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Models of Transcription Factor Binding:
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Dominique Chu1 and Nicolae Radu Zabet1 and Boris Mitavskiy2

1Computing Laboratory, University of Kent, CT2 7NF, Canterbury, UK
2A-star Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, 138671,

Singapore

Abstract

We present 3 models of how transcription-factors bind to their specific binding sites
on the DNA: A model based on statistical physics, a Markov-chain model and a
computational simulation. Comparison of these models suggests that the effect of
non-specific binding can be significant. We also investigate possible mechanisms
for cooperativity. The simulation model suggests that direct interactions between
transcription-factors are unlikely to be the main source of cooperativity between
specific binding sites, because such interactions tend to lead to the formation of
clusters on the DNA with undesirable side-effects.

1 Introduction

Controlled binding of transcription factors (TF) to one or more specific binding
sites is an important mechanism for cells to regulate gene expression. It is
therefore a key-challenge for the cell to be able to control the occupation of
individual regulatory sites with the respective TFs in response to changes of
external conditions. The overall qualitative form of TF binding is well known;
if there is a single binding site, then the probability of the binding site to be
occupied approaches 1 as the concentration of free TFs in the cell increases.
This saturation curve is often modeled using the Michaelis-Menten function.
If there are more than one binding sites, then the transition from low to
high binding probabilities is more pronounced and often modeled using the
so-called Hill-equation (see below). There are a number of models that can
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reproduce these overall predictions in a qualitative way. These models are,
however, not all equivalent with respect to their key-assumptions. In many
practical modeling situations the simplest models will do; however, for other
purposes, such as for example model-based parameter estimation, it will be
desirable to have a more detailed model. This article will present three different
models of TF binding. Its main purpose is to (i) explore their properties and
predictions (ii) show how they are related to one another and (iii) show their
limitations.

Gene activation and TF binding is commonly modeled using differential equa-
tion approaches (see for example Murray (2008); Chu et al. (2008); Narang
(2006); Narang & Pilyugin (2007); Zhu et al. (2007)) or piecewise-linear differ-
ential equations (see for example Alon (2006); Batt et al. (2005)). Differential
equation models are very convenient from a practical point of view because
there is a well developed body of theory to either solve them analytically or at
least numerically. The fundamental assumption underlying any such model,
however, is that variables are continuous—an assumption that is often too far
from the truth to be useful in biological systems. The genome is often realized
by only a single molecule and TF numbers can be low (several hundreds). Most
differential equation approaches assume that TFs and their binding sites are
suspended in the well stirred cytoplasm. As we will show in this contribution,
the assumption of the cell being a well stirred reactor makes a qualitative dif-
ference to the behavior of the model when compared to models that take into
account a modest amount of spatial organization.

The assumption of well-stirred reactors can be relaxed in simulation based
approaches such as discrete event simulation algorithms (Gillespie (1972);
Gibson & Bruck (1998); Ramsey et al. (2005)), stochastic model checkers
(Kwiatkowska et al. (2001)) and process algebras (Regev et al. (2001)) (to
name but a few). For the understanding of TF binding to specific simulation
models are possible choices, but not necessarily the most convenient ones, be-
cause the representation of a large number of non-specific binding sites can
lead to overly complicated models. Another approach are models based on
statistical physics. Ackers and coworkers (Ackers et al. (1982)) developed a
model of the gene regulation of the λ-phage repressor (also see Ben-Naim
(1997, 199)). More recently Bintu et al (Bintu et al. (2005a,b)) presented a
number of models to calculate the gene activation function of various operator
architectures. The idea of these approaches is to take the weighted sum over
all states of the system that are of interest and to divide this by the weighted
sum over all possible states to calculate the (steady state) probability of the
states of interest to be observed.

Such statistical physics models are very useful in that they often lead to formu-
las to calculate various quantities associated with the model of interest. One
usually has to rely on computational algebra systems to compute the results,
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but this is normally still much faster than a discrete-event based simulation
of the same system. On the downside, for moderately complex systems for-
mulating the partition function (that is the sum over all possible states) can
be a taunting exercise in combinatorics. It is presumably for this reason that
previous authors made a number of simplifying assumptions to keep their sta-
tistical physics models tractable. In particular they ignored non-focal TFs and
assumed that there are no intra-species TF-TF interaction with cooperative
effect except between the specific binding sites.

In this contribution we are not so much interested in calculating a specific
biological scenario, but instead we are interested in the differences between
various modeling ansatzes to TF-binding. We recognize that modeling always

requires simplifying assumptions, but it is essential to understand what error
any such simplifying assumption causes. In order to come to a better under-
standing of this, we compare three modeling approaches. Firstly, based on the
above mentioned works by Bintu and Ackers, we develop a statistical physics
models of the binding of TFs to DNA. Our model is somewhat less concrete
than previous work, but allows for an arbitrary number of specific binding
sites. In the appendix to this article we also present an extension that models
the case of an arbitrary number of TFs, although we do not elaborate this
extended model. One of the immediate conclusions we could draw from this
statistical physics model is that in order to compute the probability of a cer-
tain number of specific binding sites to be occupied only the number of focal
TFs are important. Non-specifically binding TFs can be ignored. However,
using a discrete-event computational simulation, we can show that for a slight
relaxation of these assumptions, this conclusion becomes incorrect.

We also compare the computational and the statistical model with a Markov-
chain model. The latter has the advantage that it can easily incorporate co-
operativity and leads to some relatively easy-to-compute formulas. However,
this comes at the cost of having to neglect the statistical contribution of non-
specific binding, and thus leads to a qualitatively different model. Seen from
this perspective, it is questionable to what degree one can generalize from con-
clusions won from models of gene activations that ignore non-specific binding.

