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Abstract 

Several studies have shown that classical results of microparasite evolution could not extend 

to the case where the host species shows an important spatial structure. Rabbit Haemorrhagic 

Disease Virus (RHDV), responsible for Rabbit Haemorrhagic Disease (RHD), which recently 

emerged in rabbits, has strains within a wide range of virulence, thus providing an interesting 

example of competition between strains infecting a host species with a metapopulation 

structure. In addition, rabbits may show a genetic diversity regarding RHDV susceptibility. In 

the present paper we use the example of the rabbit-RHDV interaction to study the competition 

between strains of a same microparasite in a host population that is both spatially and 

genetically structured. Using metapopulation models we show that the evolution of the 

microparasite is guided by a trade-off between its capacity to invade subpopulations 

potentially infected by other strains and its capacity to persist within the subpopulation. In 

such a context, host genetic diversity acts by reducing the number of hosts susceptible to each 

strain, often favouring more persistent – and generally less virulent – strains. We also show 

that even in a stochastic context where host genes regularly go locally extinct, the 

microparasite pressure helps maintain the genetic diversity in the long term while reinforcing 

gene loss risk in the short term. Finally, we study how different demographic and 

epidemiologic parameters affect the coevolution between the rabbit and RHDV. 

 

Keywords: Evolution of virulence, metapopulation, stochastic model, Matching-Allele model
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Introduction 

Microparasites are even more affected by natural selection than other organisms, due to their 

short life cycle. For a given microparasite, strains differing in pathogenicity, in particular, 

compete with each other for resources, i.e. the host. The severity of the disease resulting from 

the infection is thus highly influenced by natural selection. Understanding the factors 

influencing the evolution of microparasites is thus crucial to assess the impact of the 

associated diseases (Dieckmann et al., 2002). 

For the last two decades, one theory has predominated for understanding the evolution 

of microparasites without co- or super-infection. This theory predicts that the competition 

between two strains of a same parasite is won by the strain with the highest basic reproductive 

number R0 (Anderson and May, 1979; May and Anderson, 1983), where R0 can be interpreted 

as the mean number of secondary cases induced by a single infected individual released in a 

wholly susceptible host population during its infectious period. 

Beyond the highlights brought by the R0 theory in the understanding of microparasite 

evolution, it fails to predict the evolution of parasite virulence in many circumstances (see 

Dieckmann et al., 2002). A large set of works has challenged this theory in spatially 

structured host populations. In contact networks, several theoretical studies (Boots and Sasaki, 

1999; Boots et al., 2004; Claessen and de Roos, 1995; Rand et al., 1995) have found that 

strains having a high basic reproductive number tend to be surrounded by either dead or 

recovered individuals if they exploit their host too fast, leading to their long-term extinction 

and to the selection of strains that exploit their host slower even if they have lower basic 

reproductive numbers. The idea that more localised parasitic exchanges between individuals 

tend to select for less transmissible strains has been recently challenged experimentally with 

success (Boots and Mealor, 2007). In addition, in hosts structured into a metapopulation, 

Keeling (2000) has demonstrated that, especially in highly stochastic and poorly connected 
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sets of subpopulations, the ability of a strain to persist at a local scale could be more important 

than its local competition characteristics (R0). However, the model is population-based, and 

the validity of such approaches needs to be tested by more explicit models (Keeling, 2002). 

Another aspect of many host-parasite interactions is that the host genetic diversity often 

leads to variable susceptibility of individuals to the different strains. Experimental and 

theoretical works suggest a negative relationship between the genetic diversity of a host 

population and the impact of some of its pathogens (Alitzer et al., 2006; Hughes and 

Boomsma, 2004; O'Brien and Evermann, 1988; Pearman and Garner, 2005; Siemens and Roy, 

2005). One well known mechanism for that is that genetic diversity reduces the transmission 

potential of the pathogen by reducing the density of susceptible hosts hence leading to 

decreased disease prevalence. However, little attention has been paid to the long term 

evolutionary consequences of the host polymorphism on the microparasite virulence in a 

spatial context. 

Due to their particular spatial and social organisation, European rabbits (Oryctolagus 

cuniculus) provide a valuable example of a host species in which the theory of the R0 could 

fail to predict the evolution of viruses whose most locally competitive strains are not the most 

persistent ones at the scale of the rabbit subpopulation. RHDV (Rabbit Haemorrhagic Disease 

Virus) is a lagovirus belonging to the Caliciviridae and responsible for the Rabbit 

Haemorrhagic Disease (RHD). It has been identified for the first time in China in 1984 (Liu et 

al., 1984) where it killed 140 millions of farmed rabbits. However, retrospective studies 

demonstrated that the virus was present worldwide, decades before the local emergence of the 

symptomatic infection (Moss et al., 2002; Rodak et al., 1990). RHDV strains isolated in the 

field are generally highly lethal (up to 95% mortality 2 days post-infection) and transmissible, 

but interestingly the impact of the virus has been highly contrasted. Some populations have a 

high proportion of seropositive rabbits in the absence of recorded mass mortality due to the 
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disease (Chasey et al., 1995; Cooke et al., 2000; Marchandeau and Boucraut-Baralon, 1999; 

Marchandeau et al., 1998; Rodak et al., 1990; Sanson et al., 2000; Trout et al., 1997), 

suggesting that strains of RHDV of different virulence circulate in the field even if such 

strains have not yet been isolated. A non-pathogenic strain was isolated from an Italian 

rabbitry (Capucci et al., 1996), and it may be the cause of the seroprevalence-without-

mortality seen in the field. However, a study in the UK failed to find it (Moss et al., 2002), 

suggesting that other strains causing zero (or low) mortality exist. During infection by 

avirulent strains, virions are hardly detectable (Capucci et al., 1996), suggesting that they are 

poorly transmissible. To explain their persistence, it has been suggested that they could induce 

a long lasting, and even lifelong, infection (White et al., 2001), which balances their low level 

of transmission.  

In addition, rabbits may show genetic diversity in their susceptibility to RHDV. Recent 

work has shown that some rabbits are resistant to the infection (Le Pendu, unpublished 

results). The rabbit-RHDV system can be paralleled with that of noroviruses, another genus 

from the Caliciviridae family causing gastro-enteretis in humans. It has been shown that the 

susceptibility or resistance to noroviruses depends on the presence of fucoses on the surface 

of epithelial cells, under the control of a polymorphic genetic system (Marionneau et al., 

2001). As a result, most strains of the virus can only infect a given genetic subset of the 

human population (Le Pendu  et al., 2006; Tan and Jiang, 2005). The presence of fucoses is 

also required for binding a highly pathogenic RHDV strain to rabbit epithelial cells (Ruvoën-

Clouet et al., 2000) and recent observations suggest the existence of two phenotypes for 

rabbits: secretors, which present fucoses, and non-secretors, which do not. The former are 

expected to be susceptible to RHDV while the latter are expected to be resistant (unpublished 

results).  
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Until recently, non-secretors were under-represented in rabbit populations, but our 

unpublished preliminary results suggest that their resistance to RHDV has led to their rapid 

increase. Given the emergence of this large population still uninfected by the virus and 

considering the ability of the virus to produce viable mutants on a short ecological timescale – 

the analysis of RHDV stains circulating in France between 1993 and 2000 shows a large 

degree of variation in RHDV strains (Le Gall-Reculé et al., 2003) –, the virus could find an 

alternative way to bind cells of non-secretors, as noroviruses did in humans. So it seems 

plausible that mutants infecting non-secretor rabbits could emerge and in this case would 

rapidly invade. Just like for noroviruses in which most of the strains are unable to infect both 

secretors and non-secretors (Le Pendu  et al., 2006; Tan and Jiang, 2005), the RHDV would 

thus fit the Matching-Allele (MA) model. This relation is still speculative for rabbits, but the 

Matching allele model is largely used to assess general issue in host parasite coevolution 

theories (Hamilton et al., 1990; Howard and Lively, 1994), so  the scope of this study goes 

beyond the simple analysis of the rabbit-RHDV system.  

