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Abstract

In biology, the measurement of diversity traditionally focusses on reporting numbers

of unambiguously distinguishable types, thus referring to qualitative (discontinuously

varying) traits. Inclusion of frequencies or other weights has produced a large variety

of diversity indices. Quantitative (continuously varying) traits do not readily fit into

this perspective. In fact, in the context of quantitative traits, the concept of diversity

is not always clearly distinguished from the (statistical) notion of dispersion. In many

cases the ambiguity even extends to qualitative traits. This is at variance with the broad

spectrum of diversity issues ranging e.g. from ecological and genetic aspects of diversity

to functional, structural, systematic or evolutionary (including phylogenetic) aspects. In

view of the urgent need for a more consistent perspective, it is called to attention that

all of these aspects, whether of qualitative or quantitative nature, can be gathered under

the common roof of binary relations (for qualitative traits two objects are related, for

example, if they share the same trait state). A comprehensive concept of (relational)

diversity can be developed in two steps: (1) determine the number of unrelated pairs of

objects among all admissible pairs as a measure of implicit (relative) diversity, (2) invoke

the concept of effective number to transform the implicit measure of diversity into an ex-

plicit (absolute) measure. The transformation operates by equating the observed implicit

diversity to the implicit diversity obtained for the ideal model of an equivalence relation

with classes of equal size. The number of these classes specifies the effective number as an

explicit measure of diversity. The wealth of problems that can be treated from this uni-

fied perspective is briefly addressed by classifying and interpreting established diversity

indices in the light of relational diversity. Desirable applications to the above-mentioned

aspects are specified with the help of types of relations such as order, hierarchical, and

tree relations. Corresponding biological issues including taxonomic community diversity,

mating system, food web, sociological, cladistic and phylogenetic, or hypercycle diversity

are suggested for future consideration.

Introduction

Especially when considering adaptational processes, it becomes obvious that diversity

is the prerequisite for the functioning of these processes and that maintenance of the

processes requires maintenance of diversity. Diversity thus plays a fundamental role in the

closed cause-effect cycles that serve the sustainment of biological systems. The quality

and the quantity of diversity that is to be preserved may however vary considerably
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among systems and their functions. The latter explains why most of the debate about

appropriate methods of measuring biological diversity is concerned with aspects of the

quality and quantity of diversity. Aspects of quality may be of ecological, functional,

structural, systematic or evolutionary kind as well as of a practical kind relevant in

the regulation and conservation of natural and artificial biological systems. Aspects of

quantity are chiefly addressed via diversity indices designed to quantify in various ways

the aforementioned aspects of quality. An impression of more recently addressed problems

in this context can be gained from a series of articles published 2006 in Acta Biotheoretica

Volume 54 Number 2 (Myers & Patil, Podani, Sarkar, Ricotta).

For most applications in biology, the measurement of diversity refers to the distri-

bution of qualitative traits displayed by the members of a specified collection. Diversity

measurement is then primarily focussed on finding equivalents of the number of different

trait states or types (frequently called “effective number”). According to Jost (2006),

the “effective number ... is the key to a unified and intuitive interpretation of diversity”.

There seems to be general agreement that this elementary focus on numbers of types

identifies the basic criterion to be fulfilled by diversity measures (it also reflects appro-

priately the definition of diversity as variety or multiformity given in most dictionaries).

Depending on the field of interest, types may be species or other systematic, sociological

or ecological categories, alleles, single- or multi-locus genotypes, etc.

Counting types in a straightforward manner of course requires that these types are

unambiguously distinguishable, and this usually applies only to qualitative traits. With

reference to the objects that display the types, this requirement implies distinction of

objects in a strictly binary (or qualitative) fashion, i.e. by stating the presence or the

absence of difference in the trait states of two objects without any consideration of variable

degrees or amounts of difference. In a basic sense, objects are therefore considered to be

related by sharing their trait state, and they are otherwise considered to be unrelated.

Under this premise, the number of trait states is determined by the unrelated objects.

Relationships other than those characterized by identity and non-identity are not part of

this perspective.

Quantitative traits, however, are also sometimes analyzed in terms of their diversity

(see e.g. Rao, 1982, for one of the earliest and most comprehensive treatments, also see

Shimatani, 2001), even though the underlying concept of diversity is not always clearly

distinguished from the concept of dispersion which determines the measures of variation

commonly used in statistics. Even though some measures of dispersion can be transformed

into effective numbers (as is implicit in the paper of Rao, 1982, and as was highlighted

by Jost, 2006), this is not part of their conceptual underpinning (for a discussion of other

approaches based on quantitative traits such as that of Weitzman, 1992, see Gregorius &

Gillet, 2008).

In any case, whether qualitative or quantitative traits are considered, the basic idea

of diversity is the notion of difference e.g. in appearance or function between pairs of

objects. The terms difference, similarity or identity are used in this context to express

relations between pairs of objects that might be defined by degrees to which the objects
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are different, similar or identical. Yet, continuously varying differences lend themselves

neither to the separation of distinct types nor to the determination of effective numbers,

as is inherent in the concept of diversity.

It is nevertheless possible to include quantitative traits into the measurement of di-

versity. One way is suggested by choosing a threshold difference as a basis for binary

distinction. Exceeding the threshold is then the criterion for stating distinguishability.

Accordingly, objects are considered to be related if they differ by not more than the

threshold. From this perspective, relatedness can be addressed at various levels of reso-

lution by varying the treshold difference. Each level of resolution can then be assigned

its approriate measure of diversity (see Gregorius & Gillet, 2008).

The method of using thresholds to define relations can also be applied to weighted

graphs. Examples range from evolutionary ecology to gene expression systems (see e.g.

Wootton, 2005, or Xu et al., 2002). In such graphs minimum path lengths are defined

from one vertex (object) to another. Given this information, one vertex can be considered

to be related to another if the minimum path length does not exceed a specified threshold.

Note that this is a directed relation, since paths may exist in only one direction. If paths

exist in both directions they may differ in length, so that the threshold condition for

relatedness may be obeyed in one but not in the other direction.

