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Abstract 
We model the process of directed evolution (DE) in silico using genetic algorithms. Making 
use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover 
and selection pressure on the performance of DE. A range of values of K, the epistatic 
interaction of the landscape, are considered, and high-throughput and low-throughput modes 
of evolution are compared. Our findings suggest that for runs of or around ten generations' 
duration - as is typical in DE - there is little difference between the way in which DE needs to 
be configured in the high- and low-throughput regimes, nor across different degrees of 
landscape epistasis. In all cases, a high selection pressure (but not an extreme one) 
combined with a moderately high mutation rate works best, while crossover provides some 
benefit but only on the less rugged landscapes. These genetic algorithms were also 
compared with a "model-based approach" from the literature, which uses sequential fixing of 
the problem parameters based on fitting a linear model. Overall, we find that purely 
evolutionary techniques fare better than do model-based approaches across all but the 
smoothest landscapes. 

Keywords: genetic algorithm, fitness landscape, NK-landscape, 
selection pressure, mutation rate 
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1 Introduction 
Directed Evolution (DE) has in recent years emerged as an effective 

technique for generating and selecting proteins1 with a variety of uses. The 

starting point is usually a library containing proteins that already possess the 

desired function to some extent, although randomly generated proteins have 

also been used. Through a series of iterative steps, or ‘generations’, during 

each of which the proteins are diversified and then screened, the protein 

library is ‘evolved’ towards better performance. Proteins have been evolved 

using DE for a variety of roles including the production of industrial catalysts 

(Cherry and Fidantsef 2003; Sylvestre et al. 2006), thermostable enzymes 

(Yun et al. 2006; Chautard et al. 2007), molecule-specific aptamers (Joyce 

1994) and vaccines (Piatesi et al. 2006). 

 

In this paper we use Genetic Algorithms (GAs) to model the DE process. This 

seems like a natural thing to do, given the common roots of evolutionary 

computation and DE. Both are inspired by Darwinian evolution, proceeding 

through similar steps of selection, reproduction and variation. Further, 

variation is typically achieved during DE using error-prone polymerase chain 

reaction (Leung et al. 1989) or DNA shuffling (Stemmer 1994; Stemmer 1994; 

Coco et al. 2001). These techniques have similar effects to the mutation and 

crossover operators commonly used in GAs. It should therefore be possible to 

simulate the DE process using a GA and an appropriate dataset. However, 

DE practitioners do not in general apply lessons learned from evolutionary 

computation in determining experimental parameters, nor vice versa. One 

                                                 
1 DE has been performed on DNA and RNA as well as on proteins. References to ‘proteins’ in this 
paper refer to the molecules being manipulated by DE, whether they are proteins, DNA or RNA. 
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reason for this may be that the methodology used in GA learning is usually 

quite different from that used in DE. The former usually runs for hundreds or 

even thousands of generations whereas the latter usually only runs for a few 

(rarely more than 10) iterations. 

 

Another difference between GAs and DE is that standard GAs usually 

incorporate relatively weak selection pressure. Common methods for selecting 

parents are fitness-proportional (de Jong 1975) and tournament selection 

(Goldberg and Deb 1991). While the severity with which these methods are 

applied may be varied, both methods typically allow a substantial proportion of 

offspring to be generated from parents that are somewhat less fit than the 

‘best’ parent. In contrast, DE practitioners usually carry out strict filtering 

before performing the next mutational step. The filtering step typically allows a 

small percentage of proteins through to the next stage and in some cases only 

a single protein is allowed to reproduce. This type of selection is rarely used 

within GAs although there are a few exceptions (Mühlenbein and 

Schlierkamp-Voosen 1993), which have generally been influenced by the 

related field of evolutionary strategies (Bäck et al. 1991). One of the questions 

we hope to answer in this study is whether such high selection pressure is 

likely to be beneficial within DE. 

