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Abstract

The goal of palliative cancer chemotherapy treatment is to prolong survival and improve
quality of life when tumour eradication is not feasible. Chemotherapy protocol design is
considered in this context using a simple, robust, model of advanced tumour growth with
Gompertzian dynamics, taking into account the effects of drug resistance. It is predicted that
reduced chemotherapy protocols can readily lead to improved survival times due to the effects
of competition between resistant and sensitive tumour cells. Very early palliation is also
predicted to quickly yield near total tumour resistance and thus decrease survival duration.
Finally, our simulations indicate that failed curative attempts using dose densification, a
common protocol escalation strategy, can reduce survival times.
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1 Introduction

The interest in modelling chemotherapy proto-
cols to support clinical insight is driven by efforts
to improve outcomes by adjusting drug schedul-
ing [6, 8, 11, 32] and is illustrated by the seminal
work of Norton and Simon [33, 34]. This led to
their initial hypothesis, namely that chemother-
apy results in a rate of regression in tumour vol-
ume that is proportional to the rate of growth for
an unperturbed tumour of the same size. Fur-
ther work resulted in the influential concepts of
dose intensification and especially dose densifi-
cation. These constitute protocol escalation via
either reducing rest phases, i.e. densification,
or increasing drug dosage, i.e. intensification,
and were predicted to increase the probability
of tumour eradication [35, 36, 37]. In partic-
ular the dose densification strategy was tested
in a series of clinical trials by the Cancer and
Leukaemia Group B (CALGB) and the American
Breast Intergroup [8, 9]. The results supported
the theory that dose dense treatment would lead
to a significant improvement in clinical outcomes,
additionally exemplifying how a mathematical
model can make successful predictions for im-
proved chemotherapy protocols [38]. This is fur-
ther highlighted by recent phase I trials with a
novel Capecitabine schedule for metastatic breast
cancer [47]. However one should also note that, in
general, regimens utilising protocol escalation, ei-
ther by dose densing or intensification, yield vari-
able results [39].

The focus of Norton and/ Simon’s modelling
strategies was to maximise cell kill; other ob-
jectives have been considered in the literature.
For example, whereas Norton and Simon neglect
genetic mutation to resistance, Goldie and Cold-
man [14] modelled chemotherapy scheduling with
the goal of minimising the development of drug
resistance. Resistance was assumed to be a result
of random genetic mutation to a resistant state
[15]. This assumption was based on the Nobel
Prize winning work of Luria and Delbruck [28],
who showed that bacterial cultures developed re-
sistance to bacteriophages at random. Sponta-
neous mutation has also been found to arise in
in vitro cancer cell systems [22, 46], and Law [25]
later found that the same applied to methotrex-
ate resistance in vivo with leukaemic L1210 cells.

The Goldie-Coldman model focuses on maximis-

ing the probability that no tumour cells will have
mutated sufficiently to become resistant to all
drugs present. When more than one non-cross-
resistant chemotherapeutic is used, it was pre-
dicted that the drugs should be alternated as
quickly as possible in order to reduce the oc-
currence of resistant cells, thus maximising the
probability of cure [14]. Evidence supporting this
hypothesis has been sought in numerous clinical
trials [10, 41, 44], though it is typically refuted
rather than validated. Gaffney [12, 13] extended
the Goldie and Coldman model to consider cell
cycle phase specific drugs and the effects of drug
delivery. It was shown that the Goldie and Cold-
man’s alternation hypothesis often breaks down
both due to the effects of pharmacokinetics and
due to resonances between the application time
of a cell cycle phase specific drug and the tumour
cell cycle time.

However, such models focus on cure, as do virtu-
ally all the models in the literature. In contrast,
we will investigate the consequences of protocols
when tumour eradication does not occur, either
in the context of palliation or failed cure, and
whether this reveals the need to consider differ-
ent protocol strategies.

In particular, models have traditionally predicted
that an increased dose will yield an increased re-
sponse, at least within any implicit or explicit
toxicity constraints. However, lower doses of
chemotherapy may indeed lead to longer survival
outcomes in the absence of cure. The failure of
an aggressive chemotherapy schedule could oc-
cur due to the preferential removal of sensitive
cells, leaving behind a population more resistant
as a whole. At extremes, a non-curative but es-
calated chemotherapeutic regimen could be ex-
pected to leave behind an uncontrollable mass of
cells insensitive to any further therapy. In con-
trast, too low a dose will allow even cells that
are sensitive to the drug to grow out of control.
Therefore we immediately have the question of
whether one can reasonably anticipate that an
intermediate level of chemotherapy will restrict
tumour growth and increase survival duration in
the palliative setting.

Protocol escalation is in conflict with the above
reasoning, as escalation requires either a higher
dosage of chemotherapy, a shorter administration
time, or both. The source of this disagreement



arises from the different objectives. The aim
of protocol escalation is to improve the chances
of eradicating the tumour; our above reasoning
is based upon prolonging survival when tumour
eradication is not possible. However, it cannot
always be certain whether a tumour is curable
or not. This emphasises that the effect of an at-
tempted, but unsuccessful, curative protocol es-
calation on survival time also needs to consid-
ered in modelling chemotherapy scheduling and
we will investigate this in detail.

We note that there is experimental evidence
supporting the concept that lower chemother-
apy doses could be preferable in the pres-
ence of resistance. In particular an investiga-
tion by Aabo et al. [1] showed that low-dose
chemotherapy delayed the relapse of a dom-
inated and resistant sub-population in a hu-
man small-cell lung cancer (SCLC) xenograft
in mice. The xenograft consisted of an artifi-
cially mixed BCNU-sensitive, dominating sub-
population and a BCNU-resistant, undetectable
(dominated) sub-population, where BCNU is an
anti-cancer drug. At the time of tumour regrowth
after low-dose treatment, most of the tumours
continued to be dominated by the sensitive pop-
ulation, and thus remain susceptible to chemical
control. At the time of regrowth after the re-
sponse to high-dose treatment, the resistant cell
line was the predominant population.