One key feature of MA models is that the fitness of a host depends on the frequency of 

its phenotype: when a phenotype is less represented, the corresponding pathogen strain can 

hardly spread, so it suffers less parasite circulation and thus less mortality (Bell and Maynard 

Smith, 1987; Clarke, 1976; Hamilton, 1980; Hamilton et al., 1990). This favours the 

maintenance of genetic diversity.  

In the present paper we build a mathematical model to investigate how the rabbit 

population structure may affect the long-term evolution of RHDV. In a first step, we focus on 

the effect of the spatial structure on the virus evolution assuming a classical trade-off between 

strains’ transmission and the duration of the infection they induce, without genetic structure of 

the rabbit population. In a second step, we study how the genetic diversity of rabbits could 
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affect the results on evolution of RHDV obtained previously. Finally, we investigate the effect 

of the different model parameters on the stability of the polymorphism. 

 

1) Material and methods 

a. Virus genetic diversity 

Until now, two different kinds of strains have been isolated in the field. The virulent one is the 

most spectacular (due to its high lethality) and is the most often found in the field. The 

avirulent strain has been rarely isolated (Capucci et al., 1996), but its presence is suspected in 

many field studies (Chasey et al., 1995; Cooke et al., 2000; Marchandeau and Boucraut-

Baralon, 1999; Marchandeau et al., 1998; Rodak et al., 1990; Sanson et al., 2000; Trout et al., 

1997). This can be explained by a likely sampling bias, since rabbit populations have been 

mostly sampled after an outbreak of RHD mortality.  

As seen previously, it is reasonable to assume that the two kinds of strains use two 

opposite strategies. Virulent strains are highly transmissible but induce short duration diseases 

(in most cases the rabbit dies within 2 days). Avirulent strains are poorly transmissible but 

induce long lasting (or even chronic, see White et al., 2001) infections. In addition, it is also 

reasonable to assume that virulent strains have higher R0. If virulent strains had a lower basic 

reproductive number than avirulent ones, it would prevent them from invading and the short-

lasting infections they induce would lead them to a rapid extinction. This phenomenon has 

been observed in myxoma-virus  for which highly virulent strains have been excluded because 

of their lower R0 than less virulent strains (Dwyer et al., 1990; Levin and Pimentel, 1981). 

RHDV is an interesting example of a parasite facing the conflict between local 

adaptation and local persistence (Keeling, 2000). Unfortunately, the characteristics of the 

different strains are still unknown. What is the relative transmission rate between virulent and 

avirulent strains? How long can avirulent strains be transmitted in the field? Do strains with 
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intermediate characteristics exist? Since no definitive answer can be given to these questions, 

this paper must to some extent remain conceptual. How does the rabbit population structure 

influence the evolution of RHDV? This is basically the kind of question that we can address 

now. More quantitaive questions would require more precise knowledge about RHDV strain 

characteristics.  

Among the simplifications made in the model, we assume the existence of strains of 

intermediate virulence. Such a quasi continuum can be observed in other host-parasite 

interactions (e.g. in myxomatosis, Fenner, 1953). Intermediate virulence strains have not been 

isolated yet for RHDV, but this does not prove that they do not exist. Since most attention has 

focused until now on highly virulent strains, strains of reduced virulence are rarely studied. 

Assuming this quasi continuum is more convenient for studying the impact of the parameters 

on the evolution of RHDV. Small changes in the host-parasite characteristics will slightly 

increase the strain of the continuum which is the most favoured. The effects of the same 

changes in the parameters can remain undetected with a two strains model, because the same 

strain can be selected in large regions of the parameters. Removing the hypothesis of a 

continuum would not much alter the qualitative conclusions of the paper.  

In the next sections we will often refer to the persistence of a strain. The term 

persistence can define three different things: persistence within the host (i.e. duration of the 

disease), persistence within one rabbit subpopulation (the “local persistence”) and persistence 

within the metapopulation (the “global persistence”). Clearly these three notions are linked. 

Strains inducing a longer disease will tend to persist longer within the subpopulation and 

hence within the metapopulation. However this association is not systematic. For example, 

even a strain inducing a lifelong disease can persist poorly locally if it has a very low 

transmission rate. 
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Finally strains can also differ in the rabbit phenotype they are able to infect. In a first 

step we assume that all strains are able to infect all non-infected and non-recovered rabbits 

equally: rabbits are not genetically differentiated. We define this model as the model without 

host genetic diversity. Next we assume the existence of two phenotypes for rabbits: secretors 

(SE) and non-secretors (se). Each RHDV strain is then specialized: it can infect only one 

phenotypic group of rabbits (model with host genetic diversity).  

In the next two sections we present the deterministic and stochastic mathematical 

models we developed for evaluating the effect of the host demographic characteristics on the 

evolution of the virus and its ability to promote the host genetic polymorphism.  

 

b. Model without host genetic heterogeneity 

The deterministic model extends the classical SIR model with continuous time. The 

population is divided into three compartments: susceptible S, infected I and recovered R, with 

N=S+I+R the size of the host population. Different models have been proposed for the 

transmission rate of the virus: the proportionate mixing model β.S.I / N (White et al., 2001) 

which assumes that the contact rate between rabbits does not depend on the number of rabbits 

within the population, and the mass action law β.S.I (Calvete, 2006) where the contact rate 

between rabbits linearly increases with the rabbit population size. Here for the sake of 

simplicity we consider only the mass action law (Anderson and May, 1981). However, the 

main results of the model, i.e. those obtained with the stochastic versions of the model, remain 

qualitatively true with the alternative proportionate mixing model (see electronic 

supplementary materials). 

Infected individuals die at the rate α or recover at the rate σ. After recovery they 

become lifelong protected. All young are born susceptible (there is no vertical transmission) 

and b represents the birth rate of the host population. The natural death rate, i.e. from any 
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other cause than RHDV (e.g., predation, other parasites), is chosen density-dependent, μ0+δN, 

in order to maintain the disease-free population at its limit size K=(b-μ0)/δ, called carrying 

capacity. 

Now we extend the model to consider several strains of RHDV and the metapopulation 

structure of the host population (Figure 1).  

 

Modelling the RHDV strains. To model different levels of pathogenicity of RHDV strains, we 

split the I compartment into NV compartments, corresponding to NV different levels of 

pathogenicity of the virus. Furthermore, we assume that when a rabbit is infected or has 

recovered it cannot be reinfected by any other strain (no co-infection, no super-infection and 

total and lifelong cross-immunity). Strains are ranked according to their transmission rate βi 

(i=1..NV). β0 describes the transmission rate of the virulent strain (strain NV). The transmission 

rate increases geometrically from strain 1 (β1=2.5×10-4β0) to strain NV ( βNV
= β0 ). Ii 

represents the number of individuals infected by a strain of ith level of transmission.  

To go continuously from virulent to avirulent strains, we assume a trade-off between the 

different history traits of the virus (Anderson and May, 1982; Levin and Pimentel, 1981; May 

and Anderson, 1983). The mean duration of infection is a function of the transmission rate 

Di = D0 β0 / βi( )θ1 , where D0 is the duration of the infection induced by strain NV. θ1 

represents how quickly the duration of the infection decreases with the transmission rate. The 

case mortality rate also depends on the transmission rate through mi = 1 − 1 + ξ βi / β0( )θ2�
�

�
�

−1
, 

where ξ = (1− m0 )−1 − 1 , m0 is the case mortality of strain NV and θ2 describes how quickly 

the case mortality increases with the transmission rate. The rate of additional mortality α 

induced by the disease (which is here the virulence of the strain) and the recovery rate σ are 

derived simply by the relations: 
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α i =
mi

Di

= ξD0
−1β0

−θ1
βi

θ1 +θ2

β0
θ2 + ξβi

θ2
  

σ i =
1− mi

Di

= D0
−1β0

θ2 −θ1
βi

θ1

β0
θ2 + ξβi

θ2
 

We choose θ1 and θ2 positive and so the virulence α is an increasing function of βi. 

Hence we can also speak of more virulent strains for the strains that have a higher 

transmission rate. We assume that mutations may occur only during the transmission of the 

parasite with a probability PV. To simplify, we assume that mutations from strain i to strain j 

are equally likely whatever i and j, i�j. The probability that a strain i mutates into a strain j is 

then πV =PV/(NV-1).  