 

There are a number of questions that are frequently asked within the GA 

community that are also asked by DE practitioners. Most of these are part of 

experimental design within DE but in the context of GAs are described as 

‘control parameters’ or ‘hyper-parameters’. Some examples are the choice of 
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mutation rate, screen size and the use of recombination. The effect of each of 

these choices is examined in this study. Early work in DE applied low mutation 

rates, of the order of one mutation per protein, with the assumption that 

evolution was unlikely to make beneficial mutations at higher mutation rates 

(Arnold 1996). However, more recently, improved results have been achieved 

with much higher mutation rates – between 3 and 30 per protein (Zaccolo and 

Gherardi 1999; Daugherty et al. 2000; Reetz 2003; Drummond et al. 2005). 

The choice between high- or low-throughput screening is related to the 

question of optimal mutation rate: it has been suggested that higher mutation 

rates are appropriate when a larger screen size is used, but that lower 

mutation rates are necessary when using a small screen (Arnold 1996; Voigt 

et al. 2001). Recombination has been shown to be useful in a number of 

studies (Stemmer 1994; Moore et al. 1997; Zhang et al. 2002; Rowe et al. 

2003) and examining the value of recombination within a range of algorithms 

is a further aim of this study. 

 

DE may be contrasted (Arnold 1996) with rational protein design. Ideally the 

rational approach involves the creation of a realistic model of the mechanism 

by which a protein interacts with the system under study. In some areas, such 

as protein folding, substantial progress has been made in understanding 

mechanisms, although simplifying approximations have to be made in order to 

produce computationally tractable models (Cowperthwaite and Meyers 2007). 

Unfortunately, our knowledge of protein folding is not easily translated into 

predictions of functional performance (Alviso et al. 2007) because most 
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reaction mechanisms are insufficiently well understood and/or too complex to 

model with reasonable accuracy (Arnold 2001). 

 

Given the limited applicability of rational approaches, methods based upon 

search algorithms have flourished. These algorithms owe much to machine 

learning and statistics and fall into two classes. The first is a fully evolutionary 

approach, which has been described as ‘blind’ (Arnold 1998) to draw attention 

to the analogy with the process of natural evolution, popularised as the ‘blind 

watchmaker’ (Dawkins 1986). This approach is close to that used in GAs: 

search is guided by the processes of reproduction, variation and selection 

only. 

 

The second is a model-based approach, in which a mathematical model of the 

relationship between protein sequence and function is constructed. This 

model may then be used to predict promising sequences. As far as the 

authors are aware, all existing model-based approaches that have been used 

in DE are stepwise. Each iteration involves the mutation of local sites (single 

bases or a small number of bases). Once the ‘optimum’ amino acid or acids 

have been identified at a particular site, this site is then fixed. A number of 

approaches fall into this general category, including Reetz’s CAST method 

(Reetz et al. 2006), Fox’s ProSAR (Fox et al. 2003; Fox et al. 2007) and 

Iwakura’s Quasi-additive Adaptive Walking (QAW) (Iwakura et al. 2006). 

These methods select bases at each position independently. However, 

covariation analysis suggests that there are significant correlations between 

residue frequencies within evolved proteins (Pritchard et al. 2001). It is 
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apparent that stepwise approaches generate different sequences from those 

generated by evolutionary methods. 

 

Stepwise approaches are usually considered to be a branch of DE. However, 

they have similarities to the rational design of proteins. Both attempt to identify 

active sites and hence reaction mechanisms and to use this information to 

select which proteins to screen. Experiments that use a stepwise algorithm 

might be better described as ‘semi-rational’ to distinguish them from both fully 

evolutionary experiments and from fully ‘rational’ approaches. 

 

The task of identifying mechanisms is clearly an important one. However, the 

stepwise approach has a potential flaw: fixing bases after each step runs the 

risk of becoming trapped in a local optimum (Arnold 1996), particularly in 

situations where there are epistatic interactions between amino acids and 

hence many local optima. A second drawback of semi-rational approaches is 

that they require the sequencing of proteins, which can be time-consuming 

and expensive. If semi-rational methods demonstrate superior performance to 

evolutionary methods the extra financial and time costs may be justified. The 

final task that we hope to perform through in silico simulations is a comparison 

between the capacities of evolutionary and stepwise methods, to ascertain 

whether the latter are likely to result in more rapid progress, and if so under 

what conditions. 

 

To summarise, the aim of this study is to answer the following questions: 

• How important is selection pressure in DE? 
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• What are the optimal mutation rates in DE? 