Our analysis is itself based on a number of simplifying key-assumptions: We
assume that the DNA is a linear string of binding sites (see below for details).
For a particular type of TF only some of the binding sites are specific. TFs
bind to all sites, but much stronger to specific than to non-specific sites. In
all models below we assume that there are 2 types of TFs. The focal TF-type
will have a particular set of specific binding sites on the DNA and will be the
molecular type we are interested in. Throughout this manuscript, this will be
referred to as type-1 TF. The second type of TF—type-2 TFs—subsumes all
other TFs present in the cell. They are of no direct interest other than their
possible interference with the binding properties of type-1 TFs. Furthermore,
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in this contribution we will assume (except in the Markov-chain model) that
all TFs are always bound to the DNA (although possibly to non-specific sites),
rather than be freely suspended in the cytoplasm. They find the specific sites
through repeated binding and unbinding to/from non-specific sites, rather
than through direct attachment from an unbound state. In cells a certain
proportion of TFs will normally be freely suspended in the cytoplasm (Kao-
Huang et al. (1977); Wunderlich & Mirny (2008)). It feels safe to ignore this
effect given that it seems unlikely that a TF directly binds to the specific site
from a suspended state in the cytoplasm.

We compare the models by asking the following question with each of them:
Given SS specific binding sites, SNS non-specific binding sites, N1 TFs of type
1 and N2 type-2 TFs, what is the steady state probability that 0 ≤ k ≤ SS

of specific binding sites are occupied? We will describe our statistical physics
model in section 2.1; this model is limited to consider two types of TFs. A
more general version of the model including a derivation can be found in
the appendix section A. A simple Markov-chain model of the same system
will be described in section 2.2. Both of these models will be compared to the
computational model described in section 2.3. Section 3 will present simulation
results obtained with the computational model and relate the three models to
one another. Section 4 concludes this article.

2 Models

2.1 Statistical Physics Model

We start with the simplest possible case to illustrate the basic principle of
statistical physics-based models of TF binding. We assume that TFs are freely
suspended in a perfectly mixed aqueous environment of the cytoplasm. Then
following Sneppen & Zocchi (2006) we can write the statistical weight of l TFs
being bound as:

Zl =
(2V

√
2(mkBT )(3/2))N−l

(N − l)!
exp

(
− lG

kBT

)
(1)

Here V is the cell volume, m the mass of the TF and kB the Boltzmann
constant and T the temperature. Setting F = 2V

√
2(mkBT )(3/2) one can

rewrite this equation as

Zl =
F N

(N − l)!
exp

(
− lG′

kBT

)
(2)
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Where G′ = G + ln F is the apparent binding free energy. This form draws
all changes from F that depend on the number of binding sites into the ap-
parent binding free energy. If there are altogether three binding sites then the
probability of exactly m < 3 sites being bound is given by:

P (exactly m) =
Zl=m∑3
i=0 Zl=i

(3)

This model would be valid for a short polymer with relatively few non-specific
binding sites. DNA molecules, on the other hand, have a large number of
binding sites and non-specific binding of TFs to these sites needs to be taken
into account. The simplest case is to consider only a single TF with binding
free energy Gs for the specific site and Gn for the non-specific sites. Assume
that the DNA is a sequence of non-overlapping binding sites, of which SNS

are non-specific and there is exactly one specific binding site (i.e. SS = 1).
Depending on the binding strength and the temperature, the TF will spend a
certain (stochastic) amount of time bound to a binding site, before detaching
and re-attaching to a different site. It thus performs a random walk on the
DNA. We are not concerned about the details of the random walk here (though
see Wunderlich & Mirny (2008)) although we do assume that over an infinite
time the TF will sample every site an infinite number of times. In the long run
the cumulative binding time to any particular site will depend on the binding
strength. For each of the non-specific sites the statistical weight is given by
Ackers et al. (1982); Bintu et al. (2005a):

wNS = Fexp
(
− Gn

kBT

)
(4)

Here, kB is the Boltzmann constant, T the temperature, and F a factor that
takes into account some geometrical particulars of the TF and the DNA se-
quence and is not further characterized 1 . Note that wNS is the statistical
contribution of a single non-specific site only; in order to obtain the total
weight of all non-specific sites wNS needs to be multiplied by the number of
possible ways to occupy the non-specific sites. For the present case of a single
particle this is simply the number of non-specific sites SNS ; hence the total
statistical weight of the TF binding to non-specific sites is given by

ZNS = SNSwNS (5)

Similarly, the statistical weight of the TF being bound to the specific site can
be written as:

ZS = F exp
(
− Gs

kBT

)
(6)

1 In fact it turns out to be irrelevant for computing the probabilities as long as the
apparent binding free energy is known
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Since there is only one specific site and one TF this case captures all possible
ways to occupy the specific site. In order to calculate the probability Pb of a
TF to occupy the specific binding site we divide its statistical weight by the
total statistical weight of all possible configurations (compare Gerland et al.

(2002)):

Pb =
ZS

ZS + ZNS
=

1

1 + SNSF exp
(

Gs−Gn

kBT

) (7)

Pb is a sigmoidal function of Gs making the transition from 1 to 0 as Gs

increases (assuming a fixed Gn). Hence, for a fixed number of non-specific sites
the probability of the specific site to be occupied increases to 1 with Gs → −∞,
i.e. increasing binding strength of the specific site. For a fixed specific free
energy, but an increasing number of specific sites, Pb falls exponentially to 0.

This very simple model illustrates the basic behavior of TF binding to specific
and non-specific sites, but is by itself rather unrealistic. Firstly, normally there
will be more than one TF in the cell, there will potentially be more than one
specific binding site, and moreover there will be many types of TFs each with
their own specific binding sites. In order to keep the complexity of the model
manageable we will assume that the specific binding sites are bound with
free energy Gs by the N1 type-1 TFs, whereas all other binding sites have a
binding free energy Gn; the N2 TFs of type-2 bind all sites with Gn. This latter
assumption is of course not strictly correct as there will be specific binding
sites for every species of TF.