Finally, we choose θ1<1, which allows generating a conflict between the local 

competitiveness of the strains, defined by the rank of their R0 (see below), and their within 

host persistence expressed through Di. As we will see later the most locally competitive 

strains (highest R0) are the most virulent ones, whereas the most locally persistent strains are, 

especially for small subpopulations sizes, less virulent.  

 

Modelling the metapopulation structure. Rabbits are organized into well-defined social 

groups that form a population (Cowan, 1987). Populations are connected together to form a 

higher structure level. We simplify this two levels structure by considering only one level of 

spatial organisation. We model the rabbit population as divided into NS subpopulations, which 

represent either the social groups or the populations, depending on which kind of level we 

consider the metapopulation to represent (a population or a set of connected populations, 

respectively). These subpopulations are set in a grid square of side length NS , each 

subpopulation being divided into susceptible, recovered and the NV infected compartments. 
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The carrying capacity of each subpopulation is the same (K) and thus the density-dependent 

mortality rate, μ0+δNk, of the kth subpopulation depends only on its size Nk.  

In the model, newborns are supposed to be susceptible. This is a simplification, since in 

fact rabbits younger than 2 months old have a partial resistance against RHDV (Ferreira et al., 

2004; Morisse et al., 1991). Here we simplify the problem by assuming that the resistance of 

juveniles is perfect: they cannot get infected by any strain. Assuming that newborns are 

susceptible is then correct if births in the model correspond to resistance loss of young rabbits 

in the real system. 

Juvenile rabbits may disperse when they become subadults (Kunkele and von Holst, 

1996; Myers and Poole, 1961; Parer, 1982). This dispersion is taken into account because of 

its importance for the genetic structure of the population. It is possible that during a short 

period young rabbits acquire the infection and then disperse, transmitting the virus to their 

arrival subpopulation. However, as the results of the model would not change qualitatively if 

we neglect infectious dispersers, we limit the complexity of the model by separating the 

demographic and epidemiologic exchanges between subpopulations. In other words, we 

assume that dispersing individuals do not carry any virus with them. A natural way to achieve 

this is to assume that dispersers are born directly in their arrival subpopulation. To simplify 

we also assume that dispersion occurs only between neighbouring subpopulations. We call πD 

the probability of dispersal of a juvenile in each neighbouring subpopulation, which is 

constant whatever the position of the subpopulation (on the border or not). We call PD=8πD, 

which corresponds, for subpopulations that are not on an edge of the square, to the total 

probability of dispersal. In the model, if the subpopulation is on the border then the total 

probability of dispersal becomes lower. 

One infected individual from a subpopulation k may infect individuals from different 

subpopulations l at a rate that does not depend on k and l. To simplify we assume that all 
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foreign subpopulations are equally connected from the virus point of view. This can be a good 

approximation for example when subpopulations are social groups. In that case, rabbits from 

different groups meet principally in feeding areas and thus spatial distance between the 

different groups has little impact on the between group spread of the virus. Inter-

subpopulations transmission rate is assumed to be always ρ times the intra-subpopulation one, 

which means that the most transmissible strains within a subpopulation are also the most 

transmissible between subpopulations.  

The corresponding set of differential equations for subpopulation k and strain i (i=1..NV) 

is: 

dSk

dt
= b[1 − Ωkπ D ]N k + bπ D N l

l∈ηk
� − (μ0 + δ N k )Sk − ( Λi

k )
i=1

N V

� Sk  

dIi
k

dt
= Λi

kSk − μ0 + δ N k + α i + σ i�� �� Ii
k  

dRk

dt
= σ i Ii

k

i=1

NV

� − (μ0 + δ N k )Rk  

where Sk, Ii
k, Rk are the total numbers of individuals belonging to the kth subpopulation 

in the compartment S, Ii, R respectively, and Nk= Sk+�iIi
k+Rk. ηk is the set of neighbours of the 

kth subpopulation, Ωk the cardinal of ηk (i.e. the number of neighbours of the kth 

subpopulation), and : 

Λi
k = βi[1− πV (NV − 1)] Ii

k + ρ Ii
l

l ≠ k
��

�
�

�

�
� + β jπV

j ≠ i
� I j

k + ρ I j
l

l ≠ k
��

�
�

�

�
�   

 is the rate at which susceptible individuals from the subpopulation k get infected by the 

strain i.  

 

The stochastic version of the model, which takes demographic stochasticity into 

account, consists of a continuous time Markov chain in which transition rates are inferred 
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from the deterministic model (see electronic supplementary materials). Since the global 

extinction of RHDV is not observed in the field, we assume that it is reintroduced through the 

immigration of an infected rabbit, e.g. from another metapopulation (not explicitly modelled 

here), at a rate ε. The strain carried by this infected rabbit as well as the subpopulation where 

it is introduced are chosen randomly with uniform laws. The rate at which an individual 

infected by the ith strain is introduced in the kth subpopulation is then ε/(NSNV). 

 

c. Model with host genetic heterogeneity 

Now we assume two phenotypes for rabbits: secretors (SE) and non-secretors (se). Each strain 

of RHDV is able to infect one and only one of the two phenotypes. 

All compartments are divided into three sub-compartments: the non-secretors which are 

necessarily homozygote (se/se, se being recessive), the heterozygote secretors (SE/se) and the 

homozygote secretors (SE/SE).  

Inactivating mutation on the gene SE may occur with a probability πSE→se. The 

probability of the reverse mutation πse→SE is far lower. Indeed, the genotype SE represents the 

production of a specific α1,2fucosyltransferase and random mutations of SE allele into se 

allele that inhibit this production are much more likely to occur than reverting mutations that 

allow recovery of a functional enzyme with similar catalytic properties (se allele into SE 

allele). In other words, it is far more likely that a mutation inactivates an activated gene than 

the contrary.  

Here individuals are preferentialy infected by strains that are adapted to their genotype 

but a strain may mutate so as to infect the other phenotype and becomes then totally adapted 

to this new phenotype. The transmission rate between individuals of different phenotypes is 

ρP times the transmission rate between two individuals of the same phenotype. More details 

about the genetic model are given into the appendix. 
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d. Parameter values 

Table 1 contains all the parameter values, which lead to values for the strain characteristics 

given in Table 2. The unit for time is the month. The birth rate is chosen to balance the annual 

natural mortality rate which is around 50% in the disease-free equilibrium (Cowan, 1987; 

Smith and Trout, 1994). The initial mortality rate μ0 is chosen very low compared to the birth 

rate, consistently with the invasive potential of rabbits. The probability (PD) of dispersal of 

newborns may vary strongly between populations (Richardson et al., 2002). Here we choose 

50% as a basic value (Kunkele and von Holst, 1996; Richardson et al., 2002) but we will 

consider different values. For the basic parameters, the metapopulation is made up of on 

average 2450 rabbits equally distributed into 49 subpopulations (K=50 rabbits per 

subpopulation). The infection lasts 2 days on average and 95% of the rabbits infected by the 

virulent strain (strain NV, where NV=10) die from the infection. 

Several parameters such as the transmission rate of all strains or the characteristics of 

intermediate strains remain poorly known. We study the effect of 5 parameters independently 

(i.e., anything else being equal): the carrying capacity of subpopulations (K), which rules the 

effects of demographic stochasticity, the case mortality of the virulent strain (m0) (which 

affects the case mortality of the other strains, see above), the level of connectivity between 

subpopulations (ρ), the local transmission rate of the virulent strain (β0) and the host birth rate 

(b). However, the effects of some parameters overlap. For example, increasing the 

subpopulation carrying capacity (K) will obviously decrease the importance of stochastic 

effects within the subpopulation, which is the phenomenon we are interested in, but will also 

increase the local transmission due to the mass action choice for the incidence function. The 

effect of increasing the local transmission of the virus is already studied with β0. In order to 

isolate the effect of stochasticity associated with variable host subpopulation size, we choose 
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a transmission rate β inversely proportional to K (see Table 1 and electronic supplementary 

materials for more details) to keep the within host subpopulation transmission of the virus 

constant. The same problem appears with the local transmission rate of the virulent strain β0. 