• Does recombination play a useful role in DE? 

• Are different approaches appropriate for high-throughput and low-

throughput scenarios? 

• In what situations is a full evolutionary approach superior to a stepwise 

approach? 

  

A small number of previous studies have modelled DE or similar methods. 

Moore and Maranas (Moore and Maranas 2000) constructed quantitative 

models to predict the probability of producing a specific nucleotide sequence 

from a number of cycles of error-prone PCR or DNA shuffling. This approach 

has been generalised to allow for variable amplification efficiency and initial 

population size (Pritchard et al. 2005). Fox demonstrated ProSAR models on 

NK-landscapes with low K (Fox et al. 2003; Fox 2005). Corne et al (Corne et 

al. 2002) compared the performances of GAs using a range of mutation rates 

and of one with a variable mutation rate in the presence of  strong selection 

pressure, as used during DE, using the MAX-ONES function as a test problem. 

They found that high rates of mutation (between 2/L and 4/L) were beneficial, 

with a variable rate resulting in further improvements in performance. One aim 

of this study is to ascertain whether such high mutation rates are also usefully 

applied to the landscapes commonly encountered during DE. 

 

2 Protein landscapes and NK-landscapes 
We believe that knowledge obtained by examining the processes of variation 

and selection in silico using synthetic models can inform in vitro experimental 
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design, but only if the in silico simulations have control parameters and a 

dataset that closely match those of the in vitro experiment. Producing a GA 

with control parameters that closely match the experimental design used in 

DE is fairly straightforward. Choosing a dataset with properties that mimic 

those of proteins is more difficult. In particular it is important that the 

relationships between data are similar to those between proteins. Proteins are 

known to display epistatic behaviour. In this study we use Kaufmann’s NK-

landscapes as a model of the protein ‘landscape’ (Kauffman 1989). In this 

model, each genotype is a binary string of length N. The fitness of the 

genotype is calculated as the average fitness of each allele within the gene. 

However, each allele’s fitness is affected by the values of K other alleles. In 

some NK models epistatically linked alleles must be adjacent. However, we 

use a model in which the alleles may be anywhere within the bit-string, so 

incorporating the long-range interactions that have been observed in proteins 

(Reetz 2004). The value of K may be varied, thereby giving rise to non-

epistatic, smooth landscapes or more epistatic, rugged landscapes. 

 

NK-landscapes represent only a subset of all possible epistatically linked 

landscapes (Heckendorn and Whitley 1997; Heckendorn et al. 1998). NKP-

landscapes are a superset of NK-landscapes, in which a proportion, P, of 

allele combinations make no contribution to the overall fitness (Barnett 1998). 

By increasing the value of P, the ‘neutrality’ of landscapes can be increased. 

However, it has been shown that varying the value of P does not affect the 

‘juxtapositional complexity’ (Smith and Smith 1998), with the result that P will 

have little effect on the relative performance of different GAs. For this reason, 
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NKP landscapes are not considered in this study. For the interested reader, a 

number of further extensions to the NK model have been suggested (Smith 

and Smith 2000; Geard et al. 2002; Aguirre and Tanaka 2004). 

 

There is a lack of agreement concerning the extent to which epistasis affects 

the linkage between protein sequences and behaviour. It has been observed 

that the effects on enzyme activity due to mutations of dihydrofolate reductase 

were approximately additive (Aita et al. 2001; Iwakura et al. 2006). 

Govindarajan et al (Govindarajan et al. 2003) found that the enzymatic activity 

of a series of subtilisin variants showed little epistatic interaction. However, 

the criterion for the identification of epistasis was very strict (p-value < 0.001). 

Presumably weaker but still significant epistatic interactions occurred between 

a much larger number of pairs of sites. 

 

Other authors have found that the protein landscape is highly epistatic 

(Kauffman and Weinberger 1989; Schaeffer et al. 2003; Bershtein et al. 2006). 