If we again use F1 and F2 as factors that take into account geometric aspects
of the system, then setting F = F1 = F2 one can write the partition function
as follows:

Z =
SS∑
i=0

(
SS

i

)(
SNS

N1 − i

)(
SS + SNS −N1

N2

)
F N2+N1exp

(
−N2Gn

kBT
− iGs

kBT
+

(N1 − i)Gn

kBT

)
(8)

Analogously to the partition function in eq 6 this partition function sums
over all possible configurations of TFs of type-1 and type-2 binding to specific
and non-specific sites. In order to calculate the probability of a particular
configuration, one needs to normalize the statistical weight of the configuration
in question by the partition function Z. For example, the probability of exactly
one specific binding site being occupied by a TF of type 1 is:

P (exactly one) =
Zi=1

Z
(9)

where Zi=1 denotes the summand in eq 8 where i = 1. The reader can easily
convince herself that this partition function leads to the same binding proba-
bilities as equation 7 for SS = 1, N2 = 0 and N1 = 1. Note that equation 9 is
independent of N2, i.e. the number of TFs of type 2 and the geometric factors
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F . This means that, at least in this simple model, the binding probability of
type-1 TFs to their specific sites does not depend on the number of type-2
TFs. Similarly independent of N2 is the probability that all binding sites are
occupied:

P (all three) =
Zi=3

Z
(10)

Indeed, it can be easily seen that the binding probability of any configuration
of type-1 TFs binding to specific sites is independent of N2. Note however,
that this conclusion depends on the simplifying assumption that the binding
free energy of type-2 TFs is the same for all binding sites. In general this will
not be the case. To illustrate this consider the (extreme) case where type-2
TFs have the exact same binding characteristics as type-1 TFs, i.e. bind to
all sites with the same free energy as type-1 TFs. In this case, the probability
to find a certain number of specific binding sites occupied by type-1 TFs will
crucially depend on the number of type-2 TFs. The partition function of this
system can be written as follows:

Zs =

i=SS

j=i∑
j=max(0,i−N2)

i=max(0,N1+N2−SNS)

(
SS

i

)(
i

j

)(
SNS

N1 − j

)(
SNS −N1 + j

N2 − i + j

)
×

×F N1+N2 exp
(
− iGs

kBT
− (N1 + N2 − i)

Gn

kBT

)
(11)

Here the double index in the summation symbol indicates two nested sums
with the inner index indicating a summation for each value of i. The statistical
weight of the configurations where all SS specific binding sites are occupied
by type-1 TFs is given by:

wa =

(
SNS

N1

)(
SNS −N1

N2 − SS

)
F N1+N2 exp

(
−SSGs

kBT

)
exp

(
−(N1 − SS + N2)

Gn

kBT

)
(12)

Here we make the reasonable assumption that there are more type-2 TFs than
specific binding sites, i.e. N2 > SS. As before, the probability of all SS binding
sites being occupied is Ps = waZ

−1
s . It can be easily seen that Ps reduces to

equation 9 for N2 = 0 and SS = 1. More generally, in the case of N2 = 0
then Ps gives the probability that all specific binding sites are occupied when
type-2 TFs always bind with Gn.

The mathematical model eq 8 leads to the familiar saturation curves that one
would expect from gene activation functions (see in this context also Bintu
et al. (2005a,b)). In particular, using eq. 8 to calculate the probability that a
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TF is bound to a unique specific binding site yields:

P (unique specific site bound) =
exp (−Gs)

exp (−Gs) +
(

SNS

N1
− 1

) =
N1

N1 + K(SNS −N1)

(13)
Here we assumed kBT = 1 and Gn = 0 and K = exp(Gs). For SNS large
compared to N1 this expression is well approximated by a Michaelis-Menten
function (which is also frequently used to describe the dynamics of gene acti-
vation functions). Whether or not this assumption is indeed met will depend
on the binding free energy to the specific site. The approximation is only good
when already a small number of TFs will guarantee full occupation of the
binding sites.

2.2 Markov-chain model

It is possible to extend the statistical physics model eq 8 to include cooper-
ativity between TFs. This normally requires recursive relations to calculate
the probability of a specific micro-state of the system. Developing this is be-
yond the scope of this contribution. However, a simplified model that assumes
perfect mixing in the cytoplasm and ignores the effect of DNA as a reservoir
for particles allows more compact modeling of cooperativity. Assume that
all non-specifically bound TFs are conceptually concentrated into one single
non-specific site that acts as a “reservoir” for TFs. This simplified scenario
corresponds to the case where non-specifically bound TFs are suspended in
the cytoplasmic solution (note that this is also the assumption behind the
Sneppen and Zocchi model eq 2). Binding to the specific sites happens with
a specific rate that depends on the affinity of the TF to the binding site and
the concentration of the TFs.

A thus simplified system can be described as a (SS + 1) state continuous time
Markov-chain; the individual states of this chain correspond to 0, 1, . . . , SS

specific sites being occupied. Markov-chains are normally represented as n×
n matrices that describe the rate (in the case of continuous time Markov-
chains) or probability (in the case of discrete time Markov-chains) of transition
between the possible states. We take here as an example the case of 3 specific
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binding sites. The transition matrix for this case is then given by

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 Nkb 3 Nkb 0 0

ku C−2 −ku C−2 − 2 (N − 1) kb C1 2 (N − 1) kb C1 0

0 2 ku C−1 −2 ku C−1 − (N − 2) kb C2 (N − 2) kb C2

0 0 3 ku −3 ku

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)
Here Qij is the rate of transition from state i to state j; the state Q00 is
represented by the top left entry of the matrix. N is the number of TFs; kb

and ku are the phenomenological binding and unbinding rates respectively.
The factor of 3 in Q01 is due to the fact that there are 3 free binding sites. C±l

is the cooperativity modifier, i.e. a factor that determines how the forward and
backward binding rates are changed when l other TFs are bound to the binding
site. If this value is > 1 then we deal with positive cooperativity (i.e. once one
site is bound binding to further sites is facilitated), otherwise cooperativity is
negative. To illustrate the origin of the entries of this matrix, consider as an
example Q12 (given by 2kuC−1); this term describes the transition from a state
where 2 specific sites are occupied to a state where only 1 is. The transition
rate is given by twice the unbinding rate of a single bound TF, kb, because
at any time either of the two could unbind; the C−1 term modifies this rate
depending on the cooperativity of the system. The entry Q32 ((N − 2)kbC2)
describes the transition rate from a state where 2 TFs are already bound to a
state where all specific binding sites are occupied. In this case, there are only
N − 2 TFs in the cytoplasm (because 2 are bound already); hence the basic
rate of binding kb must be multiplied by the number of TFs that could bind
and a cooperativity modifier (C2). The rationale for all other entries is similar.