The rate of contamination of one susceptible individual by an infected one belonging to a 

different subpopulation is ρβi. To maintain a constant transmission rate between 

subpopulations, we choose the connectivity rate ρ inversely proportional to the transmission 

rate. More precisely, as the transmission of the virus also depends on the size of the 

subpopulation (due to the mass action choice), we choose ρ inversely proportional to βK (see 

Table 1 and electronic supplementary materials for more details). 

The stochastic model is treated through numerical simulations beginning with an initial 

state where the number of susceptible individuals is K in each subpopulation and one 

individual infected by strain NV is released in the down-left corner subpopulation. Initially, 

each metapopulation is made up of K susceptible individuals. In the genetic model the initial 

gene frequency is 50-50 (in panmictic proportions). One SE individual carrying the virulent 

strain is introduced into the left corner subpopulation. For each set of parameters in the 

stochastic version of the models, we consider 10 replicates of the process. This allows us to 

estimate the variability of the system, from which we derive estimations of the means and 

confidence intervals for the variables we aim to estimate. 

 

2) Results 

a. The deterministic approach 

The introduction of RHDV in the fully susceptible host metapopulation is followed by a very 

rapid epidemic (so rapid here that it can hardly be seen in Figure 2a). The number of infected 

individuals then rapidly reaches a steady state (here after two years). The most virulent strain 

(Nv) is always selected. Other strains suffer an exponential decay until 0 (they are not 
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represented on Figure 2a). The selection of the most virulent strain is due to a classical result 

of epidemiology based on the selection of the strains with the highest basic reproductive 

number R0. The R0 of the strain i is given by: 

 

 

Here, as θ1<1, R0 is an increasing function of the transmission rate and is thus maximum 

for the most virulent strain (strain Nv, see also Table 2). Note that this is true independently of 

the number of subpopulations and their carrying capacity. In other words, the structure of the 

host population does not affect the evolution of RHDV. For any value of NS, subpopulations 

rapidly synchronize, so the results obtained in the simplest case (NS =1, see Figure 2) are 

representative of the results obtained for larger values of NS (not shown). 

The presence of the virus has a strong and rapid impact on the rabbit population size 

(Figure 2b). Host polymorphism has a very low impact on both the number of infected rabbits 

(see Figure 2a) and the size of the rabbit population (see Figure 2b).  

At the equilibrium, genetic diversity is maintained when the virus is present (Figure 2c). 

This is due to the frequency-dependent fitness of individuals. For example, when the group 

SE is larger than the group se, strains adapted to SE spread more efficiently, infecting a 

greater proportion of hosts SE. The fitness of an individual SE is then reduced, which 

decreases the number of SE. Conversely, in a disease-free population, polymorphism is not 

maintained: secretors go extinct (see Figure 2c) due to asymetrical mutations. 

Surprisingly, the time required to reach equilibrium between secretors and non-secretors 

increases with the transmission rate (Figure 2d). This is because when the transmission rate 

increases rabbits have less chance of escaping the infection. When the transmission rate is 

high, belonging to a less abundant phenotypic group only slightly decreases the probability of 

R0 (Vi ) =
βiK[1 + ρ(NS − 1)]

b + α i + σ i

= [1 + ρ(NS − 1)]
βiK

b + D0
−1 βi

β0

	

�

�
�

θ1
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getting infected, which is high anyway. The consequence of this is that the density dependent 

pressure tends to decrease with the transmission rate. 

At the equilibrium, the number of infected individuals per subpopulation is largely 

below 1 (see Figure 2a), and at this stage stochastic fluctuations cannot be neglected anymore. 

In reality, the number of infected individuals should fall to 0, which corresponds to the 

extinction of the virus. The predictions of the deterministic model thus have to be treated with 

caution, and a stochastic version of the model is needed for more realism.  

 

b. The stochastic approach 

i. Evolution of virulence in absence of host genetic diversity 

The stochastic model shows much more contrasted results than the deterministic one. 

Since local extinction can occur, the long-term persistence of the strains (at the scale of the 

metapopulation) depends on their ability to colonize other subpopulations in addition to their 

persistence at the subpopulation level. Figure 3 illustrates a typical situation where a low 

virulent strain is selected. Higher virulent strains may invade disease-free subpopulations, or 

even replace strain 3 in some infected subpopulations. But as soon as the more virulent strains 

have gone extinct from one subpopulation, this disease-free subpopulation can be recolonized 

by strain 3, which has been maintained in many other subpopulations. On average, the balance 

between extinction and recolonization is in favour of strain 3, which is finally selected over 

the entire metapopulation. 

To understand how the structure of the host metapopulation and the characteristics of 

the pathogen affect the optimal viral strategy, we explore a wide range of parameter values. 

To do so we define the “mean level of virulence” of RHDV by 
i × Ii

k

i,k
�

Ii
k

i,k
�

. Even if this “mean 
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virulence level” by itself has no biological meaning, it is directly related to important 

pathogen history traits. In particular, the mean value of the logarithm of the virus transmission 

rate is linearly related to the mean virulence. It thus indicates the mean rank of virulence 

relatively to the range of virulence displayed by the set of strains considered. 

 The effect of the host subpopulation size on the mean virulence of RHDV (Figure 4a) 

illustrates how different subpopulation structures may favour different strains. Basically, the 

success of a strain depends on how many subpopulations it is able to colonize before going 

extinct – either through natural extinction or strain replacement – from its original 

subpopulation. In very small subpopulations, all strains are poorly persistent, so the virus is 

transmitted to other subpopulations mostly during the epidemic that occurs right after the 

introduction of the strain. Highly virulent strains induce a huge epidemic and are easily 

transmitted to other subpopulations, which explains the high mean virulence levels at very 

low subpopulation sizes (see Figure 4a). As the subpopulation size increases, less virulent 

strains become able to persist in an endemic state over long periods after the end of the initial 

epidemic. The mean virulence of RHDV decreases. However, with increased subpopulation 

size these strains persist longer. The very long persistence of low virulent strains provides no 

more advantage since they are replaced long before going naturally extinct. The mean 

virulence of RHDV increases (see Figure 4a).  

A direct consequence of this is that the mean level of virulence of RHDV increases with 

the probability of survival from infection (Figure 4b). When all strains are more lethal the 

competition is even more severe since less virulent strains reduce less the number of rabbits in 

the subpopulations and hence spread in larger host subpopulations, which increases their 

persistence advantage over more virulent strains. 

A higher connectivity between subpopulations favours less locally (and thus less within 

host) persistent strains (Figure 4c) because persisting within a subpopulation is not so 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

  20

advantageous when strains both highly virulent and transmissible can colonize rapidly other 

subpopulations and locally outcompete more locally persistent but less transmissible strains. 

As a result, the mean virulence of RHDV increases with the connectivity between 

subpopulations.  

The mean level of virulence increases with the birth rate (Figure 4d) for the same reason 

as for the host subpopulation size: a higher birth rate leads to faster replacement of susceptible 

rabbits for RHDV, permitting a longer persistence of each strain. More virulent strains, which 

are more transmissible, are also selected and can persist longer compared to previously, 

pinpointing the high degree of persistence that can be achieved when the host population is 

rapidly replaced by newborns. 

Finally, we explore the impact of the local transmission rate, keeping the transmission 

rate between subpopulations (β0.�(NS-1)) constant by changing in consequence the value of 

the connectivity between subpopulations (�). We observe a decrease in the mean virulence of 

RHDV with increasing local transmission rate. This is because highly transmissible strains 

consume the potentially susceptible pool too quickly when local transmission rates are higher. 

Moreover, the stability of low virulent strains is improved since a high local transmissibility 

reduces the susceptible pool in their subpopulation, limiting the risk of invasion by a more 

virulent and competitive strain. In contrast, when the local transmission rate of a strain is low, 

a large part of the host subpopulation remains susceptible and more virulent strains can easily 

spread in the subpopulation. 