Other familiar examples of relations come from forms of biological interaction in

which individuals or species communicate through positive (symbiotic) or negative (an-

tagonistic) interactions or are linked through food chains or sociological associations. In

contrast to the examples on quantitative traits, these kinds of relations do not appear to

require any measurement of difference between objects. This, however, may be mislead-

ing, since there is always the basic prerequisite that the presence of the respective form

of interaction can at least be unambiguously distinguished from its absence.

Structural diversity is another topic that has received considerable recent interest. In

fact, the term “structure” is most closely associated with the notion of relation, since it

explicitly aims at the characterization of interrelationships between parts in an entity (in

which most dictionaries seem to agree). A distinction has to be made however between the

diversity of structures in the sense of differences between structures (and thus relations),

and the diversity observable within a particular type of structure. It is the latter that will

be addressed in this paper, since the former is rather a problem of differentiation between

than diversity within structures. Probably in the majority of studies, the term structural

diversity is used in connection with quantitative traits, and by this have to deal with the

conceptual difference between the measurement of dispersion and diversity (for a typical

example see Staudhammer & LeMay, 2001).

Extrapolation of the above examples of relations directly points to the possibility

that general relations between members of a collection can be considered as a source of

diversity. By this, a wide spectrum of current methods can be traced back to a common

principle, and new subjects can be suggested. In fact, relations will be shown to have

the potential for a unified approach to the measurement of diversity, just as the average

distance considered by Rao (1982) has for the measurement of dispersion. Different
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qualities of diversity can be contributed to different types of relation, and measures of

the quantity of diversity (called relational diversity) will be seen to follow naturally from

counting relations. Herewith the principle of interpreting diversity in terms of numbers

of trait states or types will be ensured with the help of a generalized concept of effective

number.

Formal representation

Let us start from the general mathematical definition of a binary relation as a subset

R from the cross-product K ×K, where K is any collection of objects. Thus an object

x ∈ K is related to an object y ∈ K if the pair (x, y) belongs to R, i.e. (x, y) ∈ R. As was

indicated above, there are many situations of basic biological interest, where relations

between objects are not solely aimed at the measurement of difference between objects.

It is therefore justified to treat the term relatedness in a very comprehensive manner.

However, since the focus is on diversity, relatedness of an object to itself (reflexivity) is

not an issue. This suggests replacement of K ×K by the “off-diagonal” cross-product

CK := {(x, y) | x ∈ K, y ∈ K, x �= y} and R by the “off-diagonal” relation R∗ := R ∩ CK

in considerations of relational diversity (the wording ”off-diagonal” refers to the typical

illustration of binary relations in the form of quadratic matrices; see Figure 1 for a

demonstration of the matrix representation and the corresponding graph representation

of relations).

Apparently, if each member of a collection is related to each other of its members, this

collection would be considered as displaying no structure because all objects are meshed.

Displaying no structure can in turn be taken as a synonym for homogeneity and thus

for the absence of diversity. Thus, the heterogeneity or diversity of a collection would

increase with the number of unrelated objects. A probably more familiar illustration can

be arrived at by considering a subdivision of a collection into clusters such that members

of the same cluster are more frequently related among each other than to members of other

clusters. Diversity increases as the differences between clusters become more expressed

by fewer relations between clusters.

In other words, relational diversity should correspond to the number of pairs

(x, y) �∈ R among all pairs (x, y) ∈ CK . A straightforward relative measure of relational

diversity would therefore be given by

D :=
|CK | − |R

∗|

|CK |
(1a)

where |R∗| and |CK | is the number of pairs in R∗ and CK , respectively. For a number

n of objects in K one obtains |CK | = n · (n− 1) (see Figure 1 for an example). An

alternative characterization of the measure D, which accounts for collections of infinite

size, is provided by the probability of sampling without replacement two objects of which

the first is not related to the second.

In the complete absence of relations among the objects, |R∗| = 0 and thus D = 1.

Each object is relationally isolated in this situation as is typical of a totally divers collec-

tion. At the other extreme, where each member is related to each other member of the
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Figure 1

x1 x2

x3

x4

x5x6

x1

x2
x3
x4
x5
x6

x1 x2 x3 x4 x5 x6

= symmetric complement of
the relation (not realized)

x1 x2 x3 x4 x5 x6
x1

x2
x3
x4
x5
x6

= unrelated

x2

x4

x3

x5 x6

x1

Relation by type Asymmetric relation

= related

Off-diagonal matrix and graph representation of a binary relation between the n = 6
objects forming the collection K = {x1, ..., x6}.

Left panel: Relations are symmetric and exist between all objects of the same type
but not between objects of different type. The collection is divided into three sub-
sets corresponding to three types, {x1, x2, x3}, {x4, x5}, and {x6}. The off-diagonal
relation R∗ consists of 8 relations; relative relational diversity D = 0.73; explicit
relational diversity (effective number) v = 2.57.

Right panel: Relations are asymmetric with one exception. Off-diagonal relation
R∗ = {(x1, x3), (x2, x4), (x3, x2), (x5, x3), (x5, x6), (x6, x5)}; relative relational diver-
sity D = 0.80; explicit relational diversity (effective number) v = 3.00.

collection, |R∗| = |CK | and consequently D = 0, indicating complete homogeneity and

thus the absence of diversity. These characteristics of D are in accordance with the above

remarks on the diversity of collections. It also becomes apparent that relationally isolated

objects cannot just be excluded from considerations of the diversity of a collection.

So far, relatedness was intuitively referred to similarity, and the notion of heterogene-

ity was accordingly associated with difference. However, there may be cases, where, for

example, special preferences for mating partners or other types of biological cooperation

are determined by dissimilarity rather than similarity. In such cases relationships be-

tween objects are primarily described by sufficient difference (e.g. avoidance of inbreeding

or symbiosis via avoidance of competition). Homogeneity would thus be characterized by

the fact that all individuals would equally avoid cooperation with like types. Even though

this seems to contradict the above concept of diversity, it yet is in complete accordance

with the conceptual basis, since it simply reverses the argument.
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In fact making use of the complement Rc of a relation R, equation (1a) still applies.