Similar concepts to those presented in this paper
have been detailed in the modelling study of Hah-
nfeldt et al. [19] with particular emphasis on the
anti-angiogenic effects of metronomic chemother-
apy, which is a low dose drug scheduling regime.
Such regimens are observed to differentially tar-
get the endothelial cells of the growing blood ves-
sels found in tumours [4, 5, 6, 23, 29], therefore in-
hibiting angiogenesis. The model of Hahnfeldt et
al. [19] focuses on how heterogeneity in resensiti-
sation rates between tumour and endothelial cells
can provide a logical framework explaining such
observations. Our model has an analogous math-
ematical framework though the central focus here
is tumour cell heterogeneity per se rather than
the difference between endothelial and tumour
cells. This variation is primarily one of model
interpretation; the core difference is that Hah-
nfeldt et al.’s model considers exponential cell
growth. In contrast, we consider Gompertzian

tumour growth; this is a constant, exponential,
retardation of the growth rate which has been
found to provide a good empirical description of
the decelerating growth curves exhibited by more
advanced tumours [43, 45]. The Gompertz model
was first applied in actuarial statistics [16], and
subsequently in the study of growth by Winsor
[50], with Laird [24] further illustrating that the
growth for a variety of primary and transplanted
tumours in the mouse, rat and rabbit satisfied
the Gompertzian relation.

Gompertzian growth is critical in this paper as it
provides the theoretical basis of protocol escala-
tion [36] in addition to being highly relevant for
advanced tumours [43, 45]. For example, reduc-
ing a protocol’s rest phase entails that a Gom-
pertzian tumour is growing at faster and faster
rates at each drug application since each appli-
cation yields a smaller tumour. By the epony-
mous Norton-Simon hypothesis this compounds
a greater and. greater cell kill effect. This com-
pounding entails that protocol outcomes are an-
ticipated to be very sensitive to the dose densing
effect. Such dynamics thus need to be explicitly
considered when investigating protocols involv-
ing advanced tumours and when examining the
consequences of dose densing, or more generally
protocol escalation, and is central to our model.

In section 2, the development of the model for
palliative chemotherapy applied to advanced tu-
mour growth will be outlined. Two main sections
of results and discussion will follow. In section
3.1 we consider continuous chemotherapy for our
initial investigation into the effects of protocol es-
calation in the palliative setting. In section 3.2,
we proceed to consider protocol escalation for cy-
cles of drug administration interspersed with rest
phases. This study is subsequently extended to
the case where the tumour is only just incurable
to allow us to investigate the relationship be-
tween survival time and protocol escalation for
a failed curative attempt. Finally, we discuss our
results and observations in section 4.

2 The model

The assumptions of the model are:

e Tumour growth is represented by a continu-



ous, Gompertzian, model.

e The effect of the chemotherapeutic on the
sensitive cells is to induce a regression
rate proportional to the unperturbed growth
rate, in accordance with the Norton-Simon
hypothesis [33].

e The chemotherapeutic induces sensitive tu-
mour cell kill in proportion to the intensity
of the administration.

e Mutation to resistance is Darwinian [25, 28]
at a rate proportional to the growth rate of
the tumour [15].

e Toxicity constraints are not explicitly con-
sidered.

The final assumption requires further comment.
For continuous protocols we seek to reduce the
dosages of chemotherapy, which can be reason-
ably considered to reduce toxicity. When con-
sidering protocols with rest phases, dose densi-
fication is also a feasible option as we have the
freedom to reduce the rest phases. This however
may potentially lead to intolerable toxicity; while
this has been observed [39], there is empirical ev-
idence it also need not be the case [9, 42]. Thus,
should we draw a conclusion that protocol escala-
tion via dose densification yields gains,. it is, like
previous work on this topic, ultimately qualified
by an assumption that dose densing does not gen-
erate intolerable toxicity. However, should the
modelling predict that dose densification is inap-
propriate even under the assumption that dose
densing is tolerable, then the explicit inclusion
of a toxic constraint will not alter this conclu-
Consequently, we can draw relevant and
non-trivial conclusions without the complications
of a toxic constraint.

sion.

The above assumptions lead to the following
equations:

df\;st(t) B (JXr—(:> [Ns(t) — AC(t)Ns(t)

+72Na(t) = iNs(1)], (1)

CU\ZZ@ — _fIn (%i?) [NR(t) + 11 Ng(t)

—nNR(®)],  (2)

where Ng(t) and Ng(t) represent the number of
cells that are respectively sensitive and resistant
to chemotherapy, and N (t) represents the total
number of cells. Let Ny denote the initial num-
ber of tumour cells and let N,, denote the the-
oretical value at which the Gompertzian tumour
growth curve would saturate, although in real-
ity this would be beyond the fatal level of the
tumour. We also have the relation

BIn (Nuo/No) = ang, (3)

where ayp, is the instantaneous growth rate of
the tumour at the start of the simulation and 3
provides a measure of the rate of increase of the
Gompertzian curve modelling tumour growth.

The parameter 7; governs the rate of mutation of
sensitive cells to resistance while 7 governs the
rate of back-mutation from resistance to sensi-
tivity. There is a subtlety in the interpretation
of our mutation rates, the discussion of which is
deferred to the Appendix.

We now consider the chemotherapy term which
consists of A, a measure of the potency of the
chemotherapeutic, and C(t), the concentration of
the chemotherapeutic agent at time ¢. Through-
out the paper, A\C'(t) is either a non zero constant,
Cy, corresponding to the presence of chemother-
apy, or zero, according to the details of the drug
protocol and its scheduling. The effects of the
chemotherapeutic are modelled by reducing 3 for
the sensitive cells via

BNs(t) — BNs(t) — BAC(t)Ns(t), (4)

with Ny, unaltered. This effective reduction in
for the sensitive tumour cells, with N, fixed, is
consistent with the growth curve measurements
of Briinner et al [7] on comparing control and
treated tumours. Additionally, the effect of the
chemotherapeutic is proportional to the growth
rate of the tumour and hence the model is ex-
plicitly in accord with the Norton-Simon hypoth-
esis by design, and also with our assumption of
linearity in the effect of the chemotherapeutic.
Clearly the above representation of drug action
does not incorporate cell cycle phase specificity,
which requires tracking the cell cycle within the
model. Finally, while one could in principle inter-
pret equation (4) as entailing that the chemother-
apeutic had an anti-proliferative effect we only



