoffs depend only on the type of the individual, as in the all

interaction scenario. (c) If every interaction occurs with probability p (shown for

p = 0.1), then some individuals may have few or no interactions and some may

have many, leading to stochastic payoffs. This stochastic interaction scenario has

been addressed in (Traulsen et al., 2007). (d) If every individual has exactly one

interaction, each type can obtain two different payoff values that are obtained with

a probability given by the frequency of the two types. Since (a) and (d) are the most

extreme cases, we concentrate on the comparison of these two in the present paper.

Caption Fig.2:

Fixation probability of A individuals in the pairwise comparison process for a co-

ordination game (both strategies are best replies to themselves) in a population of

size N = 100. Lines show the analytical results and symbols show results from

numerical simulations. Both agree perfectly with each other. For weak selection

(w = 0.1) the all interaction scenario and the single interaction scenario coincide,

as predicted. For strong selection (w = 3.0) the choice of the interaction scenario

strongly affects fixation probabilities. In the all interaction scenario, the direction of

selection changes at j∗AI = 40 for all intensities of selection. In the single interaction

scenario the point where the direction of selection changes, depends on selection

intensity: We find numerically j∗SI ≈ 40 for low selection intensity (w = 0.1), and

j∗SI ≈ 49 for w = 3.0.

Caption Fig.3:

Fixation probability of A individuals in the Moran process with exponential payoff

to fitness mapping for a coordination game in a population of size N = 100. An-

alytical results (lines) and simulations (symbols) agree perfectly with each other.

For weak selection (w = 0.1) the all interaction scenario and the single interac-

tion scenario coincide, as predicted. For strong selection (w = 3.0) the choice

of the interaction scenario changes the fixation probabilities. The all interaction

scenario is identical to the pairwise comparison process, since the ratio of the tran-

sition probabilities is identical. Only in the single interaction scenario, the root
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of g(j) = T+(j) − T−(j), where the direction of selection changes, depends on

the intensity of selection w. For w = 0.1, we find numerically j∗SI ≈ 37 and for

w = 3.0 j∗SI ≈ 3. For a > b, c, d and w → ∞, we have T−SI(j) → 0 for j > 1

and T+
SI(j) → N−j

N
(compare Eq. (20)). Thus, if selection is sufficiently strong,

T+
SI(j) > T−SI(j) for 1 < j < N , so that φj → 1 for j > 1, in contrast to the

pairwise comparison process, see Fig. 2.
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(a)

All Interaction

(b)

Representative 
Interaction

(c)

Stochastic Interaction

(d)

Single Interaction

4. Figure
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