The complementary relation is here defined as usual by

Rc := {(x, y) | x ∈ K, y ∈ K, (x, y) �∈ R},

so that in equation (1a) R is to be replaced by Rc to yield the pertinent measure of

diversity (the ∗-notation retains its meaning and CK remains the same). Under this

premise it follows consistently that the relative relational diversity of the complementary

relation equals 1−D. This merely emphasizes the obvious fact that homogeneity and

heterogeneity are complementary and exchangeable notions in terms of relations, and

that therefore they must be a priori specified in order to avoid conceptual confusion.

Relations between objects and between types of objects

In many studies, relations are not primarily defined between individual objects but

rather between the types represented by the objects. In a trioecious sexual system, for

example, there are three sexual types (female, male and cosexual referred to as f, m, c)

between which four symmetrical mating compatibility relations exist: (f, m), (f, c), (m, c),

(c, c). If the sexual types would be considered as objects, the “diagonal”relation (c, c)

would have to be discarded for an assessment of relational diversity. By equation (1a)

one arrives at D = 0 (since n = 3 and CK = |R∗| = 6) and thus the absence of relative

relational diversity. This makes sense, since each of the three types is related with each

other type, which would constitute a situation of relational homogeneity.

At the other extreme, if diversity is solely conceived in terms of the number of types,

then no object (type) is related to any other object (type), with the result that D = 1.

This situation is commonly addressed by the term “richness” such as in “species richness”

or “allelic richness”. It will later on be returned to in connection with effective numbers.

In real collections, however, types occur through the objects representing them, so

that relations between types carry over to relations between objects. Because no further

information about relationships between objects other than between their types exists,

one object is considered to be related to another if and only if the type represented by the

first object is related to the type represented by the other object. This transfer of relations

between trait states to relations between objects will be referred to as the TO-perspective

in the following.

The TO-perspective introduces frequencies into the notion of relations as becomes

apparent from the fact that the i-th type may be represented by several objects, ni say,

so that
∑

i ni = n. Provided the i-th type is related to the j-th and i �= j, there are

then ni · nj relations between the corresponding objects. For i = j, there are ni · (ni − 1)

relations between objects of the i-th type (provided this type is related to itself). Note

that within such a group all objects are mutually related.

We are now concerned with two relations, one, RT , refers to a set of types KT , and

the other, R, results from this by the above-described transfer to relations between objects

from K. The transfer implies that each pair (i, j) ∈ RT can be assigned a frequency of

ni · nj for i �= j and of ni · (ni − 1) for i = j. The relative measureD of relational diversity,
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which is defined for the relations between objects, can now be specified by considering that

|R∗| in equation (1a) takes the form |R∗| =
∑

(i,j)∈RT
ni · (nj − δi,j), where δi,j denotes

the Kronecker symbol (i.e. δi,j = 0 for i �= j and δi,i = 1). In the special case, where all

types are related to themselves but to no other, one obtains |R∗| =
∑

i ni · (ni − 1) so

that D = 1 −
∑

i ni · (ni − 1)/(n · (n − 1)), which is well-known as Simpson’s index of

diversity.

In other studies, relations are observed among objects without any prior reference

to traits. Examples are provided by studies of mating systems where the fusion of ga-

metes or copulation constitutes the event that defines relations among potential parents

irrespective of any trait characteristics of the individuals. Encounters of individuals lead-

ing to positive or negative interactions provide another wide variety of relations that are

observed solely on the level of individuals. Apparently, such observations do not allow

for any suggestion as to the potential causes that brought about the relation. In fact,

cause-effect analyses cannot be performed unless the objects are characterized by traits

for which appropriate relations can by hypothesized and tested.

As opposed to the TO-perspective, relations between objects are now verified as to

whether they are reflected by the states of a trait under consideration. In other words,

relations between objects are transferred to relations between types. This change in

perspective will be referred to as the OT-perspective in the following. The OT-perspective

has to take account of constraints that are due to the nature of the objects. For example,

it may be impossible from the outset to find types for which either each object of one type

is related to each object of the other type, or for which no object of one type is related to

an object of the other type, as was part of the TO-perspective. This is relevant whenever

objects cannot realize multiple relations as is the case in mating system studies in which

gametes are the objects between which relations are defined by their fusion (each gamete

can fuse only once).

To arrive at a comprehensive representation of the OT-perspecitve, resume the idea

of a trait as a function T that assigns to each object x a state T (x). One thus has a

mapping T :K → KT with KT = {T (x) | x ∈ K}. The two relations to be considered are

again R for the objects and RT for the trait states. Since RT is conceived of as a transfer

of R via T , the two relations correspond to each other in that

(a) if (x, y) ∈ R then (T (x), T (y)) ∈ RT , and

(b) if (i, j) ∈ RT then there exists at least one x ∈ K with T (x) = i and at least one

y ∈ K with T (y) = j so that (x, y) ∈ R.

Note that (x, y) �∈ R does not rule out the possibility that (T (x), T (y)) ∈ RT , since objects

other than x and y may be related and show the same types.

Conditions (a) and (b) determine an obvious rule of transferring any relation R via

a trait T to a relation RT between the trait states. The transfer is defined by: i ∈ KT

is related to j ∈ KT (i.e. (i, j) ∈ RT ) if there exist x ∈ K and y ∈ K such that T (x) = i,

T (y) = j and (x, y) ∈ R. By this rule, any trait T : K → KT carries the relation R on K

in a unique manner to a relation RT on KT . Special features of the relation R can in this

way be studied with the help of appropriate traits.
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For example, consider the above-mentioned mating system study in which relations

between gametes are defined by their fusion, and where gametes are characterized by sus-

pected incompatibility types of their producers. Thus the objects of interest are gametes,

which are (symmetrically) related by fusion events and which are assigned the incom-

patibility types of their producers as trait states. Two incompatibility types are then

related if at least one pair of gametes that represent the two types is found to have fused.