‘ Symbol Interpretation Value Comment
Ny Initial number of cells 1 cell Tumour starts as one
neoplastic cell
See Appendix.
N Saturating number of cells in 2 x 102 cells | Fatal level of uncontrolled
absence of therapy growth, see Appendix
N, Rate of initial exponential growth 7x1073 h~! See Appendix
16} Rate of growth retardation 2.47x10~% h! See Appendix
T Mutation to resistance per cell cycle 1x107°° [15] and Appendix
T Back-mutation to sensitivity 1x107° [15] and Appendix
per cell cycle
Nerit Critical (fatal) number of cells 5 x 101 cells Corresponds to a tumour
diameter of 10 cm
ant Nominal, reference, number 100 cells In range of palliation start
of tumour cells at points reported by Becker
treatment initiation et al. [3]; see Appendix
Nep Actual number of tumour 10 — 3 x 10" | Varied, but equal to Niont
cells at therapy initiation cells unless stated otherwise.
A Chemotherapy potency parameter Varied
C(t) Concentration of chemotherapy Varied
Co Level of chemotherapy cell kill 0-40 Varied
Neye Num. cycles in a drug protocol Varied. See Section 3.2
trest Rest phase duration in a drug protocol Varied. See Section 3.2
Tl%t Time for tumour to reach Nglt Predicted
from initial seed
Terit Time taken to reach the critical Predicted
(fatal) tumour burden
T Survival time, T.;; — Tiont Predicted
Traz Maximum survival time on varying Predicted,;
parameters such as Cp, Neye O trest See Section 3.
Tiim, To Survival time for most intense/dense Predicted;
protocol on varying parameters See Section 3.
dep, AuC | Duration and Area under Curve of a Varied;
continuous, time limited protocol See Section 3.1.2.
Ng, Nr | Sensitive, resistant tumour cell burden Predicted
N Total tumour cell burden Predicted

Table 1: A list of representative, reference, parameters plus variables predicted by the model. Please refer to
the Appendix for further details of the parameter estimation.




consider the chemotherapeutic to upregulate cell
death in the presentation below.

As detailed further in the Appendix, the simu-
lations are initiated from a single sensitive seed,
Ng(0) = 1, Nr(0) = 0. This seed is allowed to
grow, producing a tumour comprising of a mix
of sensitive and resistant cells. Once this tumour
is at a size consistent with the start of a pallia-
tive protocol, the chemotherapeutic protocol is
switched on. The tumour cell number burden
at chemotherapy initiation is defined to be N.y.
Unless stated otherwise, we take this to be

N, = N? def 10%0cells,

wnt

where Nz‘%t corresponds to a tumour of radius of
about 1.5cm and is within the range of sizes re-
ported for colorectal liver metastases at the start
of palliative treatment [3]. However, because the
protocol start point is likely to be highly vari-
able we do investigate the effects of altering the

tumour cell burden at chemotherapy initiation.

The critical (fatal) level of the tumour is taken
to be Ng.+ cells, and the time at which this is
reached is denoted Tg,;;. The survival time T} is
taken to be equal to Tppir — T, where T, is
the time taken for the tumour burden to reach
Niont from the initial tumour seed in the absence

of chemotherapy.

A summary of the parameters used in our simu-
lations, together with reference values, are listed
in Table 1 and further details on their estima-
tion can be found in the Appendix. This table
also lists variables predicted by the model, such
as survival time.

By adjusting the drug protocol in the modelling
appropriately, we can consider numerous pallia-
tive and failed cure chemotherapy regimens to in-
vestigate the effects of dose densification or other
scheduling strategies on survival time when tu-
mour control is lost. Given the model consists
of a small number of ordinary differential equa-
tions, our use of an Euler method for numerical
simulations is amply sufficient; there are no sta-
bility difficulties nor inconvenient computational
overheads.

In section 3.1 we focus on continuous palliative
chemotherapy, for either a specified finite period
or an indefinite infusion. The effects of the rate

of cell kill, the size of the tumour at chemother-
apy initiation and the duration of therapy on the
survival time are investigated. In section 3.2 reg-
imens with a specified number of doses are sim-
ulated with varying rest phase durations. The
resulting changes in the survival time are inves-
tigated, as are the effects of altering the rate of
cell kill and the initiation time of chemotherapy.

3 Results

3.1 Continuous chemotherapy

3.1.1 Indefinite continuous protocol
Simulations of indefinite continuous chemother-
apy are performed for different, fixed, values of
cell kill A\C(t) = Cy with survival times de-
picted in Figure 1. Tt clearly shows a local max-
imum, illustrating that an intermediate level of
chemotherapy is predicted to prolong survival
time the most.

Plots A, B, C of Figure 2 respectively show the
cell population dynamics for the three values
of cell kill, Cy, depicted by A, B, C in Figure
1. Note that in the optimal scenario, B, both
sensitive and resistant cells are present in sub-
stantial numbers, illustrating the prediction that
non-trivial tumour cell population competition is
present when the survival time is longest. Essen-
tially, there is an optimal balance between the
drug directly killing sensitive cells and indirectly
promoting the production of resistant cells that
determines the maximum survival time.

Due to variability in the likely start point of pal-
liative treatment, we vary N, the tumour cell
burden at the start of chemotherapy. The sur-
vival time, T, once more the time to death from
our reference tumour cell burden point of N2,
cells in the absence of chemotherapy, is plotted
against cell kill, Cy, for different values of tumour
cell number at the start of chemotherapy; see Fig-
ure 3. Note the survival time is measured from
this reference tumour cell burden point rather
than the chemotherapy initiation time to give
an absolute comparison between the regimes in
terms of overall survival as opposed to survival
following chemotherapy. The maximum survival
times, denoted T},4., from graphs such as those
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Figure 1: Indefinite continuous chemotherapy, where
N., = N2 .. A plot of the survival time, T, for vary-

int*
ing chemotherapy cell kill, Cy. The labels A, B and
C correspond to points chosen to represent the dif-
ferent behaviour of the cell populations for survival
times below (A; corresponding to Cy = 0.74), equal
to (B; corresponding to Cp = 0.9), and above (C; cor-
responding to Cp = 2) the maximum.

in Figure 3 are plotted against the tumour cell
number at chemotherapy initiation N, in Fig-
ure 4A. The value of the chemotherapy cell kill
level which maximises the survival time is shown
in Figure 4D.