One can note that rabbit abundance varies inversely with the mean virulence, since the 

impact of the virus on the host population is more severe when induced by more virulent 

strains. This remark is valid for every graph in this figure except 4b, where the selection of 

more virulent strains is caused by an increase in the survival of infected rabbits, which 

accounts for the reduced impact on host abundance. 
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ii. Impact of host genetic diversity on RHDV virulence 

The impact of genetic diversity on the virulence of RHDV is a direct consequence of the 

results seen above. The genetic diversity splits the host population into two subgroups: the 

secretors and the non-secretors. From the virus point of view, all strains are only able to infect 

one phenotype, so all happens as if the part of the rabbit population with the other phenotype 

did not exist. This has two consequences. First, the rabbit subpopulation size in which the 

virus spreads is lower. This implies a higher demographic stochasticity in the host population 

(studied in Figure 4a) and also a lower rate of contamination of susceptible individuals (due to 

the mass action law; the effect of the transmission rate is studied in Figure 4e). Second, due to 

the variability in the local frequency of each allele, some subpopulations are free from one of 

the two phenotypes. The number of subpopulations in which a strain can spread is thus lower, 

which reduces the frequency of contamination between subpopulations (studied in Figure 4c). 

These points affect the mean virulence in different ways.  

In fact, in most situations, the host polymorphism decreases the mean virulence of 

RHDV (Figure 5). As an exception, no such impact is observed for small subpopulation sizes 

(Figure 5a), low survival to virulent strain (Figure 5b), low birth rates (Figure 5d) and low 

local transmission rate (Figure 5e). For small subpopulations sizes, the reason is certainly a 

low level of persistence of the polymorphism (see below). The virus does not really spread in 

a heterogeneous host population. This also explains the absence of an obvious decrease in 

RHDV virulence with host genetic diversity in the case where RHDV is highly lethal (see 

Figure 5b). 

Figure 5d shows some interesting results. For three different points, we observe very 

small confident intervals. For two of these points the effect of host genetic diversity is close to 
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0 (let us call them points A and B, point A corresponding to the lowest birth rate). For the 

third one it is close to -1 (say point C). When looking in more detail, one can see that in this 

region of the birth rate, strains rarely coexist in equivalent proportion. Most of the time one 

strain excludes the other, although this strain may differ from one replicate to the next. A very 

small confident interval means that for both the genetic and the non-genetic models one strain 

(that can differ between the two models) will have a high probability of excluding the others 

(one can also see that on Figure 4d). In this region, virulence of RHDV increases by steps (see 

Figure 4d). The rapid shift from point B to point C means that the threshold value of the birth 

rate for which the mean level of virulence of RHDV increases by 1 is lower for the non-

genetic model than for the genetic one.  

The only case where the host genetic polymorphism leads to an increase in the mean 

virulence of RHDV is that of low transmission rates. As seen previously, a low transmission 

rate of the virus favours more transmissible strains by making infected subpopulations easier 

to colonize. The host polymorphism increases this effect by decreasing the local transmission 

of the virus, favouring more virulent strains.  

 

iii. Maintenance of host genetic diversity 

According to the deterministic model, the presence of the microparasite should favour the 

maintenance of the host genetic diversity. Results from the stochastic model are once again 

more complex. In such models, global extinction of genes may occur just by chance. Due to 

the very low probability of mutation from se to SE, in the long term the rabbit population will 

certainly converge toward the extinction of the SE gene. The question is then how long it 

takes and will the virus help to maintain the genetic diversity over a longer period? 

The global persistence of RHDV is not the only relevant question here. Rabbit 

populations are variable in many aspects. In particular, the number of subpopulations within 
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the metapopulation may vary greatly between populations. Subpopulations loose and 

exchange genes, which leads to a kind of equilibrium in the proportion of subpopulations 

carrying each gene. This proportion is globally preserved when the number of subpopulations 

varies, but for a small number of subpopulations fluctuations in this proportion may lead to 

the global extinction of a gene. Clearly genes that are represented in a low proportion of 

subpopulations will tend to go extinct first. For this reason we also choose the frequency of 

local extinction of each gene as an indicator of the stability of the host genetic polymorphism.  

Another argument for this choice is that global extinction of genes is, for most values of 

the parameters tested here, very rare. Estimating the time before extinction of a gene would 

require very long simulations. Instead, we prefer to look at the state of the system after long 

periods, here basically between 150 and 200 years after the introduction of the virus. On an 

ecological scale, it is already a very long period of time. It is sufficient for stabilizing the 

evolution of the virus virulence but not the evolution of the genetic diversity.  

First we look at the effect of the probability of juvenile dispersion on the evolution of 

genetic diversity (Figure 6a, b). For basic values of the parameters (PD=0.5) almost no local 

gene extinction is expected (see Figure 6a, b). Unsurprisingly, the frequency of gene 

extinction decreases with the genetic connectivity between subpopulations (i.e. the juvenile 

dispersion). The results clearly show the combined effects of the asymmetric mutation rate 

and of the dominant character of the SE gene: the SE gene is more likely to go locally extinct 

(see Figure 6a) than the se gene (see Figure 6b). 

Surprisingly, RHDV is found to have a negative impact on the persistence of the gene 

SE (see Figure 6a) and a positive impact on the persistence of the gene se (see Figure 6b). The 

fact that SE is more likely to go extinct than se implies that RHDV is detrimental to the rabbit 

polymorphism. To look at this in more detail and understand how RHDV affects the 

probability of persistence of each gene, we define a new basic probability of juvenile 
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dispersion. Indeed, with 50% of juvenile dispersion we expect only rare local gene extinction. 

It is not convenient to study the impact of the parameters.  

We now define as new basic value of the probability of juvenile dispersion PD=0.02. We 

first study how the system evolves with time (Figure 6c-f). Results clearly show that 200 

years is not sufficient to reach equilibrium. The frequency of each phenotype (Figure 6c) and 

of local extinction of each gene (Figure 6d) still evolve after 1000 years. Global extinction of 

the SE gene is not observed before 400 years, and even after 1000 years the SE gene has gone 

globally extinct in only 20% (40% in the case without virus) of the replicates (Figure 6e). The 

se gene has never gone globally extinct in any of the 50 replicates. 

This trend toward a higher global extinction probability of the SE gene without RHDV 

is confirmed by looking at the evolution of the frequency of SE local extinction with time 

(Figure 6f). In the first 500 years RHDV accelerates the extinction of the SE gene. This is not 

surprising since initially all subpopulations have a perfect genetic balance. RHDV kills many  

rabbits and has a large destabilizing effect on this balance. However, as the time runs, the 

system reaches an equilibrium where RHDV strains are long term persistent and induce a 

moderate mortality. The virus pressure is regular and density-dependent, which has a 

stabilizing effect on the genetic diversity. Finally, after 1000 years, RHDV significantly 

decreases the frequency of local extinction of the SE gene (see Figure 6f). 

Unsurprisingly, the frequency of local SE extinction decreases with the host 

subpopulation size (Figure 7a). This is simply due to the fact that larger subpopulations are 

less prone to genetic drift. Interestingly, the frequency of local SE extinction decreases with 

the probability of survival to RHDV (Figure 7b). In other words more lethal strains are more 

detrimental to the maintenance of the genetic diversity. This is because by killing rabbits 

RHDV destabilizes the genetic balance within subpopulations, increasing the rate of local 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

  25

gene extinction. Of course, one has to remember that this occurs only after 200 years. 

Looking at a larger time scale might reverse the trend. 

Other parameters are found to have no obvious impact on the frequency of SE extinction 

(Figure 7c-e). This does not mean that they have no impact at all, since they affect the mean 

virulence of RHDV (see Figure 4c-e), but rather that particular mechanisms balance the effect 

of these changes in the mean virulence. Indeed, the selection of high virulent strains is often 

associated with a higher proportion of infected subpopulations. One explanation could be that 

higher infestation of the metapopulation permits a high frequency of multiple infected 

subpopulations and hence favours the strains that are good local competitors. Another 

explanation could be that more virulent strains are more transmissible. The worst situation for 

the persistence of a gene is when a phenotypic group is infected and not the other. This 

situation tends to become rarer as more subpopulations are infected. This explains why 

despite affecting the mean virulence of RHDV, the connectivity between subpopulations 

(Figure 7c), the birth rate (Figure 7d) and the local transmission rate (Figure 7e) do not really 

affect the frequency of SE local extinction. 