If in particular the incompatibility types represent a system of self-incompatibility, then

one expects that self-relatedness (reflexivity) is excluded from KT . Hence, if there ex-

ists (x, y) ∈ R with T (x) = T (y), this would contradict the assumption that the observed

mating relations follow a system of self-incompatibility. The example demonstrates the

use of traits for testing model hypotheses on observed relations under the OT-perspective.

This does of course not apply to the TO-perspective, since there the primary observation

relies on relations between types rather than objects.

As in the TO-perspective, the relations between types can again be assigned the

frequencies of their corresponding relations from R. Thus with each (i, j) ∈ RT there is

associated the number ni,j of relations (x, y) ∈ R with T (x) = i and T (y) = j. This num-

ber can never exceed the number ni · (nj − δi,j) that results under the TO-perspective.

Consequently, in the relative relational diversity as specified in equation (1a) we now have

|R∗| =
∑

(i,j)∈RT
ni,j , so that D under the OT-perspective, can never be greater than

under the TO-perspective.

Relations associated with weights

In the last section it was shown that for relations based on the states of a trait T ,

the total number |R∗| of relations in the relative relational diversity D (as given by

equation (1a)) is specified by |R∗| =
∑

(i,j)∈RT
ni,j, where ni,j = ni · (nj − δi,j) under

the TO-persective. Herein ni specifies the number of objects showing the i-th trait state

(i.e. objects x with T (x) = i), RT is the relation between the trait states, and ni,j is the

number of relations (x, y) ∈ R with T (x) = i and T (y) = j.

The transition from R (or R∗) to RT implies a probably less obvious change in the

classical definition of mathematical relations. The mathematical definition is based on

the statement of the presence or absence of a relation between two objects, where the

objects are not assigned any weight. This is different in RT , since there the objects are

types (trait states) that are associated with frequencies as weights. The presence-absence

statement about relations, however, still applies, since types now take the place of objects.

Therefore, in the realm of diversity measurement, it is meaningful to extend the classical

notion of relations by assigning weights to relations. Hence, in this case the numbers ni,j

are considered as weights of relations.

It remains to clarify, how the interpretation of diversity in terms of sampling without

replacement enters the weights. In fact, sampling requires units to be sampled, and this

gains relevance with respect to weights only if they can be expressed in a commensurable

way by numbers of units of measurement. Given this situation, the definition of rela-

tive relational diversity given in equation (1a) applies consistently. Otherwise, if weights
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are not a priori commensurable, the implied continuum of measurements can be repre-

sented by infinitely large collections. This situation is most appropriately represented

by changing from absolute to relative frequencies, i.e. by making use of pi := ni/n and

pi,j := ni,j/(n · (n− 1)). Hence, equation (1a) becomes

D = 1−
∑

(i,j)∈RT

pi,j (1b)

Under the TO-perspective, where ni,j = ni · (nj − δi,j), it follows that pi,j = n
n−1

· pi ·

(pj − (δi,j/n)), so that for infinitely large n one obtains pi,j = pi · pj . Note that pi,j = 0

for (i, j) �∈ RT , so that the sum in equation (1b) could as well be extended to all trait

states i and j.

Weights other than natural numbers are quite common in diversity studies in ecol-

ogy and agriculture, where areas occupied by individuals, species or cultivars or their

biomasses are of interest. The weights used in such studies are primarily given to types,

where relations between types seem to play no role so far. In any case, the appropriate

perspectve is the TO-perspective, so that the weights wi, say, replace the numbers ni.

These weights have of course a dimension, which does however not affect the measurement

of diversity, since only the relative quantities pi = wi/
∑

j wj enter the computation of D.

The intrinsically quantitative nature of weights entails collections of infinite size so that in

equation (1b), pi,j has to be replaced by pi · pj with the result thatD = 1−
∑

(i,j)∈RT
pi·pj .

Explicit measure of diversity – effective number

“The effective number ... is at the core of the concept of diversity in biology” (Jost

2006), where effective numbers are understood to directly refer to numbers of different

types. In many if not most situations, measures of diversity are conceived in implicit terms

such as the above measure D of relative diversity. However, by virtue of the concept of

diversity, the implicit statement is incomplete unless it can be consistently explicated in

terms of numbers of types. Turning an implicit measure of diversity into an explicit one

(as specified by the effective number), therefore requires a conceptual underpinning of

the involved transformation. Herewith the focus is set on an “ideal model”, in which the

implicit measure is unambiguously defined by the number of types. Equating the observed

measure with that obtained from the ideal model and solving for the number of types

provides the desired transformation into an explicit measure in terms of the “effective”

number of types. The adjective “effective” is therefore directly bound to the chosen ideal

model (see Gregorius 1991).

The generally agreed ideal model in diversity measurement is specified by a uniform

distribution of types and thus by a collection, in which all types are equally represented.

Only in such a model of complete evenness the number of types is unambiguously defined

(see e.g. McArthur 1965). This model can be expressed in terms of a special relation

known as equivalence relation (see e.g. Podani, 2006). Each equivalence relation implies

a decomposition of the collection into disjoint subsets (i.e. equivalence classes) such that

each member of a class is related to every other member of that class but is unrelated
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to all objects outside the class. Each object can therefore be uniquely assigned to a type

that is defined by the equivalence class to which the object belongs.

The assignment establishes a trait with classes as trait states (or types). The rep-

resentation of types is then specified by the number, proportion or weights of objects in

the corresponding class. This approach is compelling, since it makes use of the fact that

each trait can be represented by an equivalence relation and vice versa. At a last step,

the equivalence relation becomes the ideal model by requiring equal representation for all

equivalence classes.

In this case, the number |CK | − |R
∗| of unrelated pairs of objects equals k · (n− k) · v,

where v is the number of classes (types) and k is the number of members of each class.