Tiim is the limiting value of the survival time, Ty,
as the sensitive cell kill tends to infinity. Hence
Tnaz — T1im measures how the survival time im-
proves for the most judicious choice of dosing,
and thus cell kill, compared to the prediction in
the limit of infinite sensitive cell kill. These are
plotted with as the initial tumour burden varies
in Figure 4B (Tnae — Tiim) and Figure 4C (T}, ).

Note that the model predicts that survival time
increases with delayed chemotherapy, at least
providing the model is valid, i.e. that the in-
creased chemotherapy dosing required for opti-
mal control, and the increased tumour size do
not exceed tolerable limits. However, the sur-
vival time then drops dramatically as the initial
tumour cell number reaches 5 x 10! cells, simply
because the initial tumour size approaches the
fatal tumour size.

x 10"

Cell Number
.

Cell Number

1500

Cell Number

1000 1500 . 2000
Time / days

Figure 2: Evolution of numbers of sensitive (Ng),
resistant (Ng) and total (V) cell populations during
indefinite, continuous chemotherapy. The number of
sensitive cells at chemotherapy initiation is approxi-
mately 1 x 1019, and the number of resistant cells at
this point is approximately 2 x 10°. Plots A, B and C
represent three different values of chemotherapy cell
kill, Cy, corresponding to points A, B and C in Fig-
ure 1. The dotted lines mark the point at which the
tumour load reaches the fatal level of N.,.;; cells.
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Figure 3: Plots of the survival time, Ty, against cell
kill, Cy, for indefinite continuous chemotherapy with
different, fixed, tumour cell burdens at the start of
chemotherapy, Np,.

3.1.2 Finite continuous chemotherapy

Chemotherapy is usually administered for a fixed
period of time, rather than ongoing indefinitely,
so finite drug schedules are also considered. The
start-time of the therapy is once more taken to
coincide with a tumour cell burden of N}, = 100
cells in the following sections. The intended
chemotherapy duration, denoted d.p, is then var-
ied; the actual duration is cut short if the tumour
cell number reaches the fatal limit during the pro-
tocol. Here the total amount of chemotherapy
administered is considered since the schedules are
finite; this is commonly represented as the “area
under the curve”, denoted AuC, of the treatment

AuC = COdch-

Survival time is plotted against AuC for different
values of therapy duration, d.;, in Figure 5. The
maximum survival time for each d.,, on varia-
tion of the Area under Curve, is plotted in Figure
6A and denoted Ty, Analogously to Figure 4
C, Tjym is the limit of the survival time as the
chemotherapeutic sensitive cell kill, and thus the
Area under Curve, tends to infinity; Timae — Tiim
is plotted in Figure 6B. The values of AuC and
Cy corresponding to the maximal survival time
are also shown.

Note the model predicts that for a fixed
chemotherapeutic duration, an intermediate level
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Figure 4: Plot A shows the maximum survival time,
Trnaz, on varying the level of chemotherapy cell kill,
Cy, for a range of the tumour cell number at the start
of chemotherapy, N.,. Plot B gives Tiae — Tiim,
where Tj;,, denotes limit of the survival time as the
sensitive cell kill Cy tends to infinity (shown in plot
C). The difference T}y, 4, —Tjim therefore shows the dif-
ference in the survival time due to the most judicious
choice of chemotherapeutic dosing compared to the
theoretical maximum dose. Plot D shows the level of
chemotherapy cell kill, Cy, corresponding to maximal
survival time at each value of N,.
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Figure 6: Plot A shows the maximum survival time,
Trnaz, on varying the level of Area under Curve, AuC),
for a range of chemotherapy durations d.,. Plot B
gives Tinaz — Tiim, where Tj;,, denotes the limit of the
survival time as the Area under Curve, AuC, tends
to infinity. This therefore shows the difference in the
survival time due to the most judicious level of dosing
compared to the theoretical maximum dose. Plots C
and D respectively show the Area under Curve and
the chemotherapeutic cell kill, Cy, corresponding to
the point where the survival time is maximised.

of chemotherapeutic, as measured by the Area
under Curve, produces optimal results and that
this effect is emphasised for longer protocols. In
addition, up to a threshold, we also have the pre-
diction that increasing the duration of the proto-
col, with a concomitant reduction in the level of
cell kill, can also increase survival time.

3.2 Protocols with rest phases

We proceed to consider protocol escalation when
rest phases are present; in addition to dose in-
tensification by increasing chemotherapeutic cell
kill, we can also investigate dose densification by
reducing the rest phase duration.

In the following, we vary the number of
chemotherapy doses, denoted Ny, the drug cell
kill, Cp, and the rest period between the doses,
denoted t,.s;. For definiteness, the duration of
each administration is taken to be three days,
but the choice of this value does not affect the
qualitative form of the model’s results.

Figure 7 shows how the survival time varies with
the rest phase duration t,¢s, and the number of
doses Ny, for three different, fixed, values of the
drug cell kill Cy. These results are extended in
Figure 8; firstly, there is a plot of the maximum
survival time, T},q., With respect to variations of
the rest phase, for each fixed value of the number
of drug doses, Ny, and the cell kill Cy. Let
To denote the survival time for the limit of no
rest phase; Tynq. — 1o is plotted, which shows the
difference between the most judicious choice of
rest phase and the most extreme dose densing
protocol. In addition, the rest phase at which
Tnae Occurs is depicted, showing that the optimal
rest phase is, in large regions of parameter space,
of significant duration.