 

3) Discussion 

Maintenance of the genetic diversity 

In the present paper we developed two modelling approaches. In the deterministic model, the 

high mortality induced by the virus limits the host population at a low level where the host 

polymorphism persists, whereas in the absence of virus, the asymmetric mutation rate drives 

the SE allele towards extinction. This is due to the frequency-dependent fitness of the host, 

which decreases with the relative size of the genetic group he belongs to (Agrawal and Lively, 

2003). However, the maintenance of the host genetic polymorphism was clearly dependent on 

the long-term persistence of the virus, for the study of which the deterministic model does not 
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seem appropriate, since a very low number of infected hosts was maintained at the 

equilibrium. More realistically we should observe extinctions of the virus. For that reason we 

turn to the stochastic version of the model to integrate virus extinction and reintroduction 

events by considering demographic fluctuations. 

The stochastic model allows going one step further into this analysis. The virus has a 

stabilizing impact on the host polymorphism, which increases the chance of genetic diversity 

maintenance in the long term. However, on an ecological time scale, the virus has been found 

to have a negative impact on the persistence of the genetic diversity. Without the virus, there 

is a balance between the host phenotypes which surely but slowly drives the secretor allele 

toward extinction. In contrast, the virus destabilizes the balance by killing preferentially one 

phenotype or the other, which may lead to rapid local allele extinction. 

If the model cannot predict the minimum host population size required to maintain the 

host polymorphism, it is certainly more appropriate to determine the kind of parameters that 

may influence the maintenance of the host polymorphism. Apart from the subpopulation size 

which, unsurprisingly, positively affects the maintenance of the host polymorphism, the only 

parameter which has here a significant effect is the case mortality of the virus. The more the 

virus kills the host the worse it is for the short-term persistence of the polymorphism.  

 

Effect of spatial and genetic host diversity on strain selection 

Deterministic and stochastic versions of the same model largely differ in their predictions 

concerning the evolution of the virus. With the parameters we chose, the deterministic model 

predicts that the most virulent strain should always be selected whatever the characteristics of 

the host metapopulation, owing to its highest R0. In contrast, the stochastic model predicts that 

the evolution of the virus virulence is much more complex. In particular, despite the strong 

competitive advantage of highly virulent strains, the stochastic model shows that the latter are 
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unadapted to small subpopulations because they go extinct rapidly, thereby limiting their 

chances of colonizing other subpopulations. However, more virulent strains are better local 

competitors and are favoured when exchanges of parasites between subpopulations are more 

frequent. The trade-off between the persistence of the virus within subpopulations and its 

capacity to colonize other subpopulations leads to the selection of intermediate virulent 

strains, but depends on several factors. When a factor favours the persistence of all strains, the 

parasite transmission rate between subpopulations or reduces strains’ resistance against 

invaders, selection favours more transmissible but also more virulent strains. In particular, 

high birth rate, low virus induced mortality, high connectivity between subpopulations, low 

local transmission rate and very large and very small host subpopulations favour highly 

virulent strains. On the contrary, genetic diversity, by decreasing the size of the host 

population available for each strain, generally selects for less virulent strains. 

 The model we developed is based on the assumption of a trade-off between the three 

main parasite traits: the transmission rate, the duration of infectiousness and the case mortality 

induced by the parasite. In reality, these three traits are not necessarily linked, or at least less 

explicitly. It could thus be important to isolate their respective effects. Two characteristics are 

particularly important in the competition between parasites: the parasite transmission rate and 

the total time during which the parasite can be transmitted (directly or indirectly through e.g., 

vectors or infected ground). The parasite will evolve to maximize these two traits if they are 

independent, and if not to a compromise between these traits, favouring more persistent 

strains in small and poorly connected subpopulations (see above). The last trait is the capacity 

of the parasite to reduce the host population size (here through the case mortality), which is 

important because it reduces the chances of persistence of all strains and hence favours more 

locally persistent ones (it has the same effect as a reduction in the subpopulation carrying 

capacity). 
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Individual vs population-based modelling approaches 

Keeling (2000) already explored parasite evolution within a metapopulation framework. He 

used an approach centred on the subpopulation, a method commonly used to represent 

metapopulations. However, as has been previously pointed out (Keeling, 2002), these models 

can be interpreted as approximations of models based on the individual. It is thus important to 

estimate the consequences of this choice. Focusing here on the individual, we confirmed the 

qualitative results found by Keeling (2000), i.e. that the capacity of a pathogen to persist 

locally is a very important trait for its evolution. We confirm the general idea that in a more 

stochastic host demography and/or in less connected subpopulations, more persistent strains 

tend to be selected. 

However, our model allows to go deeper into the analysis of the problem. It allows 

determining how the characteristics of the strains interplay with subpopulation characteristics. 

For example, strains that invest in persistence characteristics (i.e. infected individuals transmit 

them over long periods) have no persistence advantage in very small subpopulations.  

The persistence of a strain within a host subpopulation or the capacity of a more virulent 

strain to invade an already infected subpopulation are complex functions that depend virtually 

on all the demographic and epidemiologic parameters of the model. In particular, there is a 

feed-back between the parasite evolution and the demography of the host: the host 

demography influences the evolution of the parasite, which in turn influences the host 

population size, favouring more or less virulent strains.  

Many parameters act in a complex and sometimes contradictory manner on both of these 

functions and their impact cannot be effectively determined without considering realistic 

models. Our approach allows testing explicit demographic (birth rate, host subpopulation size, 
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level of connectivity between subpopulations), epidemiologic (transmission rate) and genetic 

(of both hosts and parasites) characteristics of the host-parasite interaction. 

 

Validity of the model 

Another important difference with the model proposed by Keeling (2000) is that in our case 

the host population is not made up of infinity of subpopulations (an intrinsic constraint of the 

deterministic character of Keeling’s model). With infinity of subpopulations, and with a 

connectivity of one between subpopulations, we would have found the selection of strains 

with the highest basic reproductive number (results not shown). This was not the case here  

mainly because the entire metapopulation was not large enough for the persistence of the most 

virulent strain. Moreover, we observe little variability in our results, which means that in most 

replicates the same strain predominated in an endemic state (results not shown). What is 

interesting in this situation is that the predominating strain can be invaded by more virulent 

strains. More virulent strains can spread, but never long enough to compromise the 

persistence of the predominant strain. This is typically the kind of situation where the 

evolution of the virus depends on the size of the entire metapopulation and/or on the 

frequency of reintroduction of each strain (and also on the circulation of the virus at the upper 

scale and the degree of isolation of the metapopulation). 

Does that mean that the model is insufficient? No, the model is adapted to study the 

evolution of the virus in the metapopulation, provided that external reintroductions are 

infrequent enough to have no weight in the evolution of the virus. In any other situation one 

should look at an upper scale, i.e. a set of connected metapopulations.  

Among the questions that have not been treated here is the effect of the host 

metapopulation size. One could suppose that highly virulent strains can be selected, but only 

in very large and highly connected metapopulations. Further simulations of the model (not 
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presented here) confirm this idea: in larger metapopulations more virulent strains can be 

selected provided there is a high connectivity between subpopulations. However, the global 

patterns observed here remain true for larger metapopulations. It could also be attractive to 

test much smaller metapopulation sizes to estimate the minimum number of rabbits required 

to maintain the host polymorphism. Unfortunately this does not provide useful results. In 

small metapopulations no virus is long term globally persistent. The metapopulation is often 

disease-free. After a virus reintroduction, one host phenotypic group is infected and reduced. 

The persistence of host genes thus depends on the frequency of external reintroductions, the 

virulence of the reintroduced strain and the phenotype infected. All these factors cannot be 

modelled properly, simply because they depend on the circulation of the virus on a larger 

scale. Only looking at larger scales can allow to answer all these questions. 

Finally, it is important to note that the paper is based on simplifying assumptions. For 

example, we ignored the fact that, although juveniles are resistant to the most severe forms of 

the disease, they can still get infected and transmit the virus to other rabbits. This may have 

important implications for the evolution of virus. For example, highly virulent strains can 

become more persistent if they spread only in juvenile rabbits and so be selected in the long 

term. The main difficulty is that we do not have enough information on this phenomenon so 

that some critical questions cannot be answered: how efficient is the transmission of the virus 

by resistant juveniles in the field? How are the strain characteristics affected when the 

infection occurs in juveniles? 