The steady state distribution vector π of such a continuous time Markov-chain
is given by the solution to

π ·Q = 0∑
i

πi = 1

This is a system of equations that can be solved for each of the πi. Solving it
for π4 yields:

π4 =
N(N − 1)(N − 2)

N3 − 3N2 + 2N + K3 + c−1(3K2N + 3K2N2 − 3KN)
(15)

Here we assumed that all cooperativity terms C±l = c to simplify the equation
and we set K := kub/kb. In the limit of infinite cooperativity c → ∞ the
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parenthesis in the denominator goes to 0, leading to the expression:

lim
c→∞

π4 =
N(N − 1)(N − 2)

N(N − 1)(N − 2) + K3
(16)

This expression is well approximated by a Hill function as long as N is large
enough. 2 Equation 16 suggests that the Hill coefficient is limited by the num-
ber of binding sites. This indicates that switch like gene activation functions
need to include additional mechanisms, simply because the number of TFs
controlling one particular gene is limited. In order to achieve thresholding or
switching behavior it might be necessary to couple gene activation to trans-
duction pathways (such as the Koshland Goldbeter (Goldbeter & Koshland
(1981); Tyson et al. (2001)) switch) or to form multi-mer TFs (also see Tyson
et al. (2003) in this context).

Turning our attention now to the case of no cooperativity, i.e. c = 1 equation
15 becomes:

π4 =
N(N − 1)(N − 2)

N3 − 3N2 + 2N + K3 + 3K2N + 3KN2 − 3KN
(17)

This model can be related to the statistical physics model eq 8. In particular,
looking at the probability of three binding sites being occupied in eq 10 if one
ignores the contribution from the non-specific sites to the statistical weight,
i.e. SNS/(SNS − N1 + i) = 1, then the statistical model corresponds to the
Markov-chain model in eq 14. In this case eq 10 can be expanded as:

P (all three) =
3!
(

N
3

)
exp (−3G)∑3

i=0 i!
(

N
i

)
exp (−iG)

(18)

Here again we set kBT = 1 for notational convenience. Expanding the binomial
coefficients in equation 18 and setting K = eG yields after some simple yet
tedious manipulations:

P (all three) =
N(N − 1)(N − 2)

K3 + 3NK2 + 3N2K − 3NK + N3 − 3N2 + 2N
(19)

2 In Biochemistry cooperativity is often associated with the value of the Hill coeffi-
cient, i.e. the value of h regulating the sharpness of the transition from the minimal
to the maximal value in the so-called Hill-function:

P (x) =
xh

Kh + xh

Here P (x) is the probability that all SS operator sites are occupied; K is a parameter
indicating the number (or concentration) of TFs where P (K) = 1

2 . Generally, the
higher the value of h the more switch-like the function P (x).
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This is the same as eq 17 showing the equivalence of the Markov model with
the statistical physics model when the statistical contribution of the non-
specific binding sites is ignored in the latter. A similar exercise shows that the
Sneppen and Zocchi model eq 2 can be brought into the same form.

2.3 Computational Model

This section describes a computational simulation model of TF binding. This
model explicitly represents the DNA sequence and the TFs populating the
sequence. The DNA sequence is a random string of length l composed of a
4 letter alphabet. Its length and composition bias can be set arbitrarily by
the user. TFs bind to the DNA string with free energy G(s), where s is the
particular sequence to which the TF attaches; when the sequence s of the string
coincides with the specific binding site, then we call s the binding motif. The
length of s is equal for all TFs and fixed during a simulation and equal for
all TFs in the model (in all simulations considered here the length was kept
fixed at the arbitrary value of 9). We used two different rules to determine the
binding energy:

(1) There are only two binding energies, namely a specific binding energy
and a non-specific one. TFs bind with the non-specific free energy Gn

unless they are of type 1 and the binding sequence exactly matches the
binding motif, in which case the TF binds with energy Gs. This rule
corresponds exactly to the above described theoretical model eq 8, but
is an approximation with respect to the real biological case. It is more
realistic to assume that the non-specific binding free energy is sequence
dependent.

(2) For TFs of type 1 the binding energy is calculated as G(s) =
∑

s
ε ·

δsi,st

i
where st denotes the binding motif and ε a factor representing the

contribution from each matching nucleotide and δx,y = 1 for x = y and
0 otherwise. So, for example, if the binding motif is aatc and the actual
sequence is atgc then G(atgc) = ε1 +0+0+ ε4 = 2ε. TFs of type 2 bind
either with a user determined fixed energy G2 or with the same motif
matching rule as type-1 TF.

The second scenario is generally held to be a good approximation to the bio-
chemical reality (see Gerland et al. (2002)); the first binding rule is still of
interest here because the binary distinction between specific and non-specific
binding sites allows a direct comparison of the computational model with the
statistical physics model. Note, however, that even the first rule is somewhat
different to the above mathematical model 8 that assumed the DNA to be
partitioned into separated binding sites. In the computational model each TF
has a binding motif of length l and thus occupies at least l nucleotides. On
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circular DNA strands there will still be L binding sites if the DNA is composed
of L nucleotides.

The update algorithm of the model is as follows:

(1) The simulation is initialized by populating the DNA string with a user-
determined number of TFs of type-1 and type-2. The time is set to zero
and each TF is assigned a binding time drawn from an exponential distri-
bution with mean G(s), where s indicates the particular binding site and
G(s) the free binding energy appropriately calculated for TFs of different
types (see above).

(2) The TFs are placed in a list ordered with respect to the remaining binding
time; the TF with the lowest remaining binding time is the top element.

(3) The top TF of this list is updated, i.e. removed from its current binding
site and moved to a randomly chosen new position.

(4) The system time is set to Tb + Tu where Tb is the system time when the
top TF attached to its current site and Tu is the total time it was bound
to this site.

(5) A new binding position is determined for the TF as in step 1 and it is
assumed that the time required for TF to move from a position to the
next is negligible compared to the time they spend bounded to the DNA.

(6) A new binding time is determined for this TF and it is added to the
ordered list at the appropriate position.

(7) The procedure continues with step 3.

The location of the specific binding sites on the DNA can be determined by
the user. During the simulation the cumulative occupation time of each of the
specific binding sites is recorded. After a user-specified system-time (i.e. not
real simulation time) the simulation is stopped and estimates for the relevant
binding probabilities are calculated by dividing the actual occupation time
by the total system time. In the limit of an infinite system time this would
give an exact value for the binding probabilities, however, at the expense of
an infinite simulation time. In practice we found a system simulation time
of 100000 time units to be sufficient to give fairly accurate estimates of the
binding probabilities (as indicated by the scatter of the results) while allowing
reasonable simulation times.