Note from Figure 7 that when a tumour cannot
be eliminated, and the level of chemotherapeutic
cell kill is held fixed, then protocol escalation by
reducing the rest phase duration and increasing
the number of cycles can lead to equivocal results.
Similarly, dose intensification, by increasing the
chemotherapeutic cell kill keeping other protocol
parameters fixed, also can lead to substantial re-
ductions or increases in survival time.

However, from Figure 8, when the chemothera-
peutic cell kill, rest phase duration and number
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Figure 7: Testing dose densification for palliative
protocols. Predictions for the survival time, Ty, as
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Figure 8: Testing dose densification for palliative
protocols. Plot A gives the maximum of the survival
time with respect to variations of the rest phase, for
each fixed value of the number of drug doses, Ny,
and the cell kill Cy. Plot (B) similarly depicts the
difference between this maximum of the survival time
and the survival time in the limit that the rest phase
tends to zero. Plot C gives the rest phase correspond-
ing to the maximum survival time.
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Figure 9: The effects of variation of the initial tu-
mour size in the dose densification context. For all
these plots the cell kill is fixed at Cy = 5. Plot A
gives the maximum of the survival time with respect
to variations of the rest phase, for each fixed value of
the number of drug doses, N¢y, and tumour cell num-
ber at the chemotherapy start time, N.,. Plot B gives
the difference between the maximal survival time and
the survival time in the limit of maximal dose dens-
ing, where the rest phase tends to zero. Plot C gives
the corresponding value of the rest phase which max-
imises the survival time.



of cycles are all treated as degree of freedoms
with which to maximise the survival time, there
are large regions of parameter space where dose
densification is not optimal.

The effect of varying the tumour cell number at
chemotherapy initiation, N, in the current con-
text is explored in Figure 9. Here the rate of
cell kill Cy is fixed; for each value of N, and
Neye, the rest phase between the doses is var-
ied and the maximum survival time, T},., found
as shown in Figure 9A. The difference between
Timaz and the survival time in the absence of rest
phases, denoted Tjp, is plotted in Figure 9B. The
rest phase which yields the maximal survival time
is depicted in Figure 9C. The sharp cut off in sur-
vival time as the tumour burden increases is due
to the fact the chemotherapy starts too late for
the initial stages of treatment to prevent the tu-
mour reaching its fatal size.

In summary, we can observe that protocol escala-
tion need not yield significant improvements es-
pecially when given sufficient freedom to vary the
scheduling parameters. In addition, the model
predicts that survival time increases with delayed
chemotherapy, at least providing the subsequent
increased chemotherapy dosing and tumour size
do not exceed tolerable limits.

3.2.1 Dose densification for marginally
incurable tumours

It is of particular interest to highlight the effect
of dose densification for a tumour that is only
just incurable, as this is where it is most likely
that a dose dense regime may be administered
and fail to eradicate the tumour. A tumour will
be considered “cured” when the cell number falls
below a threshold level, denoted by N,y which
we take to be 400 cells. Actual cure may have
to be effected by other mechanisms given drug
resistance. One possible example is a subsequent
administration of a second drug or treatment; an-
other is immunosurveillance [26].

Since here we are considering a potentially cura-
tive regimen, rather than palliation, a number of
parameters are adjusted, as summarised in Table
2. In particular, we consider a scenario with a
smaller tumour load at the chemotherapy initia-
tion, and a less resilient tumour, that is a lower

11

mutation rate to resistance. Thus, the therapy
starting point is taken to be around 4 x 107 cells
rather than the earlier reference point of 10!
cells; the mutation rate, and back mutation rate
per cell cycle are given by 7 = 15 =2e-7; see the
Appendix for further details.

We consider an initial tumour load of N, =
4% 107 cells, plus a protocol with a rest phase, de-
noted t,.s¢, which intersperses a given number of
administrations of a chemotherapeutic, denoted
Neye. Each administration is taken to be of three
days’ duration. We firstly determine the rate of
cell kill, Cy, for which the dose dense limit of such
a protocol, with no rest phases, only just induces
cure. By this we mean the global minimum of the
total tumour cell number for all time is equal to
Neyre. The value of Cy that we find is, of course,
dependent on the given value of Ny, and is plot-
ted in Figure 10A. The parameter values for these
results, and those below, which are not listed in
Table 2 are given in Table 1; additional details
can be found in the Appendix.

To ensure the tumour is incurable, but only just,
we subsequently simulate, for each value of Ny,
and the value of Cj plotted in Figure 10A, a tu-
mour with a slightly larger initial tumour cell
number. Thus N, now satisfies

0 Nch

4 x 107
the simulation is otherwise unchanged. Conse-
quently, not even the most extreme dose densing,
corresponding to the limit of the rest phase tend-
ing to zero, can bring the tumour cell number be-
low the cure threshold. If the chemotherapeutic
cell kill level were to be raised above C plotted
in Figure 10A, cure would be achieved, by con-
struction, so this is excluded given the context of
a failed curative attempt.

-1 K1,

We do assume though that Cj corresponds to
a tolerable, and thus maximally tolerable, dose.
Furthermore, given maximal cell kill is the inten-
tion of the dose densing regimen, and thus the
level of cell kill is intended to be as high as possi-
ble, we do not reduce the chemotherapeutic cell
kill level from the values plotted Figure 10A in
the subsequent results.

In Figure 10B each point in the plot gives the
maximal survival time as the rest phase is var-
ied in a simulation of the marginally incurable



‘ Symbol ‘ Represents ‘ Value ‘ Comment ‘
T Mutation to resistance per cell cycle 2x 1077 [15] and Appendix
Ty Back-mutation to sensitivity per cell cycle 2x 1077 [15] and Appendix
Nep Number of tumour cells at ~ 4 x 107 cells | Micrometastatic tumour
treatment initiation
Newre Tumour cell burden constituting cure 400 cells Cure threshold

Table 2: A list of representative, reference, parameters which are utilised, but differ, in the simulations of the
marginally incurable tumour. The parameter, N¢y,e is also introduced. Please refer to the Appendix for further

details of the parameter estimation.

tumour. The difference between the maximum
survival time and the survival time in the dose
densing limit of no rest phase is also plotted in
Figure 10C. Finally, the value of the rest phase
which induces the maximal survival time is given
in Figure 10D.