Here we focused on general mechanisms illustrating how the competition between 

strains may resolve when there is a conflict between invasion and persistence. Even if 

juveniles might alter the characteristics of the different strains, RHDV is likely to face this 

conflict, so that, on a qualitative point of view, the results of the model remain informative. 
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Application to the rabbit-RHDV interaction 

The model is based on simplifying assumptions and the fact that some important parameter 

values are unknown prevents us from making reliable quantitative predictions. However, the 

model can be compared with qualitative observations and help to understand some important 

features of the rabbit-RHDV interaction. One striking observation is that, more than twenty 

years after the emergence of RHDV in China, both virulent and avirulent strains are still 

found in the field. This is surprising since the classical theory of parasite evolution states that 

when two strains of the same parasite compete, then the strain with the highest basic 

reproductive number excludes the other strain. Why has this not yet happened for RHDV? 

One possible explanation is that the basic reproductive number of the avirulent strains 

varies between rabbit populations. White et al. (2001) have argued that avirulent strains of 

RHDV should induce very long lasting diseases to balance their poor level of transmission. 

They showed that in that case the basic reproductive number of avirulent strains depends on 

the life expectancy of rabbits, which varies between populations. So each strain can be locally 

selected in some areas but not in others and the diffusion of the virus between populations 

may explain their coexistence. 

Our paper suggests another plausible and not exclusive explanation. The differential 

success between virulent and avirulent strains depends on rabbit population characteristics 

(e.g., size, connectivity). One can postulate that virulent strains are better adapted in some 

regions and are diffused from these regions to populations in which avirulent strains are better 

adapted.  

Another reason why virulent strains of RHDV managed to persist until now could be 

that they could have evolved alternative persistence strategies. For example, recent evidence 

support the idea that RHDV could be long-term persistent in rabbits surviving acute infections 
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(Gall and Schirrmeier, 2006). So virulent strains could persist in recovered rabbits until the 

renewal of the rabbit susceptible pool. 

Another important property of RHDV is that until now no strain of intermediate 

virulence has been isolated in the field. This is in contradiction with our results (selection of 

intermediate virulent strains).  This can be due to a physiological reason that makes RHDV 

either benign or highly lethal. But intermediate virulent strains may also exist and not be 

detected because: i) as argued previously, there is an observational bias in favour of highly 

virulent strains that induce spectacular demographic crashes in rabbit populations or ii) some 

other selection pressures select for extreme virulent strains only and finally leads to the low 

prevalence of intermediate virulent ones. 

 

Conclusion and implications  

These results may explain observations from human-norovirus induced gastroenteritis. The 

capacity of a norovirus to infect a host also depends on the secretor phenotype of the host as 

shown by studies on volunteers (Hutson et al., 2005; Lindesmith et al., 2003). It has been 

demonstrated that some strains are able to infect only secretors while others are expected to 

infect non-secretors only (Le Pendu  et al., 2006; Tan and Jiang, 2005). In parallel, field 

studies on authentic outbreaks conducted in Sweden revealed that all the strains recorded 

infected secretors only, leading the authors to wonder if non-secretors were resistant to all 

noroviruses (Thorven et al., 2005). Here we propose another scenario. In most countries, 

including Sweden, populations are made up of around 80% of secretors (Mourant, 1983). 

According to our results, strains infecting secretors should be more transmissible but also less 

persistent, because they infect a larger group. If noroviruses’ transmission rate increases with 

their induced morbidity and if the duration of the infectiousness decreases with morbidity, 
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then strains infecting non secretors could be difficult to record simply because they induce no 

or little morbidity. 

All of these results may have important consequences for the study of the evolution of 

pathogens. It is widely admitted that natural selection favours the highest R0 strains in 

homogeneous host populations (Anderson and May, 1979; May and Anderson, 1983). In fact, 

strategies that improve the local persistence of the parasite may also be favoured in spatial 

host populations (see e.g. Haraguchi and Sasaki, 2000). In our model, when populations are 

made up of small and interconnected groups, the parasite also has to adapt to the size of the 

group by being able to persist long enough to be efficiently transmitted to other groups. Long 

infectious period with low levels of both transmissibility and virulence can be one such 

strategy. Alternative mechanisms of extension of the pathogen infectivity period beyond host 

infection are frequently observed in the field, as exemplified by the parvovirus infecting cats 

(Berthier et al., 2000) or the hantavirus infecting voles (Kallio et al., 2006; Sauvage et al., 

2003) that can remain infectious in the ground. Myxoma virus, another virus infecting rabbits, 

provides another interesting example. The virus is able to persist over long periods in the 

ground (Joubert et al., 1974) or in infected vectors (Andrewes et al., 1956; Chapple and 

Lewis, 1965) and to spontaneously reactivate in recovered hosts several months after recovery 

(Marlier et al., 2000; Williams et al., 1972). This suggests that myxoma virus is well adapted 

to the spatial organisation of rabbits into small social groups.  

 

 

Acknowledgements:  

We thank the FNC and ANR SEST programme "Pathocénoses et émergence des maladies 

transmissibles: un concept unificateur mis à l'épreuve sur des pathologies exemplaires". We 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

  34

also thank one anonymous referee for his useful comments. The funders had no role in study 

design, data collection and analysis, decision to publish, or preparation of the manuscript. 

 

Author contributions: 

DF built the model, performed the numerical simulations and wrote the paper. JLP is a 

specialist of the question of the rabbit polymorphism regarding RHDV. He discussed the 

model assumptions so that the model fits as well as possible the experimental system. MG 

helped in the model development, discussed the model assumptions. She was involved in the 

writing of the paper. JSG and SM are specialists of rabbits in the field. They discussed the 

model assumptions and helped determining the model parameters. DP is the supervisor of this 

work. She was also involved in the writing of the paper. All authors participated in the 

discussion of the model results. 

 

All the authors declare that they have no conflict of interest that could potentially influence 

their work. 

 

Appendix: mathematical formulation of the genetic model 

For X representing S, Ii, R or N we call Xse
k, XSE/se

k and XSE
k the total number of individuals of 

the kth subpopulation belonging to the compartment X that are respectively non-secretors, 

heterozygote secretors and homozygote secretors. Note that Ii,SE
k and Ii,se

k do not represent 

individuals infected by the same strain, the first one is adapted to secretors and the second one 

to non secretors, whereas Ii,SE
k and Ii,SE/se

k represent individuals infected by the same strain. To 

simplify, we call strains SE (respectively se) the strains adapted to the phenotype SE 

(respectively se). 

The frequency of the gene SE in the kth subpopulation is then: 
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fSE
k=[NSE

k+NSE/se
k/2]/[NSE

k+NSE/se
k+Nse

k] 
 

To simplify, we assume a panmictic population and thus the proportions of young born 

with a given genotype in the subpopulation k are given by : 

FSE/SE
k = [fSE

k(1-πSE→se) + fse
kπse→SE] 2  

FSE/se
k = 2 [fSE

k(1-πSE→se) + fse
kπse→SE] [fSE

kπSE→se + fse
k(1-πse→SE)] 

Fse/se
k = [fSE

kπSE→se + fse
k(1-πse→SE)] 2 

 

 
We can then establish the differential equations of the system. The exponent k is used 

for the kth subpopulation (k=1..NS), the indexes i for the ith level of transmission rate (i=1..NV) 

and G for the genotype of the individual (G=SE/SE, SE/se or se/se): 

dSG
k

dt
= bFG

k[1− Ωkπ D ]N k + bπ D FG
l N l

l∈ηk
� − (μ0 + δ N k )SG

k − ( Λi,G
k )

i=1

N V

� SG
k  

dIi,G
k

dt
= Λi,G

k SG
k − μ0 + δ N k + α i + σ i�� �� Ii,G

k  

dRG
k

dt
= σ i Ii,G

k

i =1

NV

� − (μ0 + δ N k )RG
k  

where  

k
seseiP

k
seSEi

k
SESEi

k
seSEi

k
SESEi /,/,/,/,/, λρλλ ++=Λ=Λ  

Λi,se /se
k = ρPλi,SE /SE

k + ρPλi,SE /se
k + λi,se /se

k  

and 

λi,G
k = βi[1 − πV (NV − 1)] Ii,G

k + ρ Ii,G
l

l ≠ k
��

�
�

�

�
� + β jπV

j ≠ i
� I j ,G

k + ρ I j ,G
l

l ≠ k
��

�
�

�

�
�   

 is the rate at which susceptible individuals from the subpopulation k get infected with 

the strain i by individuals with a genotype G. 