The model also allows cooperativity. In real systems there are at least two
different possible sources for cooperativity. One way to think about it is that
attachment of a TF leads to a local conformational change of the DNA which
in turn leads to an increased (or decreased) binding affinity of other TFs. An-
other possible source of cooperativity is direct interaction between TFs: If two
TFs bind close to one another and form bonds between them as well as with
the polynucleotide then this will result in an increased period of residency
of the individual TFs on their respective binding sites. Which one of those
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mechanisms is biologically more important is unclear; indeed there might be
other causes of cooperativity. Corresponding to those two possible mecha-
nisms in the model the user can choose between two types of cooperativity.
Cooperativity-1 is assumed to be effective at the specific binding sites only;
one can think of it as being mainly caused by indirect effects (such as con-
formational changes of the DNA). Cooperativity-2 is effective between any
pair of adjacent type-1 TFs whether or not they are bound to specific sites.
Biologically, cooperativity-2 can be thought of as being due to direct TF-TF
interactions.

Cooperativity-1 is implemented as follows:

• Upon binding to a specific site Σ the total number of occupied specific
binding sites (other than the current) is determined. This number is n.

• Assuming n > 0, two random binding times are drawn from an exponential
distribution. Firstly, T1 is the binding time for the specific binding site
in absence of cooperativity; T2 is the binding time taking into account
cooperativity and is drawn from an exponential distribution with mean
Gs + ncM where cM is the cooperativity parameter specified by the user.
Note that cM is different from the cooperativity parameter c of the Markov-
chain model. In the computational model, the case of no cooperativity is
realized by cM = 0 whereas in the Markov-chains model it is c = 1. In
general there is no simple relationship between c and cM .

• The TF at Σ binds for a period of T2; the other TF at specific sites have
the value max(0, T2− T1) added to their binding time.

The algorithm for cooperativity-2 is similar, yet instead of taking into account
all TFs bound to specific sites all TF modify their binding properties according
to the number of TF of the same type that bind to immediately adjacent sites.

3 Results and Discussion

We first check that the mathematical model 8 indeed matches the predictions
of the computational model given the same parameters. Figure 1 confirms for
a specific set of parameters (see figure caption) that there is good agreement
between the model and the theoretical predictions; note that figure 1 shows
results obtained from simulations with overlaping binding sites, whereas the
model eq 8 assumes non-overlapping sites 3 . The simulation results show a
certain degree of noise; this noise could be reduced by increasing the time

3 Strictly speaking figure 1 only confirms the agreement between model and simu-
lation for the particular parameter set used. However, we found similar (or better)
agreement for all parameter sets we tested (data not shown).
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Fig. 1. Comparison of the mathematical model with the simulation. The solid curves
indicate the prediction of the statistical physics model (eq 8) and the dots are results
of simulations. Each dot represents the result from a single run of the model. The
label “at least 1 bound” indicates the probability that at least one of the 3 specific
binding sites is occupied. The label “all 3 bound” indicates the probability of all
3 specific binding sites being occupied. A logarithmic scale for the x-axis was used
to improve readability. The parameters used in this figure are: Gs = −5kBT , DNA
size: 10000, length of motif: 9; the probability of TF binding in the simulation was
obtained by averaging over 10000 time units.

over which results are averaged, although only at the expense of increased
computational costs. We could also confirm the prediction of the theoretical
model that the probability of specific sites being occupied is independent of
the number of type-2 TFs (data not shown).

While the statistical physics model eq 8 does agree with the simulation results,
the Markov-chain model eq 15 does not (data not shown). As discussed above,
the Markov-chain model is in general not equivalent to the statistical physics
model eq 8 even for the case of c = 1. It is therefore not surprising that it
does not reproduce the data for the same value of K.

Figure 2 shows a fit of the Markov-chain model to two simulations of the
computational model with identical parameters but cooperativities of cM = 1
and cM = 5 respectively (see legend of figure 2). In both cases a good fit
can be obtained and the fit correctly assigns a higher cooperativity factor
to the cM = 5 simulation. It also assigns a different K to both simulations,
which is incorrect, as these simulations are only distinguished by their different
cooperativities but not by their K. Attempting to fit the Markov-chain model
with the K obtained for the cM = 1 case to the simulation with cM = 5
however is not successful, as can be seen in figure 2.

Figure 3 shows example simulations of the system with cooperativity-2 (i.e.
local TF-TF interactions) enabled. If there is only one TF-species in the sim-
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Fig. 2. Comparing the computational model with cooperativity-1 with the
Markov-chain model eq 15; we use logscale to improve readibility of the graph.
The dots show simulations of the same model with two different cooperativity fac-
tors cM = 1 and cM = 5. It is possible to fit the Markov-chain model to both
simulations. As expected the fit leads to a higher cooperativity c for the simulation
with higher cooperativity cM = 5. However, the K values of the two fits do not
co-incide: Using the K values obtained from one fit (to the cM = 1 simulation) and
attempting to fit the model to the cM = 5 simulation is not successful. As can be
seen in the graph, this leads to a very bad fit (the dashed line). The simulation
used the following parameters: DNA size: 100000, number of specific binding sites:
3, length of motif l = 9, contribution per correct base ε = 0.3333.
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ulation then, for medium and high numbers of TFs and medium to high coop-
erativity the occupation probabilities obtained from simulation runs fell into
two distinct classes: During each particular run the specific binding sites were
either (close to) permanently or (nearly) never occupied with very little in
between. Which of those outcomes is realised in a particular run is a prob-
abilistic choice of the system (with some bias; see below). The splitting of
outcomes is clearly visible in figure 3 for the simulation with only 1 species;
for more than about 150 TF the occupation probabilities are either very high
or very low. Note that this effect is an artifact of the limited averaging time
to estimate the occupation probability. More accurate estimates of the true
occupation probabilities are possible but would become increasingly expensive
in terms of computing time. Note, however, that biological cells are limited by
a similar time constraint. They themselves do not “see” the true steady state
of a system but must average over some finite time-period. The above failure
of the computational model to give an accurate estimate of the steady state
probabilities, although an artifact, is therefore likely to be of some biological
relevance.