Equation (1a) therefore becomes

D =
k · (n− k) · v

n · (n− 1)

Since k · v = n, so that k = n/v, this can be written as

D =
n

n− 1
·
(
1−

1

v

)

According to the above explanations, the transformation of relative into explit diversity

is now achieved by solving the last equation for v:

v =
(
1−

n− 1

n
· D

)−1

(2)

In equation (2), D can be chosen to equal any observed value of the relative relational

diversity in a collection of n objects, which then turns v into an effective number based

on an equivalence relation with equally sized equivalence classes as the ideal model. This

justifies introduction of v as a measure of explicit relational diversity (for an illustration

see Figure 1).

Apparently, v ≤ n, which is in accordance with the expectation that explicit diversity

should never exceed the size of the base collection. The fact that D = 1 implies v = n

gains special significance if one considers the classical species count. In this situation, the

objects of interest are not the individual members of the respective species but rather

the species themselves. Hence, the assessment of the species richness (diversity) of a

community builds on a collection made of species, so that all objects in such a collection

differ from each other and are therefore unrelated. The effective number thus equals

the collection size. This example may serve to demonstrate the necessity of a clear and

meaningful specification of a collection and its objects.

Another example comes from the situation, where the objects are types that are

assigned weights. These weights replace the type frequencies. As was explained earlier,

this situation can be taken into account by letting collection sizes approach infinity so that

equation (2) becomes v = (1− D)−1. Thus by equation (1b), v =
(∑

(i,j)∈RT
pi · pj

)−1
.

If no relations exist between different types (so that (i, j) �∈ RT if i �= j), v reduces to
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the well known effective number v =
(∑

i p2
i

)−1
(in a population genetic context see e.g.

Crow & Kimura 1970, p.323-324).

Diversity at several levels – community diversity

A problem may arise with the concept of relational diversity if, for example, the

members of a biological community under consideration belong to several systematic cat-

egories. In such communities the diversity could be expected to increase with the number

of individuals belonging to different categories. Thus, for 100 individuals belonging to dif-

ferent species of the same genus the diversity is rated to be lower than for 100 individuals

belonging to different genera of the same family, and this diversity is again rated lower

than for 100 individuals belonging to different families. However, indecision may exist if

the case of two species from different families (say 50 individuals from each species) is to

be compared with the case of four species (say each represented by 25 individuals) from

three genera of the same family.

The problem is obviously caused by the fact that the diversity of each systematic

category is primarily described by the number of its sub-categories and that therefore no

measure of diversity is given that spans several and quite different systematic categories

co-occurring in the same community. Hence, in such situations the relations among the

members of a community must include characteristics of multiple systematic categories

in order to enable comparison of different communities with respect to their diversity.

The probably most obvious method of designing such relations is provided by a measure

of difference between individuals that reflects the distinctiveness of the categories. Taxo-

nomic distance would be such a measure (see e.g. Weikard et al., 2006). More generally,

any measure would be appropriate that yields smaller differences within than between

categories.

As was mentioned above, given a proper measure of difference between objects, a

relation can be defined for each fixed threshold of difference by declaring two objects

as related if their difference does not exceed the threshold. In this way, by choosing

variable thresholds, a family of relations is generated, for each of which a measure of

diversity is defined by equations (1) and (2). The fact that two objects related for a

particular threshold are necessarily related for any higher threshold difference implies

a hierarchical ordering of the relations. Thus, if relation R′ is generated by a lower

threshold value than relation R′′, then R′ ⊆ R′′ and consequently the diversity associated

with R′′ cannot exceed the diversity associated with R′. In other words, the diversity of

a collection decreases (not necessarily strictly) with increasing threshold value. Hence,

in the example of systematic categories, different communities can be compared for their

diversity values only when applying the same measure of difference and threshold value.

It may then turn out, that the superiority in diversity of one community over another

may depend on the chosen threshold level.

The nestedness of relations implied by increasing threshold values can be interpreted

in a more comprehensive framework. Since unrelatedness indicates distinctiveness, an

increasing number of unrelated objects can be expected from the application of more
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efficient methods of distinguishing objects. Hence, a method that detects more unrelated

objects can be awarded a higher resolving capacity. In more formal terms this states that

for two nested relations R′ and R′′ with R′ ⊂ R′′, R′ is more distinctive than R′′ and

thus realizes a higher “resolution”. The obvious fact that methods of higher resolution

reveal higher diversity in a collection can thus be traced back to the underlying relations.

Order relations and hierarchical relations

Many forms of biological interaction are characterized by asymmetric relations such

as can be found in food webs, where one species depends directly on another for its diet

but not vice versa. Dominance relationships among the species in a community, among

members of a population, or among alleles at a gene locus can be mentioned as other

examples. These relations constitute strict order relations in the sense that (x, y) ∈ R

implies (y, x) �∈ R (asymmetry), and (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R

(transitivity). They seem to have attracted little attention, if any, in quantitative analyses

of biological diversity.

The same seems to be true for another type of relation that implies some kind of order

and plays an important role in biology. This type is realized by hierarchically organized

interactions between objects. Hierarchical organization avoids conflicts that may arise

from competing dominance relations as they would occur if two objects would jointly

and independently dominate a third one. Joint dominance of two objects over a third is

therefore not allowed “in parallel” but only “in succession”, i.e. if one of the two objects

already dominates the other. The interactions within most biological communities as well

as the interactions along food chains are more or less strongly hierarchically organized

(for an overview with emphasis on hierarchies of community organization see Sugihara et

al. 2003). Herewith, the dominance relationships need not be realized directly between

two objects but may rather require a chain of sequential direct dominance relations. This

situation will be referred to by the wording “one object is chain-related to another”.