As previously, the stochastic version of the genetic model consists of a continuous time 

Markov chain in which transition rates are given by the rates of the deterministic model (see 
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electronic supplementary notes). As in the non-genetic model, the release of an infected 

individual in the metapopulation at a rate ε prevents the definitive extinction of RHDV. 

Subpopulation and strain for reintroduction are chosen according to the same uniform laws as 

above. The genotype of the individual is chosen randomly according to the frequency of the 

three genotypes in the metapopulation. This simple hypothesis ensures that an extinct 

genotype cannot be reintroduced by immigration from outside the metapopulation. 
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Table 1: basic values of the parameters and their relationships. The time unit is the 

month. 

Parameter Symbol Relationship to 

other parameters 

Basic 

value 

Number of subpopulations NS  49 

Subpopulation carrying capacity K K=2450/NS 50 

Birth rate b  6×10-2 

Initial mortality rate  μ0  μ0 =b/10  6×10-3  

Density-dependent mortality rate δ δ =(b-μ0)/K 1.1×10-3

Transmission rate of the virulent strain β0 β0=2000/K 40 

Inter-subpopulations relative transmission rate ρ ρ=1/β0K 10-4 

Decrease of the duration of the infection rate with the 

transmission rate 

θ1  0.83 

Increase of the case mortality with the transmission 

rate 

θ2  0.83 

Mean duration of the infection by the virulent strain D0  1/15 

Case mortality of the infection by the virulent strain m0  0.95 

Number of strains infecting each phenotype NV  10 

Probability of change in virus virulence  PV  10-3 

Probability of juvenile dispersal PD  0.5 

Probability of mutation from SE to se πSE→se  10-3 

Probability of mutation from se to SE πse→SE  10-6 

Infection by an individual having a different phenotype ρP  10-3 

Reintroduction rate (only stochastic models) ε  1/12 
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Table 2: characteristics of the 10 strains for the basic value of the parameters 

Strain Transmission 

rate 

Duration of the 

infectious period 

Case mortality 

(%) 

R0 

1 0.01 66.7 1.86 6.70 

2 0.025 30.9 3.93 13.7 

3 0.063 14.4 8.10 24.5 

4 0.16 6.67 16.0 37.9 

5 0.40 3.09 29.0 52.2 

6 1.00 1.44 46.9 66.4 

7 2.53 0.667 65.5 80.9 

8 6.34 0.309 80.4 96.3 

9 15.9 0.144 89.8 113.4 

10 40 0.0667 95.0 132.8 
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Figure captions: 

 

Figure 1: Flow diagram of the non genetic model in the k-th subpopulation with infection by 

infectious rabbit carrying the strain i. Doted lines represent the fact that infectious individuals 

play a role in the contamination but are not changed by it. Grey cells represent the 

compartments and white ones the rates of transition between compartments. Bold lines 

represent the flows with the highest rates: transmission between two individuals of the same 

subpopulation and the susceptible individual infected by the same strain as the infectious one. 

However, the contamination may be due to an infectious individual from another 

subpopulation l and/or the strain may mute during the infection process and become strain j. 

The dark filled circle represents the possibility of mutation after infection. Demographic 

events (i.e. births and deaths), dispersion and external reintroduction of the virus are not 

represented here. 

  

Figure 2: Results from the deterministic model for basic parameter values, except NS=1 

subpopulation. (a) Number of individuals infected by strain Nv in the genetic (solid lines) and 

non-genetic (dashed lines) models; (b) number of rabbits with time in the genetic (solid lines) 

and non-genetic (dashed lines) models; (c) proportion of secretors with time under the virus 

pressure (solid line) or without virus (dashed line) and (d) proportion of individuals with the 

secretor phenotype with time under the virus pressure for basic values of the same parameters 

as in (c) (bold line) and for a smaller local transmission rate of the virulent strain (β0=10, thin 

line). 
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Figure 3: Number of rabbits per subpopulation infected by (a) strain 3; (b) strain 4; (c) strain 

5 ; and (d) any other strain (i.e. strains 1, 2, 6, 7, 8, 9 and 10). Results are shown for one 

replicate, using the basic value of the parameters. 

 

Figure 4: Mean virulence of RHDV (points, left axis) with 95% CI (vertical bars) and 

abundance index of rabbit, defined by the mean number of rabbits per subpopulation divided 

by the carrying capacity of the subpopulation (grey, right axis, the width of the line indicate 

the 95% CI) in the non-genetic model, calculated over the last 50 years of a 200 years 

simulation, according to: (a) the carrying capacity (K) of subpopulations (the number of 

rabbits in the entire metapopulation being constant); (b) the probability that infected 

individuals recover from the most virulent strain (1-m0); (c) the level of connection between 

subpopulations (ρ) ; (d) the host birth rate (b) and (e) the local transmission rate (β0) 

 

Figure 5: Impact of the host genetic diversity on the evolution of RHDV. Mean difference 

(with 95% CI) in the virulence of RHDV between the genetic model and the non-genetic 

model (all other parameters being equals), calculated over the last 50 years of a 200 years 

simulation. (a) According to the carrying capacity (K) of subpopulations; (b) the probability 

that infected individuals recover from the most virulent strain (1-m0); (c) the level of 

connection between subpopulations (ρ) ; (d) the host birth rate (b) and (e) the local 

transmission rate (β0). On each subplot, the grey area represents the region where host 

polymorphism decreases the mean virulence of RHDV (i.e. negative difference). 

 

Figure 6: Persistence of the genetic diversity in presence or absence of RHDV. Mean 

proportion of subpopulations (with 95% CI) where the SE gene (a) or the se gene (b) is 

extinct, calculated over the last 50 years of a 200 years simulation, according to the 
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probability of dispersion of juveniles (PD) with (solid lines) or without (doted lines) RHDV 

(using 10 replicates for each point). (c-f) Evolution of the host polymorphism with time, with 

PD=0.02. (c) Proportion of non-secretor in the entire metapopulation (using 50 replicates); (d) 

proportion of subpopulations where SE (black) and se (grey) genes are extinct; (e) proportion 

of simulations where the SE gene is extinct from the entire metapopulation with (bold line) 

and without (thin line) RHDV. The se gene never goes globally extinct in any of the 50 

replicates. (f) Effect of RHDV on the genetic diversity, characterized by the difference in the 

frequency of local extinction of the gene SE with time between the case with and the case 

without RHDV. Non-secretors invade more rapidly with RHDV but in the long term the virus 

slows down the decay of the number of secretors. In (c, d, f), the width of the line represents 

the 95% CI of the estimated variable. 

 

Figure 7: Impact of the model parameters on the evolution of genetic diversity, represented 

by the mean proportion (with 95% CI) of subpopulations where the SE gene is extinct with 

(solid lines) or without (doted lines) RHDV, calculated over the last 50 years of a 200 years 

simulation. (a) According to the carrying capacity (K) of subpopulations; (b) the probability 

that infected individuals recover from the most virulent strain (1-m0); (c) the level of 

connection between subpopulations (ρ) ; (d) the host birth rate (b) and (e) the local 

transmission rate (β0). In (b), (c) and (e) the model without RHDV is the same for all points 

and so is the frequency of local SE extinction.  

 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

4.
 F

ig
ur

e



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

4.
 F

ig
ur

e



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

4.
 F

ig
ur

e



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

4.
 F

ig
ur

e



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

4.
 F

ig
ur

e



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

4.
 F

ig
ur

e



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

4.
 F

ig
ur

e