The shading in this figure illustrates where a
wide range of rest phases produce survival times
very close to the maximum survival times. Thus,
while we have plotted the rest phase which yields
the maximum, one cannot infer significant infor-
mation about the optimal rest phase other than
survival times are relatively insensitive to the
choice of the rest phase in this region of param-
eter space.

One can observe the model prediction that when
there is a low number of drug administration cy-
cles, dose densing does not substantially influence
survival times for a marginally incurable tumour.
However, should one consider larger numbers of
cycles, the loss of survival time induced by dose
densing on a marginal failure of chemotherapy is
predicted to be significant. The precise number
of administrations that is required before dose
densing is sub-optimal depends on the details of
the protocol (results not shown); the above men-
tioned qualitative observations are nonetheless
robust both to the protocol details, such as ad-
ministration duration, and variations in the pa-
rameters.
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4 Discussion

4.1 Continuous chemotherapy

4.1.1 Indefinite continuous protocols
The results from indefinite continuous
chemotherapy, * as ~illustrated in Figure 1,

support the hypothesis that intermediate pallia-
tive doses of chemotherapy yield higher survival
times compared to higher doses.

A more detailed examination of the cell popula-
tion dynamics for drug doses around this opti-
mum level reveals the reason for this behaviour;
see Figure 2. At lower doses, the chemotherapy
cannot control the sensitive cell growth, result-
ing in the total cell number exceeding the fatal
level relatively quickly. Increasing the cell kill,
Cy, improves the control over the sensitive cells,
thus increasing the survival time, until it reaches
the maximum. At this optimal value of cell kill,
the balance between controlling the sensitive cells
and maintaining enough sensitive cells to restrict
the growth of the resistant compartment via com-
petition is such that the tumour burden remains
below the critical level for the longest time. At
higher doses, the sensitive cells are killed off very
quickly so the resistant cells take over and grow
beyond the fatal level in a shorter time.

Although the detrimental effect of maximal dose
intensification on survival time in Figure 3 is
most pronounced for larger tumours, it is still
predicted to result in significantly shorter sur-
vival for protocols initiated with smaller tu-
mours.

In Figure 4, it can be also seen that the sur-
vival time can be longer when the chemother-
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Figure 10: Dose densification for a marginally incur-
able tumour; 71 = 70 = 2 x 1077, Neure = 400 cells,
N.p, ~ 4x107. The duration of an individual dose ad-
ministration is three days; see text for further details
on the parameter values. Plot A gives the minimum
value of chemotherapy cell kill, Cy, which reduces the
tumour cell burden to Ny, as a function of the num-
ber of drug administrations, Ncy.. Graph B shows the
maximum survival time, T},.., With respect to the
rest phase duration, for the marginally incurable tu-
mour, with the tumour burden at the start of therapy
as described in the text. Plot C gives the difference
between the maximal survival time and the survival
time for no rest phase, T, while plot D gives the rest
phase which maximises survival. See text for further
details of the shading in the latter.
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apy is started later and the initial tumour is
larger, but only if the level of chemotherapy is
higher. On first inspection, this suggests that
chemotherapy should be delayed and a stronger
dose administered. The mechanism is that the
delay in therapy allows more sensitive cells to
accumulate, so they are able to restrict the re-
sistant cell population for longer, though a more
aggressive chemotherapy dose is subsequently re-
quired. This behaviour does need to be viewed
critically though, given the loss of model validity
and the quality of life, due to the impact of tu-
mour induced morbidity and chemotherapeutic
toxicity at large delays of the chemotherapeutic
start time.

Nonetheless, one does have the prediction that
proactively starting treatment early for a cancer
which is ultimately incurable due to drug resis-
tance, as may happen in the adjuvant setting or
with cancer screening, can adversely skew sur-
vival curves.

4.1.2 ~ Finite continuous protocols

Where the treatment duration is continuous, but
of a fixed and finite duration, Figure 5 shows that
the survival time rises to a maximum and then
decreases as the area under curve is increased.
This again supports the “less is more” concept
that less intense chemotherapy in palliation can
lead to improved results. This result is also ob-
served to be significantly more pronounced for
longer treatment duration; analogously, on con-
sidering the chemotherapy duration as an ad-
justable parameter, our results also reveal that
the survival time can be higher for longer, less
intense protocols.

4.2 Protocols with rest phases

In Figure 7 we consider protocols with a given
number of drug administrations, interspersed
with rest phases, for three fixed values of
chemotherapeutic cell kill. Where the survival
time rises as the rest phase is lengthened, less
dense schedules lead to an improved outcome, as
in Figure 7C. This occurs in an analogous way to
the previous sections, where dose densing leads
to sensitive cell death and thus less competitive
control over resistant cells. However, for lower



drug cell kill, as in Figure 7A, Norton and Si-
mon’s prediction for dose densification holds, as
the survival time only decreases as the rest phase
increases. Here shorter rest phases are required
in order to administer sufficient cell kill to control
the sensitive population.

Figures 8A and B show that when the chemother-
apeutic cell kill and the number of cycles are
fixed, the survival time is maximised by dose
densing only for protocols which are either short
or which have relatively low levels of chemother-
apeutic cell kill. Most importantly, these figures
reveal that on taking cell kill, rest phase and
number of drug administrations as adjustable pa-
rameters the optimal results do not coincide with
the most intense or dense protocol. Thus, again,
“less is more” in the general palliative setting and
protocol escalation does not provide a means of
universally, or even typically, finding optimal out-
comes in contrast to the concepts introduced by
Norton and Simon [33, 34].