The underlying cause for this effect is the formation of clusters of adjacent
TFs forming strong cooperative bonds to the DNA. Once such a cluster forms
it would be very stable over time. If it happens to cover the specific binding
sites, then these will be stably occupied for a long time. If, however, they are
not covered, then the stability of the clusters means that the waiting time
before they are covered will be very long. The transition between situations
where the TFs cover their specific sites and where they are not is very slow. For
moderately strong cooperativities, TF-TF interactions provide a much larger
contribution to the binding strength than the specific sites. One would thus
expect the importance of (i.e. frequency of binding to) the specific binding
sites to diminish relative to the clustering effect.

This is confirmed by figure 4 which provides another perspective of the same
phenomenon. It shows a histogram of the observed fraction of times of the
specific sites being occupied for many re-runs of the model with identical pa-
rameter settings (see figure caption for details). For high coperativity (cM = 5)
the bars of the histogram concentrate at the extreme ends near the occupa-
tion probabilities of 1 or 0 indicating that the specific sites are either always
covered or never. Lowering the cooperativity from 5 to 1 reveals a different
picture. There is still the possibility that the specific binding sites are never
covered or (nearly) always; in addition there is another maximum around 0.3
showing that in some simulations the specific sites are sometimes covered;
this suggests that there are a number of runs where the formation of clusters
does not happen or happens to a lesser degree. Lowering the coperativity even
further to below 1 (data not shown) will lead to a single maximum around a
specific probability.
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Fig. 3. If cooperativity-2 is turned on, then clusters with high stability may build up
on the DNA. In this case, the probability of the specific binding site being occupied
is reduced. This will, however, not be a problem if there are also other transcription
factors available that do not cooperate with the type-1 TFs.
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Fig. 4. Histograms showing the distribution of probabilities that at least one of the
three binding sites is covered by a TF. The left graph shows the case of cM = 1 and
the right graph cM = 5. These graphs were produced by repeating a simulation with
fixed parameter setting and then recording the proportion of time the condition ”At
least one specific site covered” was met. The figure shows that for high cooperativity
the solution is “all or nothing,” whereas for a lower cooperativity (cM = 1) there
are also cases where the binding sites are occupied with a given probability (here
around 0.3). The parameters used to generate these graphs are as follows: DNA-size:
10000, ε = 1/2

Assuming there is no cooperativity between TFs of different species one is led
to conjecture that introducing type-2 TFs will tend to reduce the clustering,
because the second species would occupy space and prevent type-1 TFs from
forming too long chains. Figure 3 shows that introducing a second species of
TF on the DNA indeed restores the (statistical) predictability of TF-binding,
at least up to a certain point (about 300 type-1 TFs in the case of this graph).
Clustering, can only be reversed for low cooperativities. This can be under-
stood by considering that for high cooperativities a single pair will tend to
have long resident times on the DNA compared to adjacent type-2 TFs. They
will thus sample a larger number of neighboring TFs, which increases the
probability that one of those is of type-1 and thus increases the size of the
cluster. Hence a higher cooperativity parameter cM tends to lead to longer
chains.

This suggests that cooperativity based on direct TF-TF interactions is mech-
anistically problematic and for this reason possibly selected against over evo-
lutionary times. At least, we would expect it to be of subordinate importance
only, because it would lead to TF clustering on the DNA if the cooperative in-
teractions are too strong. On the other hand if they were only weak then they
would lead to a relatively minor modification of the probability of binding.
So either way the conclusion from this is that localised effects at the specific
site, possibly mediated through conformational changes upon binding of TFs
is biologicaly more plausible as a mechanism for cooperativity; this is in line
with previous empirical findings (Ben-Naim (199)).

So far we assumed that the type-2 TFs do not discriminate between binding
sites and generally have a low affinity to the DNA. The qualitative conclusion
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from the basic model eq 8 was that in this case the number of type-2 TFs are
immaterial for the occupation probability of the specific binding sites. In the
context of clustering due to TF-TF interactions, it became apparent that this
conclusion is not always correct. To the extent that TF-TF cooperativity does
exist, it seems that the presence of type-2 TFs plays a certain role in avoiding
the above mentioned clustering.

We now extend the basic model and assume that also type-2 TFs have their
own binding profile in the sense that their binding affinities are determined
according to the same rules as those of type-1 TFs. (We do not drop the
assumption that the cooperativity between TFs of different types are negli-
gible.) Figure 5 shows 3 scenarios of this modified system: In the first two
scenarios the binding motifs of type-1 and type-2 TFs are non-overlapping,
i.e. their respective binding motifs do not share a single position. In this case
one type of TF has a miminal binding free energy for the specific binding sites
of the other type and thus spends minimal time on the specific sites of the
other type. For the parameters used in the example simulation in figure 5 the
binding probability increases near linearily and reaches about 0.7 for 50 TFs.

The situation changes very much in the other extreme case when the binding
motifs of both types of TFs completely overlap. This case can be treated
mathematically and is given by equation 12. Both types of TFs have equal
binding times (on average) and there will thus be direct competitive binding
to the sites; the probability of type-1 TFs to bind the specific sites will then
strongly depend on the number of type-2 TFs. Figure 5 illustrates this scenario
and shows that the (comparatively low number of) type-1 TFs are crowded
out from the specific site by the much higher number of type-2 TFs. This
would make control of the occupation of the binding sites inefficient.

Control over the operator region can be restored by cooperativity. Figure 5
shows a simulation of TF-binding to the specific sites when both type-1 and
type-2 binding motifs are identical, but only type-1 TFs show cooperativity.
Already a moderate number of TFs (about 50) leads to binding probabilities
even higher than in the case of non-overlaping motifs. Interestingly, the in-
crease of the binding probability as a function of the number of type-I TFs
is very steep. The graph in figure 5 uses cooperativity-2, resulting in a rather
noisy transition; cooperativity-1 leads to a similar result but considerably less
noise (data not shown).