Further, some protein landscapes are highly anisotropic. Hayashi et al 

(Hayashi et al. 2006) evolved a defective phage with the aim of increasing 

infectivity and found that most of the landscape was smooth and easily 

searched but that the most important areas, i.e. those containing the most 

highly infectious phages, were much more rugged. They suggested that 

different approaches might be required to search the smoother and more 

rugged parts of the landscape, such as the use of a lower mutation rate for the 

more rugged sections. 
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The studies that identified low epistasis considered only naturally occurring 

mutations whereas those that observed higher epistasis included synthetic 

variants. The low level of epistasis within naturally occurring proteins has 

been explained by the observation that they are likely to occur in additive or 

neutral areas of the protein landscape in which mutations are unlikely to be 

fatally deleterious (Govindarajan et al. 2003). However, DE often aims to 

produce proteins with properties that have not been selected for by natural 

evolution and should therefore jump out of a local optimum (or neutral network) 

(Arnold 2001). This will require higher mutation rates which may enable the 

protein to move away from the local optimum and hence discover improved 

functional performance (Eigen and Schuster 1978). However, this movement 

is likely to produce proteins in more epistatic regions of sequence space 

(Bershtein et al. 2006). 

 

Given the lack of certainty concerning the level of epistasis in protein 

landscapes, we have performed a series of simulations on landscapes with 

varying levels of epistasis, with values of K varying between 0 (totally smooth) 

and 10 (very rugged). By using a variety of mutation rates we test whether 

different mutation rates are optimal for smooth and rugged landscapes. 

 

NK-landscapes have been used previously as a model of protein activity 

landscapes. Aita and Husimi (Aita and Husimi 1998) used adaptive walks on 

NK-landscapes to identify the optimum search strategy. At each generation 

this involved random mutations followed by selection of the best sequence. 

They found that the use of small screen sizes was effective when searching 
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smooth landscapes but that it could lead to stagnation within rough 

landscapes, i.e. entrapment within local optima. Kauffman and Macready 

(Kauffman and Macready 1995) assessed the efficacy of mutation, 

recombination and ‘pooling’ strategies in generating proteins with enhanced 

fitness using the NK-model. Pooling strategies involve the creation of separate 

pools of proteins in which each pool has certain amino acids fixed. At each 

iteration the best pool is selected and sub-pools are created by fixing the 

amino acids at further positions. According to our definition, pooling is 

therefore a stepwise algorithm. Kauffman and Macready observed that fixing 

bases through the selection of a single ‘pool’ could be detrimental. They 

showed that the pooling approach could be improved through the introduction 

of a hill-climbing procedure involving recombination and/or mutation after the 

selection of each pool or sub-pool. Fox et al (Fox et al. 2003) reached the 

opposite conclusion when comparing their ProSAR algorithm with an 

evolutionary algorithm in their performances when searching NK-landscapes, 

finding that ProSAR gave better results for K�3. The contrasting results may 

be explained by the fact that the two studies used different algorithms. 

Kauffman et al generate libraries using the mutation and recombination 

operators and select the best variant as the starting point for the next step. 

Fox et al on the other hand do not use the standard mutation and 

recombination operators but generate libraries using a biased random 

selection of each allele. Muñoz and Deem (Muñoz and Deem 2008) used an 

NK-model to demonstrate that it is better to search a large library sparsely 

than a small library thoroughly, using GAs that ran for 100 generations. This is 

related to the setting of mutation rates: for a fixed screen size, a high mutation 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

rate implies searching a large library sparsely while a low mutation rate results 

in thorough search of a small library. 

 

One aim of this study is to re-evaluate the lessons learnt in previous studies. 

Like Aita and Husimi, we compare the effects of large and small screen sizes. 

We extend their study through the introduction of recombination and by 

allowing more than one protein to contribute to producing the next generation. 

We attempt to cast light on the debate between evolutionary and stepwise 

methods by using algorithms that are very similar to the stepwise and 

evolutionary algorithms used in DE experiments. Finally, we attempt to identify 

the optimum mutation rate when only a small number of generations are 

available. 