For a formal representation of a hierarchical relation that excludes parallel actions

in the above sense it is thus required that if two objects are both chain-related to a

third, then one of the two objects should be chain-related to the other (this is not to

be confused with what is occasionally called a Euclidean relation). To put the notion of

chain-relatedness on a firmer basis, the transitive closure R̄ of a binary relation R will be

introduced. For this purpose consider an object x as chain-related to an object y within

R if there exists a series of objects zi ∈ K (i = 1, ..., m) such that z1 = x, zm = y, and

(zi, zi+1) ∈ R for i = 1, ..., m− 1. Then

R̄ := {(x, y) | x ∈ K, y ∈ K, x is chain-related to y within R}

is a transitive relation. The above explanations can then be stated as (see Figure 2 for

an illustration)

� A relation R is hierarchical if (x, z) ∈ R̄ and (y, z) ∈ R̄ implies that for x �= y either

(x, y) ∈ R̄ or (y, x) ∈ R̄.

In essence, by introduing R̄, this definition enforces transitivity in cases where the

relation R is not yet transitive. Therefore, if one requires transitivity in addition to
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the hierarchy condition (so that R̄ = R), the above definition remains the same if R̄ is

replaced by R. In this case the relation will be called strictly hierarchical.

Figure 2

x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6

= related = unrelated

x1

x2
x3
x4
x5
x6

x1

x2
x3
x4
x5
x6

x1

x3 x6

x4

x5

x2 x1 x2

x3 x6

x4

x5

Tree relationwith loops
Hierarchical relation

Off-diagonal matrix and graph representation of a binary relation between the n = 6
objects forming the collection K = {x1, ..., x6}.

Left panel: Hierarchical relation including two loops, one consisting of x1, x2, x3, all
of which are top nodes, and the other consisting of x4, x5.

Right panel: Tree relation with top node x2, internal node x6, and terminal nodes
x1, x4, x5.

To demonstrate more explicitly the hierarchical set structure associated with a hier-

archical relation, consider for each object x its dr-class as the set Rdr(x) of all objects to

which it is (directly) related, i.e.

Rdr(x) := {y ∈ K | (x, y) ∈ R}.

Continuing the previous approach, the extension of the dr-class from directly related to

chain-related objects gives rise to the definition of the cr-class Rcr(x) of an object x by

the set of all objects to which x is chain related, i.e.

Rcr(x) := {y ∈ K | (x, y) ∈ R̄}.

Note that, even for a transitive relation, Rdr(x) differs from Rcr(x) if Rdr(x) contains at

least one object that is related to another object.

It now follows from the transitivity of the relation R̄ that y ∈ Rcr(x) implies

Rcr(y) ⊆ Rcr(x). To see this, recall that for y ∈ Rcr(x) and z ∈ Rcr(y) one obtains

(x, y) ∈ R̄ and (y, z) ∈ R̄, so that (x, z) ∈ R̄ and thus z ∈ Rcr(x). Since this holds for
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any z ∈ Rcr(y) one obtains the desired result Rcr(y) ⊆ Rcr(x). Moreover, from the hi-

erarchy condition it follows that the intersection of two cr-classes is either empty or one

is contained in the other. To see this suppose that z ∈ Rcr(x) ∩Rcr(y). Then (x, z) ∈ R̄

and (y, z) ∈ R̄ so that either (x, y) ∈ R̄ or (y, x) ∈ R̄. Without loss of generality, let

(x, y) ∈ R̄; then y ∈ Rcr(x) and, by transitivity of R̄, Rcr(y) ⊆ Rcr(x). This proves the

assertion. The same steps of proof show that for a strictly hierarchical relation either

Rdr(y) ⊆ Rdr(x) or Rdr(y) ∩Rdr(x) = ∅.

Hence, the cr-classes of a hierarchical relation establish a collection of nested subsets

that directly reflect our notion of a hierarchical structure. The same holds true for the dr-

classes of a strictly hierarchical relation. The notion is also associated with the common

illustration by a tree-like graph, in which an object appears as an “internal node” if it

is simply related to at least two other objects that are not chain-related to each other.

Herewith, object x is called simply related to object y, if (x, y) ∈ R and no other chain

relates x to y. Top nodes are internal nodes whose cr-classes are not contained in the

cr-class of any other object. This implies, that no other node is related to a top node. At

the other extreme, the cr-class of an object may be empty or consist only of the object

itself, in which case this object is frequently called a “terminal node” of the tree.

However, the above definition of a hierarchical relation is not yet sufficiently specific

to reflect the common notion of a tree structure. In fact hierarchical relations do not

even exclude the possibility of loops in chains. A loop chain-relates an object to itself so

that (x, x) ∈ R̄ for any such object. This implies in particular that x ∈ Rcr(x) only if x

is part of a loop (see Figure 2 for an illustration). The ubiquity of feedback mechanisms

at various levels of organization in biological systems (extending from biochemical feed-

back regulation over reciprocal altruism to nutrient cycling and general hypercycles) can

probably be summarized under the category of hierarchical relations in which all objects

belong to loops. Their diversity is well-documented but hardly (if ever) quantified.

To distinguish these kinds of struture from a typical tree structure, one apparently

requires at least the absence of loops. Moreover, since the branches of trees diverge

but never converge, no two different objects are allowed to be jointly related to a third

object (i.e. if (x, z) ∈ R and (y, z) ∈ R then x = y). This condition will be referred

to as divergence. However, if the condition of divergence applies, then situations for

which the hierarchy or strict hierarchy condition become effective do not occur. It is

therefore sufficient to define a tree relation as a divergent relation in which no loops

occur. Tree relations are thus asymmetric and hierarchical. It should be noted that the

graphs associated with tree relations are not the same as the graphs commonly addressed

as a tree in graph theory (see Figure 2 for an illustration).

In classical cladograms or phylogenies as examples of tree relations, only the terminal

nodes are observable, and internal nodes are fictitious objects that result from the method

of dendrogram construction (or reconstruction of descent). Observed and fictitious objects

together form the collection on which the tree relation is defined, where the relation itself

is completely specified by the dendrogram. Given such a dendrogram, a tree relation

between the objects (nodes) can be defined by the existence of a connecting branch,
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where the direction of the branch always points towards a terminal node (thus node x is

related to node y if x is connected to y by a branch along which y is closer to a terminal

node than x). In this way the number of relations is unambiguously determined, and

the diversity measure D is well-defined. With this definition of a relation between the

nodes of a dendrogram it can be shown that for any given number of terminal and internal

nodes the number of relations tends to decrease with increasing number of disjoint groups.