The conclusion from this is similar as above: Once one takes into account
that type-2 TFs have themselves a specific binding profile, then a whole new
range of potential interferences between types of TFs can arise. These effects
were not visible in the statistical physics model eq 8 and they are certainly
absent from the simpler differential equation models in the literature or the
Markov-chain model eq 14. The question that arises now is to what degree one
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Fig. 5. The probability of at least one specific binding site being bound. The label
“same sequence” refers to a run where the type 2 transcription factors have the same
binding motif as the type-1 transcription factors and there is cooperativity between
type-1 TFs; correspondingly, the points labelled “nonoverlapping sequences” refer
to simulations where the binding motif of the type-2 transcription factors does not
overlap that of the type-1 transcription factors and there is no cooperativity. In all
runs there were 900 type-2 TFs on the DNA of length 10000, ε = 0.6 and cM = 2
(where applicable).
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can still trust any conclusions that are drawn from the elegant but potentially
over-simplifying models in the literature?

4 Conclusion

We have presented a statistical physics model of TF binding to DNA and
compared it to a simpler Markov-chain model and a computational simula-
tion model. The statistical physics based model (eq 8) predicted that the
probability to find a specific binding site occupied depends only on the num-
ber of focal TFs (i.e. the number of TFs for which this site is specific). This
conclusion, however, is only justified if at least the following two conditions
are met:

• There are no TF-TF interactions: Once one allows for direct interactions
between adjacent TFs, then this can lead to clustering of TFs on the DNA.
The number of non-specific TFs is then crucial to retain cellular control
over the specific sites.

• Type-2 TF have equal affinity to all sites: This assumption is certainly not
correct and changing it can have noticeable consequences for the binding of
TFs to the DNA.

One has to assume that in real genomes, these conditions are normally not
met; hence the statistical physics model above (eq 8) is incorrect in a qualita-
tive way. Formulating more realistic partition functions by taking into account
sequence dependent binding or cooperativity is possible in principle; in prac-
tice it quickly leads to very complex and intractable models. The main reason
for this explosion of model complexity is the necessity to count over all possible
states and all possible binding sites.

Models that assume that the cell is a perfectly mixed solution of TFs (such
as the above Markov-chain model eq 14) are much simpler to formulate and
compute. The essential simplification of these models compared to statistical
physics models is that they do not take into account that DNA acts as a
reservoir for TFs. As such they ignore a potentially important spatial aspect
of the system. Our comparison indicates that ignoring this effect leads to
models that are fundamentally different to statistical physics models. The
Markov-chain model eq 14 can in general not be fitted to the statistical physics
model that takes into account non-specific binding. Figure 2 shows a case
where it could be fitted to simulation results of the computational model with
cooperativity-1; in this case it led to a wrong estimate for the binding free
energy of the system.
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For theoretical investigations, the increased tractability of the simplified mod-
els will in many cases compensate for their relative inaccuracy. When they are
used to estimate system parameters (for example via fitting) then these mod-
els are normally not suitable because they would lead to incorrect paramter
values.

References

Ackers, G. K., Johnson, A. D. & Shea, M. A. (1982). Quantitative model
for gene regulation by lambda phage repressor. Proceedings of the National

Academy of Science USA, 79 (4), 1129–1133.
Alon, U. (2006). An Introduction to Systems Biology: Design Principles of

Biological Circuits. Chapman & Hall.
Batt, G., Ropers, D., deJong, H., Geiselmann, J., Mateescu, R., Page, M. &

Schneider, D. (2005). Validation of qualitative models of genetic regulatory
networks by model checking: analysis of the nutritional stress response in
Escherichia coli. Bioinformatics, 21, i19–28.

Ben-Naim, A. (199). Cooperativity in binding of proteins to DNA. ii. vinding
of bacteriophage lambda repressor to the left and right operators. The

Journal of Chemical Physics, 108 (16), 10242–10252.
Ben-Naim, A. (1997). Cooperativity in binding of proteins to DNA. The

Journal of Chemical Physics, 107 (23), 10242–10252.
Bintu, L., Buchler, N., Garcia, H., Gerland, U., Hwa, T., Kondev, J., Kuhlman,

T. & Phillips, R. (2005a). Transcriptional regulation by the numbers: appli-
cations. Current Opinion in Genetics and Development, 15 (2), 125–135.

Bintu, L., Buchler, N., Garcia, H., Gerland, U., Hwa, T., Kondev, J. & Phillips,
R. (2005b). Transcriptional regulation by the numbers: models. Current

Opinion in Genetics and development, 15 (2), 116–124.
Chu, D., Roobol, J. & Blomfield, I. (2008). A theoretical interpretation of the

transient sialic acid toxicity of a nanR mutant of Escherichia coli . Journal

of Molecular Biology, 375, 875–889.
Gerland, U., Moroz, J. & Hwa, T. (2002). Physical constraints and functional

characteristics of transcription factor-dna interaction. Proceedings of the

National Academy of Science USA, 99 (19), 12015–12020.
Gibson, M. & Bruck, J. (1998). An efficient algorithm for generating trajecto-

ries of stochastic gene regulation reactions. Technical Report CaltechPAR-
ADISE:1998.ETR026 California Institute of Technology.

Gillespie, D. (1972). Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry, 81, 2340–2361.

Goldbeter, A. & Koshland, D. E. (1981). An amplified sensitivity arising from
covalent modification in biological systems. Proceedings of the National

Academy of Science USA, 78 (11), 6840–6844.
Kao-Huang, Y., Revzin, A., Butler, A. P., O’Conner, P., Noble, D. W. & von

22



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Hippel, P. H. (1977). Nonspecific dna binding of genome-regulating proteins
as a biological control mechanism: measurement of dna-bound escherichia
coli lac repressor in vivo. Proceedings of the National Academy of Science

USA, 74 (10), 4228–4232.
Kwiatkowska, M., Norman, G. & Parker, D. (2001). PRISM: probabilistic sym-

bolic model checker. In Proc. Tools Session of Aachen 2001 International

Multiconference on Measurement, Modelling and Evaluation of Computer-

Communication Systems, (Kemper, P., ed.), pp. 7–12,. Available as Tech-
nical Report 760/2001, University of Dortmund.

Murray, J. (2008). Mathematical Biology: An Introduction: Pt. 1. Springer-
Verlag.