Similarly to the continuous chemotherapy case,
Figure 9 shows that delaying the chemotherapy
start time in the dose densification context can
lead to increased survival time, especially for
longer protocol durations. Whereas the higher
survival times in the previous case were achieved
with higher rate of cell kill (see Figure 4), here
the rate of cell kill is fixed and the higher sur-
vival times are achieved with shorter rest phases
between doses. Again this is due to a higher num-
ber of sensitive cells being present to restrict the
growth of the resistant cells preventing the early
emergence of near total tumour resistance. As
previously, this aspect of the model’s behaviour
must be interpreted critically, especially at high
levels of tumour burden. Nonetheless, it again
illustrates a modelling prediction that very early
palliation of an aggressive tumour can have a
detrimental effect on survival time.

It is of particular interest to consider a marginally
incurable tumour as this is a likely scenario for
the implementation of a dose dense regimen that
fails to induce tumour eradication. In Figure
10B, whenever the difference between the maxi-
mum survival time and the survival time with no
rest phases, is equal or close to zero, the max-
imal dose dense schedule with no rest phases is
optimal or close to optimal. As with all predic-
tions that protocol escalation is an appropriate
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strategy, it is qualified by assumption that dose
densification does not lead to intolerable toxicity.

Inspection of Figure 10 for larger numbers of
drug administrations, also shows that dose den-
sification can readily have a detrimental effect
on the patient’s survival time in the absence of
tumour eradication, which would adversely skew
modelling predictions of the protocols’ survival
curves. This does have to be balanced against
the benefits in terms of an increased probability
of cure that Norton and Simon’s modelling pre-
dicts will emerge from protocol escalation.

4.3 General Discussion

As previously remarked, the modelling concepts
presented by Norton and Simon [33]-[37], which
generally advocate protocol escalation, contrast
the modelling predictions of Hahnfeldt et al. [19].
The latter, based on exponential growth models,
suggest the use of regimens based upon maxi-
mally tolerated chemotherapeutic doses are of-
ten not the most appropriate means of tumour
treatment. Here, we have focussed on the set-
ting where the chemotherapeutic cannot control
tumour growth indefinitely with a model similar
to Hahnfeldt et al. apart from the inclusion of
Gompertzian growth. Thus the modelling incor-
porates the mechanisms underlying the studies
by both groups and can therefore be used to con-
sider which mechanisms, and thus which conclu-
sions, are most appropriate in the current setting.

Gompertzian dynamics can have a substantial ef-
fect for protocols with rest phases. While pro-
tocol escalation is inappropriate for continuous
infusions, there are regions of parameter space
for a marginally incurable tumour where dose
densification does not reduce survival times ex-
tensively should the attempted cure fail. Such
regions are generally restricted to when the tu-
mour is marginally incurable (and thus in prac-
tice there is a significant probability of cure) and
the protocol is relatively short and intense. Given
from the studies of Norton and Simon that dose
densification can improve the probability of cure
in such circumstances, it is clearly an appropriate
strategy in this setting given tolerable toxicity.

However, in contrast, curative attempts involv-
ing sufficiently protracted protocols are predicted



to have survival times in the absence of cure
which are adversely affected by dose densifica-
tion. This would severely and adversely skew
modelling predictions of survival curves due to
the sub-population who were not cured. Thus,
one cannot draw definitive conclusions about
whether protocol escalation is appropriate within
the current modelling study. However it is clearly
illustrated that the modelling of dose densing
strategies should not only consider the probabil-
ity of cure, but also whether survival times are
greatly reduced for failed protocols before draw-
ing conclusions.

In the palliative setting, less is indeed more for
chemotherapy and, for general protocols, proto-
col escalation leads to poorer outcomes in concor-
dance with the modelling of Hahnfeldt et al. [19].
More generally, the model presented here recon-
ciles the two competing concepts of Norton and
Simon [33]-[37] and Hahnfeldt et. al [19] within
a single framework. Our conclusions thus addi-
tionally demonstrate that both frameworks can
be valid according to context.

In summary, this model is based on well founded
approximations: Gompertzian tumour growth,
log cell kill by chemotherapy and Luria-Delbruck
mutation to resistance, with results that are ro-
bust to parameter variation. We have modelling
predictions that palliative continuous chemother-
apy achieves optimal results for intermediate
rather than high dosage levels with later rather
than earlier intervention (subject to tolerability)
due to the effects of competition between re-
sistant and sensitive cells.. It has been shown
that protocol escalation via dose densification or
dose intensification, will not yield benefits in the
clearly palliative setting given sufficient freedom
in protocol scheduling. In addition, very early
palliation is predicted to lead to lower survival
times. Finally, dose densification for a marginally
incurable tumour will often, but need not, ad-
versely affect survival time and thus skew predic-
tions for the survival curve, especially for proto-
cols with sufficiently large numbers of drug ad-
ministrations.

The relevance of these observations are high-
lighted by the tentative consideration of single
agent dose densification for the ovarian palliative
setting [48]. This modelling clearly indicates that
the gains predicted by Norton-Simon type mod-
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elling should not necessarily be expected in the
context of cell cycle phase non-specific drugs used
in the ovarian setting, such as cisplatin [17, 48].

Scheduling for colorectal palliation is also a cur-
rent area of investigation, including the potential
role of regional continuous infusions [11]. While
the above modelling of continuous infusions is in-
sightful, a direct application of the current study
in the context of colorectal palliation highlights
the need to model combination protocols in fu-
ture work. This requires numerous generalisa-
tions of the current study, including a heteroge-
neous spectrum of tumour resistance, cell cycle
phase specificity, multiple drugs and the differ-
ence between regional and systemic treatments,
especially in terms of metastases.
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A Appendix. Additional de-
tails and parameter values

A.1 Initial conditions

In the simulations the tumour is grown from an
initial single, drug sensitive, seed with

N(t=0)=Ns(t=0)=Ny=1

and
Nr(t=0)=0

prior to the start of the chemotherapy. The ini-
tial stages are not consistent with a continuum
model; however, once the cell numbers are larger
this does provide a representative initial distribu-
tion of sensitive and resistant cells for subsequent
study. Furthermore, the general robustness of
the modelling framework to parameter variations
entails that the conclusions we draw are insensi-
tive to the consequences of neglected fluctuations
in these initial stages of the tumour development.



Thus a more sophisticated treatment of the initial
dynamics would be an unnecessary complication.