Thus, D reflects topological properties of the dendrogram. By referring to a number of

classes or groups, the effective number v is particularly intuitive in this case as a measure

of topological diversity.

Normalization problems – constraints

Different types of relation may imply different constraints as to the maximum num-

bers of relations cmax that they allow for and the minimum number cmin they enforce.

This could be taken as an argument for adjusting the |CK | in equation (1a) because the

maximum number cmax of admissible relations is smaller than n · (n− 1). Similarly, the

minimum number, which is always zero in equation (1a), may become positive under

certain constraints. Taking these constraints into account, the measure D could be stated

in the more general form D = (cmax − |R
∗|)/(cmax − cmin).

The measurement of diversity in strict order, in hierarchical or in tree relations can

be drawn on as examples of constraints. Since a strict order relation excludes symmetrical

relations, the maximum number of relations between n different objects is halved under

this constraint, i.e. cmax = 1
2
n(n− 1). At the other extreme, all objects are allowed to be

unrelated, which implies cmin = 0. Complete homogeneity or the absence of structure,

i.e. D = 0, would then be realized, if for any two different objects x and y either (x, y) ∈ R

or (y, x) ∈ R. This implies that the strict order is complete (or linear), and all objects are

aligned in one chain. Maximum diversity, i.e. D = 1, again corresponds to the absence of

any relations.

A particularly strong reduction of cmax results from the constraints implied by mating

relations that are defined by the fusion of gametes. No object (gamete) can realize more

than one relation to other objects, and the relation is symmetric. The totality of n objects

is devided into two sets of size n′ and n′′, say, which refer to the two gametic sexes. The

number of potential relations is thus restricted to cmax = min{n′, n′′}. When the number

of male and female gametes are not considered as constraints, cmax is given by the largest

natural number not exceeding n/2.

Another example for constraints that imply cmin > 0 is given by an asymmetric

relation in which exactly m of a total of n objects are not related to other objects and

each of the remaining n−m objects is related to at least one other object. Tree relations

between n objects with m terminal nodes fulfill these constraints in particular. The

minimum number of relations is of course realized if each of the n−m objects is related to

exactly one other object so that cmin = n−m. The maximum number of relations results

if all admissible relations among the n−m occur, which are 1
2 (n−n)·(n−m−1) relations,

and if each of the n−m objects is related to each of the m objects, which yields (n−m)·m
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relations. Hence, cmax = 1
2 (n−m) · (n−m− 1) + (n−m) ·m =1

2 (n−m) · (n + m− 1).

The conversion of these relative measures of diversity to an explicit measure by

equation (2) via the ideal model is unaffected by the various normalizations. It has

however to be taken into consideration that constraints that are incorporated into the

measurement of diversity ignore the remaining potential relations as sources of diversity, so

that the reduction in diversity due to the constraints remains unattested. For example, it

might be of interest to compare the effects of different kinds of organization of biological

systems on diversity. Candidates could be the constraints imposed by hierarchical as

compared to those imposed by special kinds of reticulate organization. Such comparisons

can be problematic, when only the accordingly normalized versions of relative diversity

are used. It could therefore be preferable to make use of both the normalized and non-

normalized versions of relative diversity.

Equivalence relations as ideal model for the determination of an effective number

might be argued to have no intutively obvious connection to certain types of relation like

the hierarchical, and that therefore the ideal model should be adapted to the constraints.

Such objections can be countered with the help of the cr-classes or dr-classes. These

classes are defined for all relations and specify sets of objects that reflect the constraints

of the respective relation. Equivalence classes are then simply the dr-classes generated by

equivalence relations (cr-classes are identical to dr-classes for equivalence relations). It is

therefore meaningful to generally address the explicit measure v of diversity as given by

equation (2) as an effective number of classes.

Extension to include samples of size m

So far the assessment of diversity was based on counting binary relations between

objects. It was pointed out that this is equivalent to sampling two objects one after the

other (without replacement) and state whether the first is related to the second. Re-

taining the implied concept of assessing diversity on the basis of unrelatedness found in

samples taken without replacement, one may extend the sample to sequences of more

than two different objects and again state whether each is related to its successor in the

sequence. Resuming the above idea of chain-relatedness, this gives rise to the considera-

tion of sequences of given length m, say, in which each object is related to its successor.

Such a sequence will be called a chain (of length m). A chain starting with object x and

ending with object y thus implies that y belongs to the cr-class of x, i.e. y ∈ Rcr(x).

Diversity will then be evaluated with reference to the number of chains of length m,

which the relation R allows to form, in comparison with the total number of the sequences

that can be obtained by sampling m objects without replacement from the collection. The

most characteristic consequence of increasing the sample size consists in an increase of

the chances to recover unrelated objects. In fact, if unrelatedness has not been found in

a sample of m− 1 objects, there will still be a chance to find it by insertion of another of

the remaining objects somewhere into the sample sequence. Hence, to arrive at the same

assessment of diversity for smaller samples, the number of relations must be reduced.

Moreover, long chains can be formed only from larger sets of interrelated objects. With
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increasing m, the evaluation of diversity therefore depends to an ever higher degree on

only these sets. In the case of equivalence relations these sets are given by the largest

classes.

Given a collection of n objects (n ≥ m), there are [n, m] := n · (n− 1) · (n− 2) · . . . ·

(n − m + 1) sample sequences each consisting of m different objects. The set of these

sequences will be denoted by Cm
K (with C2

K = CK) and among these the set of chains

of length m will be referred to as R∗m (with R∗2 = R∗). For convenience, the notation

rm := |R∗m| will be used in the following (also recall that [n, m] = |Cm
K |). The previous

definition of a measure of diversity given by equation (1a) (where m was equal to 2) can

now be extended to arbitrary values of m ≥ 2 through replacement of |CK | and |R∗| by

[n, m] and rm, respectively:

Dm =
[n, m]− rm

[n, m]
(3)

In terms of probabilities, Dm equals the probability of sampling without replacement a

sequence of m objects (m ≤ n) of which at least one is not related to the object following

it in the sequence. By definition, the probability becomes 1 only if rm = 0 and thus if m

exceeds the maximum chain length. Moreover, as was argued above, the probability of

encountering unrelated objects increases (and so does Dm) with the sample size m.