Narang, A. (2006). Comparative analysis of some models of gene regulation
in mixed-substrate microbial growth. Journal of Theoretical Biology, 242

(2), 489–501.
Narang, A. & Pilyugin, S. (2007). Bacterial gene regulation in diauxic and

non-diauxic growth. Journal of Theoretical Biology, 244 (2), 326–348.
Ramsey, S., Orrell, D. & Bolouri, H. (2005). Dizzy: stochastic simulation

of large-scale genetic regulatory networks. Journal of Bioinformatics and

Computational Biology, 3, 415–436.
Regev, A., Silverman, W. & Shapiro, E. (2001). Representation and simulation

of biochemical processes using the pi-calculus process algebra. In Pacific

Symposium on Biocomputing 2001 pp. 459–470,.
Sneppen, K. & Zocchi, G. (2006). Physics in Molecular Biology. Cambridge

University Press.
Tyson, J., KChen & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers:

dynamics of regulatory and signaling pathways in the cell. Current Opinion

Cell Biology, 15 (2), 221–231.
Tyson, J. J., Chen, K. & Novak, B. (2001). Network dynamics and cell phys-

iology. Nat Rev Mol Cell Biol, 2 (12), 908–916.
Wunderlich, Z. & Mirny, L. (2008). Spatial effects on the speed and reliability

of protein-DNA search. Nucleic Acids Research, 36 (11), 3570–3578.
Zhu, R., Ribeiro, A., Salahub, D. & Kauffman, S. (2007). Studying genetic reg-

ulatory networks at the molecular level: delayed reaction stochastic models.
Journal of Theoretical Biology, 246 (4), 725–745.

A Generalisation of the statistical physics model for the case of

more than two types of TF

In section 2.1 we only considered the case of 1 type of TF with specific binding
sites and a second type that has no specific binding sites. It is possible to write
down a partition function for the more general case of n types of TFs (denoted
as αi each with its own number of specific sites Ai. The problem boils down
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to correctly counting all possible ways to distribute all TFs of different types
over the possible specific and non-specific sites. One way to do this is to count
all the ways that TFs can be distributed over the DNA as follows:

(1) Distribute each of the αi over their specific binding sites Ai.
(2) Then distribute the remaining αi over the specific binding sites of other

types of TFs, i.e. all remaining free Aj , where j �= i.
(3) Finally distribute all remaining TFs over all non-specific sites.

The first step, i.e. distributing each TF of type αi over their Ai specific binding
sites. This leads to a binomial coefficient

(
Ai

xi

)
for each type of TF.

The next step is to distribute the TFs over the remaining free specific binding
sites of other types of TFs. For this we need to choose for each type of TF j
a number of molecules to distribute over the specific binding sites of all other
types of TFs, i.e. we must select a number yk

r of TFs of type k among the
binding sites of type r (here r = q or r = q+1 (if q = k)). At every step in the
second round the total number of TFs already placed on binding sites of type
r is xr +

∑
j<k and j �=r yj

r so that the number of available binding sites of type
r is Ar − xr −∑

j<k and j �=r yj
r ; the sum represents the binding sites occupied

in the first round (i.e. the specific sites occupied by their native TFs) and at
every previous step in this second round (i.e. the specific binding sites that
have so far been nonspecifically bound). The number of ways to place these
yk

r TFs of type k on the remaining binding sites of type r is then

(
Ar − xr −∑j<k and j �=r yj

r

yk
r

)
.

Care must be taken to select the indices correctly, i.e. 0 ≤ yk
r ≤ min{Ar −

xr − ∑
j<k and j �=r yj

r, ak − xk − ∑
1≤h≤r and h �=k yk

h}. Finally, having positioned
the appropriate numbers of TFs on the specific binding sites, the still remain-
ing ai − xi − ∑

0≤j≤n and j �=i y
i
j TFs of type i must be distributed among the

nonspecific binding sites for every one of the types i. The number of ways to
do this is given by the multinomial coefficient

(
W

z1, z2, . . . , zi, . . . , zn, W −∑n
i=1 zi

)
=

W !

z1!z2! . . . zn!(W −∑n
i=1 zi)!

where zi = ai−xi−∑0≤j≤n and j �=i y
i
j. To reduce the notational complexity, we

introduce the sets of allowable indices

Si
j =

⎧⎨
⎩h ∈ N | 0 ≤ h ≤ min

⎧⎨
⎩Ar − xr −

∑
j<k and j �=r

yj
r , ak − xk −

∑
1≤h≤r and h �=k

yk
h

⎫⎬
⎭
⎫⎬
⎭
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and also a shorthand notation for the binomial coefficients

Yk
r =

(
Ar − xr −∑j<k and j �=r yj

r

yk
r

)

(keep in mind that r �= k). Our final counting formula is then as follows:

Zx =
n∏

i=1

(
Ai

xi

) ∑
y1

2
∈S1

2

Y1
2

∑
y1

3
∈S1

3

Y1
3 . . .

∑
y1

n∈S1
n

Y1
n

∑
y2

1
∈S2

1

Y2
1 ×

× ∑
y2

3
∈S2

3

Y2
3

∑
y2

4
∈S2

4

Y2
4 . . .

∑
yn

n−1
∈Sn

n−1

Yn
n−1

W !

z1!z2! . . . zn!(W −∑n
i=1 zi)!

.(A.1)

This counts the total number of ways to distribute the TFs over the various
binding sites for a particular assignment of TFs to their specific binding sites
corresponding to the statistical weight

wx =
n∑

i=1

F αi

i exp

⎛
⎝−∑

j

(
xjG

j
s

kBT
+

xjG
j
n

kBT

)⎞
⎠ .

In order to obtain the entire partition function Z must be summed over all
feasible values of x.

Z =
∑
x

Zxwx

B Dependence on nucleotide composition

Throughout this article it was assumed that the DNA is not biased with
respect to its base composition. In real bacteria, this assumption is not correct
and needs to be taken into account for quantitatively correct models of TF-
binding. However, our simulations indicate that the base composition only
plays a relatively minor role. Figure B.1 shows a number of simulations for
DNA strings with extreme nucleotide biases.
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Fig. B.1. This graph shows simulations with identical parameters, but different nu-
cleotide compositions. The motif sequence in these runs was 221331111. In the curve
labeled “94% NT 0” the nucleotides of the genome were chosen with probability 0.94
to be 0; all other bases were chosen with equal probability. The label “Even dis-
tribution” indicates that all nucleotides were chosen with probability 0.25. “Binary
binding” means that perfect binding sequences have a strong affinity (Gs = −3)
and all other sites have a low affinity (Gn = 0). The length of the DNA was 10000
and there was no cooperativity, ε = 0.33333 (where applicable).
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