 

Although NK-landscapes have been widely used as models of protein 

landscapes, care must be taken when interpreting the results. The ‘No Free 

Lunch Theorem’ (NFL) demonstrates that all search algorithms are equally 

effective when averaged over the space of all possible problems (Wolpert and 

Macready 1997), at least for single-objective optimisation problems. One 

consequence of this is that no single algorithm is optimal for all possible 

problems: an algorithm that has been optimised to solve one problem may be 

sub-optimal for other problems. The implication of NFL is that optimising an 

algorithm to search NK-landscapes does not guarantee optimal behaviour on 

protein landscapes. However, NFL may be partially circumvented by 

considering landscapes that are similar to each other. There is considerable 

evidence that NK-landscapes have similar structural features to protein 
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landscapes and that search algorithms perform similarly when faced with 

these, respectively, real and synthetic landscapes (Kauffman 1993). We 

believe that conclusions drawn from this theoretical study may therefore be 

used to guide the selection of experimental parameters, even though they do 

not guarantee optimal results. 

 

3 Method 
This research is composed of two parts. The main part is the simulation of DE 

using GAs with a variety of control parameters. These control parameters 

(screen size, selection pressure, mutation rate, use of crossover) were chosen 

to cover the range of values used in ‘real-world’ DE experiments, as described 

below. All simulations were run on a number of landscapes each with a 

different ruggedness (K value). The second part of the study involved the 

simulation of a stepwise algorithm searching on the same landscapes, in 

order to allow comparisons between the fully evolutionary and semi-rational 

approaches. 

 

In order to maximise the relevance of our simulations we have chosen ranges 

of experimental parameters that reflect the values used in ‘real’ DE 

experiments. A large number of different techniques are available for 

generating protein libraries from parent proteins. A recent review (Lutz and 

Patrick 2004) listed 12 ‘new technologies for generating molecular diversity’, 

which generate between 100 and 3,000,000 proteins during each generation. 

Table 1 summarises the parameters used in a number of studies over the last 

15 years. It may be seen that screen sizes are typically in the thousands with 

a few studies using smaller libraries containing hundreds of proteins while a 
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small number use larger libraries containing hundreds of thousands or even 

millions of proteins. 

 

When running our GAs we chose two different library sizes that roughly span 

the range used in DE experiments. For our low-throughput simulation we used 

a library size of 120. This is close to the smallest libraries that have been used 

experimentally and is the same size as the library used by Fox when 

demonstrating ProSAR (Fox et al. 2003), thereby making possible direct 

comparisons with this technique. For the high-throughput simulation we used 

a library size of 40,000. This value is representative of large screen sizes as 

indicated by Table 1 and simulations may be run in silico within a reasonable 

timescale with this screen size. The upper limit on library sizes is increasing 

each year as a result of technological advances. However, parallel increases 

in computer speeds mean that running larger simulations that reflect this 

change should become viable in the future. 

 

Proteins were represented in the simulation by binary strings of length N, with 

N=100 for the high-throughput regime and 40 for the low-throughput regime. 

For the high-throughput regime, K took values from the set {0, 2, 5, 7, 10}. 

The low throughput regime was applied to landscapes with K = {0, 1, 2, 3, 4, 5, 

6, 7, 8, 9, 10}. 

 

From Table 1 it is seen that the number of proteins that are successful in 

passing through a screen, i.e. proceed to the next generation of reproduction, 

is generally small and often just one protein is allowed to generate the next 
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generation. In the evolutionary computing community selection pressures are 

usually kept relatively low. Low selection pressures are used in order to avoid 

premature convergence as a result of loss of diversity which can occur on 

runs of a large number of generations (hundreds or thousands) (Reeves and 

Rowe 2002). In DE, in contrast, very strong selection pressure is usually 

applied in order to obtain a significant improvement in performance within a 

small number of generations. One aim of this study is to assess whether such 

selection pressure is beneficial. Selection pressure is varied using a (μ,�) 

algorithm (Beyer 2001), in which μ and � are integers, with μ<�. In the first 

generation � individuals are generated and the best μ are chosen to 

reproduce the next generation. From these μ sequences, parents are selected 

at random to reproduce � ‘offspring’. The selection and reproduction routines 

are repeated in subsequent generations. The value of � is set to a fixed value 

(40000 for high-throughput and 120 for low-throughput simulations), 

representing a constant screen size. Selection pressure is varied by changing 

the value of μ: lower μ indicates stronger selection pressure, i.e. more strict 

filtering of parents. The range of μ values used is given in Table 2. 