To obtain the effective number recall that for equivalence relations chains are made

of objects belonging to the same equivalence class. Thus, if the i-th class has size ni,

there are [ni, m] := ni · (ni− 1) · (ni− 2) · . . . · (ni−m+1) possibilities to compose chains

of length m from that class. For ni < m it will be understood that [ni, m] = 0. Given

s classes (
∑s

i=1 ni = n), the total number of chains thus amounts to rm =
∑s

i=1[ni, m],

and one arrives at

Dm = 1−

∑s

i=1[ni, m]

[n, m]
(4)

For the ideal model with v equivalence classes, ni = k so that v · k = n, and by

insertion into equation (4) and setting the result equal to equation (3) one obtains

rm = v · [n/v, m] as the equation to be solved for v (note that [n, m] is well defined for

natural numbers m and general real numbers n, and [n, m] ≥ 0 for n ≥ m− 1). Since

v · [n/v, m] = n · [n/v − 1, m− 1], this equation can be rewritten as

rm

n
=

[n

v
− 1, m− 1

]
(5)

The equation has a unique solution v = vm, because its right side is a strictly decreasing

function of v over its relevant values; the solution can be obtained by simple numerical

iteration. The relevant range for v is determined by the fact that [n/v − 1, m− 1] ≥ 0 for

n/v − 1 ≥ m− 2, and since rm ≤ [n, m]. The effective number vm thus always lies in the

interval 1 ≤ vm ≤ n/(m− 1).

For infinitely large collections the effective number can be obtained with the help of

equation (4) by letting n tend to infinity while retaining the proportions pi = ni/n of the

equivalence classes (as was previously done to arrive at equation (1b)). Writing

[ni, m]

[n, m]
=

m−1∏
j=0

ni − j

n− j
=

m−1∏
j=0

pi −
j
n

1− j

n
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and passing to the limit n→∞ one obtains [ni, m]/[n, m]→ pm
i and therefore

Dm = 1−
s∑

i=1

pm
i

Note that this representation does not only apply to the equivalence classes but is more

generally true under the TO-perspective, when no relations exist between types (indexed

by i) and all objects of the same type are mutually related.

The ideal model, when applied to the case of infinite collections, requires pi = 1/v

for i = 1, . . . v, where v is the number of classes in the ideal model. Solving the resulting

equation Dm = 1− v1−m for v yields as the effective number

vm =
(
1−Dm

) 1

1−m (6)

Under the above-mentioned conditions where Dm = 1 −
∑s

i=1 pm
i , equation (6) as-

sumes the well-known form

vm =
( s∑

i=1

pm
i

) 1

1−m

The family vm of diversity measures was suggested by Hill (1973) for arbitrary real values

of m. Interestingly, Patil & Taillie (1982) arrive at the same effective number even though

their considerations proceeded from an apparently different concept of implicit diversity

based on the average of a particular measure of rarity of types.

Further analyses particularly of the effect of m on the measure vm can be found in

Hill (1973) or Gregorius (1978). These analyses confirm the above general characterization

of the dependence of diversity measurement on larger sets of interrelated objects. In

particular, vm decreases with increasing m and ultimately depends only on the largest of

the frequencies pi. Moreover, v0 specifies the number of types (richness) and v1 results

from the limit of vm as m approaches 1. It should, however, be kept in mind that

equation (6) has only been shown to have an interpretation in the context of binary

relations on infinite collections and natural numbers m ≥ 2.

Concluding remarks

The concept of diversity differs intrinsically from the concept of dispersion in that it is

aimed at providing information on the variety and multiformity of collections and thus on

numbers of distinguishable objects. It therefore relies on discretizable and countable units

of perception. The elementary principle of counting types becomes problematic when

they are represented in different amounts and are distinguishable to different degrees. It

is shown in this paper that these problems can be overcome by switching from counting

types to counting pairs of objects that are characterized in a binary fashion as being

related or not related. Counting pairs is extendable to counting sequences consisting of

more than two objects. Relatedness can be defined in innumerable ways, some categories

of which were addressed above. The concept of effective number in turn allows switching
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back again from counting relations to counting types as the true basis for measuring

diversity. This principle can be applied to a wide range of problems and leads in each

case to an explicit and interpretable measure of diversity.

Particulary community ecologists may miss reference to the Shannon index in the

above demonstrations. As is well known, this index is contained in the family vm via

the transformation log v1, under the premise that m equals any non-negative real value.

Initially, the Shannon index was derived as a measure of information content and, in

physics, as a measure of entropy. Neither interpretation has a direct bearing on the

notion of diversity as an effective number. It may therefore be concluded that the Shannon

index is not part of the present concept of relational diversity or, more extremely, that

it is not a measure of diversity at all. However, the interpretation of the family vm on

the basis of chains or samples of relations may not be the only way to arrive at this

family. Interpretations in terms of relations based on other sampling procedures and

transformations may justify extension of the family vm to arbitrary real values of m.

The need for indices that go beyond mere counts of types (mostly referred to as

“richness”) is usually felt when diversity is to be assessed for more complex features.

One characteristic of complexity that is widely agreed upon is seen in the multiplicity of

relations among the parts of a system. Relations are thus the basic determinants of com-

plexity, and any quantification of the degree of complexity is therefore directly concerned

with the measurement of relational diversity. Application of the present concept to the

assessment of complexity will be an interesting task.

Acknowledgement: The suggestions of an anonymous reviewer helped to clarify the

demonstrations about objects and types.
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