A.2 Gompertzian growth curve pa-
rameters

For colorectal cancer, the doubling time 7T is ap-
proximately 96 hours [40], so ay,, the instanta-
neous specific growth rate of the tumour at time
t = 0 can be calculated:

_ In2

N, =7x107%h"h

N is the theoretical number of cells at which
the tumour growth curve would saturate; how-
ever this is beyond the tumour size considered
to be fatal so would not be reached in reality.
The diameter of this beyond-fatal tumour size is
taken to be about 16cm, i.e. Ny = 2 x 102 cells.
Thus we have

an,

g

For the above value of 3 note that an advanced,
near fatal, tumour with N ~ 4 x 10" cells has
a doubling time of about 72 days, which is the
correct order of magnitude to match the obser-
vations of Rew et. al that in clinic tumours can
have doubling rates of the order of 100 days [40].

N = Ngexp < ) = /=247 x10"*h"L.

By non-dimensionalising with respect to time,
one can see that altering (3 is equivalent to chang-
ing the units of time. The overall dynamics
are otherwise unchanged, assuming protocol rest
phases and drug administration durations are
also scaled. Thus our coneclusions hold for a fam-
ily of values of 3. For example, if we were to
use the 12.5 days doubling time of ovarian cancer
[40], we would find 3 is reduced; with a suitable
rescaling of time, conclusions are unchanged.

A.3 Tumour cell burden levels

We take, as reference, a nominal initiation point
for chemotherapy to be a tumour cell burden of
Niont = 10'9 cells, corresponding to a tumour of
roughly 1.5cm in radius which is in the range
of tumour sizes reported for patients initiating
palliative care for non-resectable colorectal liver

metastases [3]. However, in practice, this is likely
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to be variable, so we also consider the effects of
adjusting this parameter in the main text. In
the context of failed cure in this paper, we take
a much smaller initial tumour, with 4 x 107 cells
at the start of treatment, which corresponds to
a micrometastatic tumour of about 2mm in ra-
dius. Note that micrometastases are a thera-
peutic target, as they are often anticipated to
be present following post primary tumour resec-
tion ultimately leading to recurrence [30, 31]. In
all simulations, the fatal radius of the tumour is
taken to be Ny = 5 x 10 cells, which corre-
sponds to a tumour of diameter of approximately
10cm.

A.4 Mutation to resistance

As mentioned in the main text, the interpreta-
tion of our modelling representation of mutation
contains a subtlety. In particular, the rate of mu-
tation is proportional to the growth rate as con-
sidered in previously modelling [15]. However,
the underlying principle for mutation is that it
is due to genetic errors occurring during replica-
tion and thus, in the absence of further empirical
information, the mutation rate should be propor-
tional to the proliferation rate.

One can, nonetheless, readily consider the errors
involved with our modelling framework. Denote
the proliferative rate by P and the inherent (drug
independent) rate of cell loss by L so that the
inherent (drug independent) growth rate is P— L.
Further, let

def L
denote the cell loss factor, which is commonly
measured in tumour cell kinetic studies. For hu-
mans ¢ is typically observed to be greater than
0.5 with a median value of 0.77 in a large study of
human tumours (see [20] and references therein)

and values around 0.9 are also reported (e.g.
[49]).

In terms of model parameters, the mutation rates
per cell cycle between the sensitive and resistant
compartments are

(1-—¢)n  (1-p)m
In2 ’ In2

Assuming the mutation rate per cell cycle is con-
stant, our modelling framework has a systematic




error in that we are then forced to assume ¢ is
constant. While in occasional studies this has
been observed to be the case, e.g. [27], gener-
ally ¢ increases with tumour size. In particular,
in observations of human tumour xenografts ¢ is
observed to be at least 0.46 in the exponential
phase of growth and at most 0.91 as the plateau
phase is reached, with respective mean values of
0.56 and 0.85, as reported by Wickramanayake et
al. [49]. Thus, taking an intermediate value of ¢
our mutation rates have an error of at most a fac-
tor of 2.4 for the extremal values of ¢ reported
by Wickramanayake et al. [ibid] and about 1.7
for the mean values. Even if we assume no cell
loss in the early stages of growth, an intermediate
value of ¢ will still be limited to a factor-three
error.

However the model conclusions are robust to
changes in the mutation rate. Thus, by neglect-
ing the effect of the variation of the cell loss frac-
tion during tumour growth we have a much sim-
pler model, which need not separately track cell
loss and yet we have conclusions which are insen-
sitive to such details. Thus our modelling sim-
plification is entirely appropriate for this initial,
proof of principle, study.

We proceed to estimate the parameters 71, 7o.
The rate of mutation per cell cycle has been esti-
mated in the experimental literature to be of the
order of O(10~7 — 107*) [15], while

(1= )m
In2

(1—9)7
In2 ’

give the mutation rate per cell doubling time in
the model. Thus, in the palliative setting 7, and
5 are taken to be 1076, Significantly less aggres-
sive tumours, with 71 and 7 given by 2x10~7 are
considered in the context of failed cure; such an
extreme lack of aggression is required for cure to
be possible in the model. At the initiation point
for the palliative setting, the number of resistant
cells present is about 10° given the above choice
Similarly, in the context of
failed cure, the smaller tumour initiation point
and the smaller mutation rate entails that there
are about 140 resistant cells present, which is still
sufficient to justify a continuum model.

of mutation rates.
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A.5 Final remarks

The nature of this field of modelling entails that
the parameter values we use, as detailed above,
are invariably estimates and will vary between
different drugs, tumours and patients. However,
the qualitative structure of the dynamics we have
observed is robust to variations in our estimates
at least providing palliation, or failed cure ac-
cording to context, is feasible. For example, rapid
progression to death with effectively no schedul-
ing dependence occurs when the chemotherapeu-
tic is so weak as to have essentially no control
whatsoever over the tumour. However, the char-
acteristics of the dynamics we have illustrated,
and the conclusions we drawn, are retained for
sensible parameter space samplings where the
chemotherapeutic can reasonably be considered
as having a realistic palliative, or curative, effect
according to context.
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