 

The (μ,�) algorithm is very close to the procedure usually followed during DE. 

In order to provide a benchmark against which to compare the results with this 

algorithm we also ran a standard GA using ‘tournament selection’. In this 

algorithm all parents had the opportunity to produce offspring. 4 parents were 

chosen at random and the parent with the highest fitness was selected to 

reproduce. During recombination the second parent was chosen in the same 

way. The resulting offspring passed into the next generation. The procedure 
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was repeated until the new generation had the same population size as the 

previous generation. This may be contrasted with the (μ,�) algorithm in which 

offspring are over-produced and then culled. Crossover was applied with a 

probability of 0.6 and mutation at a rate of 1/L, where L is the length of the bit-

strings (equal in value to N). These parameters are known to perform well 

over a range of fitness landscapes (Bäck 1996). The number of proteins in the 

GA ‘population’ was generally equal to the screen size used in the (μ,�) 

algorithm, i.e. 120 during low-throughput and 40000 during high-throughput 

simulation. In order to evaluate the improvement in performance due to the 

(μ,�) and stepwise algorithms, standard GAs were also run in the low-

throughput regime with a range of larger population sizes, up to 4000. 

 

In most evolutionary computing applications, GAs are run to ‘convergence’, i.e. 

until no more improvement is observed and most of the population diversity 

has been lost as a result of repeated selection. However, due to time and 

money limitations, DE is rarely run for more than 10 generations (see Table 1). 

In order to model DE experiments realistically our simulations therefore ran for 

10 generations. 

 

From Table 1 it may be seen that a wide range of mutation rates have been 

applied during DE experiments reported in the literature, ranging from less 

than 1/L up to 27/L. Approximately half of the studies identified used some 

from of recombination; the others relied entirely on mutation to produce 

variation. The range of values used within this study have been chosen to 

reflect the variation in experimental design. All of our experiments were 
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performed both with and without crossover and with a range of different 

mutation rates from the set {0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 10, 15, 20, 25, 

30}. 

 

The performance of a stepwise algorithm was compared with the fully 

evolutionary algorithms. This algorithm was based on ProSAR and uses 

Partial Least Squares (PLS) models (Wold 1966) to determine which areas of 

the protein landscape to search. PLS creates a linear mathematical model 

relating the genotype alleles (0 or 1) to the overall fitness. Coefficients are set 

by simultaneously regressing onto the dependent and independent variables, 

thereby avoiding the overfitting which tends to occur when basic regression is 

applied to a problem with a large number of input variables. ProSAR was 

primarily designed to operate on small libraries. Furthermore, the 

computational requirements of PLS make it impractical for large libraries. For 

these reasons we have only applied it within the low-throughput methodology. 

In the first generation, sequences were generated randomly. A PLS model 

was constructed and the 4 positions that had the greatest influence on fitness, 

i.e. those with the largest PLS coefficients, were set to their optimum values (0 

or 1). In subsequent generations only those positions that had not been fixed 

were allowed to vary. In each generation 4 more positions were fixed, so that 

at the end of 10 generations all 40 positions had been determined. 

 

For each NK pair 100 landscapes were independently generated. For each 

algorithm and set of mutation/crossover rates, independent runs were 

performed on each landscape and the results were averaged across all 100 
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runs. The best fitnesses achieved and optimal mutation rates were recorded 

for each algorithm. Overall, over 180,000 runs were performed.  

 

The crossover and mutation operators are described using pseudo-code in 

the Appendix, as are the standard GA, (μ,�) and stepwise algorithms used 

within this study. 

 

4 Results 

4.1 High throughput 
Figures 1 and 2 show the performance of a standard GA with and without 

crossover, respectively, for landscapes of different ruggedness. The 

smoothness of these and later plots reflects the precision attainable in these 

analyses. Table 3 gives the best fitness achieved on each landscape. It 

indicates that crossover enhances the performance on smoother landscapes 

but is detrimental for more rugged landscapes. In order to give an impression 

of the scale of the improvements, the best fitnesses achieved using random 

selection of sequences is also included in Table 3. 

 

The introduction of stronger selection pressure via the (μ,�) algorithm 

improves performance considerably: the improvement over random selection 

is approximately doubled when the (μ,�) algorithm is used for all except the 

completely smooth landscape (K=0). Figures 3 and 4 show the best fitness 

achieved on each landscape with a moderate increase in selection pressure 

(μ = 4000) with and without crossover, respectively. 
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Table 4 gives the best fitnesses achieved and the corresponding mutation 

rates. Apart from the overall improvement in fitnesses compared to the 

standard GA, there are 3 points to note: 

• The optimum mutation rates are similar for the (μ,�) algorithm and the 

standard GA algorithm. 

• The advantage of incorporating crossover is found to apply up to a 

greater level of ruggedness (K�5 rather than K�2) when greater 

selection pressure is introduced.  

• Introduction of crossover reduces the sensitivity to mutation rate. When 

mutation is the only operator it is very important that the mutation rate 

is set to its optimum value, but when crossover is present mutation acts 

as a secondary operator (Maynard Smith 1978; Ochoa et al. 1999). 

 

A comparison across different landscapes suggest that the maximum fitness 

attained is similar for all landscapes with K>0. The global optimum for different 

landscapes has been observed to be independent of K in one study (Smith 

and Smith 1998). More recent work suggests that the global optimum 

increases with K, but search algorithms may not reflect this, due to the 

increased difficulty of searching more rugged landscapes (Skellett et al. 2005). 

The average maximum global fitness for a K=0 landscape is predicted to be 

2/3 and it appears that this is attained when crossover is used.  

 

The consequences of further increasing the selection pressure were 

investigated by decreasing μ. The best fitnesses achieved on the K=5 

landscape are given in Table 5. It is clear from these results that 
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• Performance peaks at a selection pressure of between 1000 and 

10000, i.e. μ=40 to 4, with selection pressure defined as �/μ. Both 

higher and lower selection pressures give lower fitnesses. 

• There is a fairly constant optimum mutation rate of approximately 3/L. 

• The introduction of crossover gives a slight edge to the performance of 

the (μ,�) algorithm. 

 

Very similar results are achieved by applying strong selection pressure to 

landscapes with K=0, 2, 7 and 10. For all of these landscapes a selection 

pressure of 1000 was found to be optimal or near-optimal. Crossover was 

seen to be beneficial for the smoother landscapes (K�5) but detrimental for 

the more rugged landscapes. 

 

The differences between the mean fitness values were shown to be 

statistically significance using a series of 2-way analysis of variance (ANOVA) 

tests. For each value of μ and each landscape, p-values were obtained by 

conditioning on mutation rate and presence/absence of crossover. All p-

values were below 0.05 indicating that the difference in mean values is 

significant at this level. 

4.2 Low throughput 
Selection pressure was seen to have a similar effect in the low throughput 

regime. Tables 6 and 7 show the best fitnesses achieved on various NK-

landscapes with and without the use of the crossover operator and with 

varying selection pressure. The following observations may be made: 
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• As the ruggedness of the landscape increases there seems to be a 

slight decrease in the optimum selection pressure. However, a 

selection pressure of about 40, i.e. a (μ,�) algorithm with μ = 3 and 

�=120, performs well across a wide range of landscapes. 

• For smoother landscapes (K up to approximately 6), crossover appears 

to play a useful role. For more rugged landscapes the mutation only 

algorithm performs better. 

 

Tables 8 and 9 show the optimum mutation rates for each algorithm. It is clear 

that the optimum mutation rate increases with selection pressure. However, 

when the optimal selection pressure is present, i.e. (μ,�) = (3,120), a mutation 

rate of 2/L gives good results across a range of landscapes both with and 

without the use of crossover. 

 

Again ANOVA tests indicated that the mutation rates and presence/absence 

of crossover had a statistically significant effect (p-value < 0.05) on the mean 

fitness achieved on each landscape. 

4.3 Stepwise algorithm 
The best fitnesses achieved with a stepwise approach are given in Table 10. 

Figure 5 shows the variation in best fitness for stepwise and a variety of 

evolutionary methods. In order to make comparisons across different 

landscapes, all fitnesses f have been normalised to fnorm using equation (1), in 

which f(GA,1N) and f(GA,100N) are the average fitnesses achieved using 

standard GAs with screen sizes of, respectively, 1N and 100N. 
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This technique has been borrowed from a paper by Fox introducing ProSAR 

(Fox et al. 2003) and facilitates comparison with the results reported in that 

paper. In figure 5, the reader’s attention is drawn to the results using screen 

sizes of 3N. It is clear that the stepwise method performs better than a 

standard GA with this size for relatively smooth landscapes (K �6). However, 

for K=7 the performance of the standard GA is similar to that of the stepwise 

algorithm and for higher K the GA has superior performance. 

 

The (μ,�) GA, applied with crossover and the optimum selection pressure of 

(3,120) also gives much better performance than the standard GA. However, 

this increase in performance is seen to carry over to more rugged landscapes. 

Even when K=10, this algorithm performs better than a standard GA with 10 

times the screen size (30N rather than 3N), whereas the stepwise algorithm 

performs much worse than a standard GA with a screen size of N. 

4.4 Hitting Times 
The results have been presented so far as mean fitness levels achieved within 

a fixed number of generations. This gives an indication of the expected 

improvement in outcome for a fixed experimental set-up. An alternative 

approach is to measure the amount of experimental effort required to reach a 

target fitness value. The results are provided here for a selected problem in 

order to illustrate the savings possible through good parameter choice. They 

are presented as ‘hitting times’, the number of generations required to achieve 

the target fitness. 
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A landscape of medium ruggedness (N=40, K=5) was selected and 4 different 

algorithms were applied: a standard GA, a (μ,�) GA with modest selection 

pressure (μ=12), a (μ,�) GA with strong selection pressure ((μ=3) and a 

stepwise algorithm. All GAs used crossover. The target fitness was the mean 

fitness achieved by the standard GA (0.6942). 100 runs were performed using 

each algorithm. 

 

When using the standard algorithm, 55 runs achieved the target and the 

average hitting time was 8.13 generations. Weak (μ,�) selection pressure 

increased the number of successful runs to 86 and reduced the hitting time to 

6.49. Strong selection pressure gave 90 successful runs, with an average 

hitting time of 5.66. It is clear that the application of appropriate selection 

pressure can considerably reduce the experimental outlay required to achieve 

satisfactory results. The stepwise algorithm had less impact on hitting times, 

yielding 69 successful runs, with an average hitting time of 8.31 generations. 

5 Discussion 
The primary aim of this study has been to identify effective DE experimental 

parameters through the use of in silico simulations. Our results show that 

experimental design is of crucial importance, with some methods giving much 

faster evolution than others. To summarise our findings: 

• Strong selection pressure, implemented via filtering of the ‘parents’ 

allowed to reproduce, increases the chances of finding beneficial 

mutants greatly. 
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• However, it is possible to apply too much selection pressure: many DE 

experiments use just one parent in each generation, but it appears to 

be most effective to select 3 parents in the low-throughput regime and 

approximately 40, (equivalent to 1 in 1000) in the high-throughput 

regime. 

• Moderately high mutation rates (above 1/L) are beneficial in the 

presence of strong selection pressure. A mutation rate of 2/L performs 

well across a wide range of landscapes. 

• The introduction of recombination makes the setting of an optimal 

mutation rate less critical. Recombination is beneficial for relatively 

smooth landscapes but may be detrimental for more rugged 

landscapes. 

• The stepwise algorithm gives a boost in performance similar to that of 

the (μ,�) algorithm for smooth landscapes (K�2). However, this 

advantage falls off rapidly as the ruggedness increases, with 

catastrophic consequences for the most rugged landscapes. 

• The pattern of results was very similar for the high-throughput and low-

throughput models. In particular, the use of high mutation rates (above 

1/L) was found to be beneficial in low-throughput as well as high-

throughput mode. 

• An illustrative experiment indicates that the experimental settings that 

produce sequences with the highest fitness are also likely to give the 

quickest results. This finding suggests that the lessons learnt from this 

study may be used to achieve a reduction in experimental costs as well 

as an improvement in screening efficiency. 
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These findings on NK landscapes could be used to guide the choice of 

parameters in DE experiments but we have yet to show that, in practice, these 

predictions are valid. It is our intention to do this, making use of on-chip 

technology (Knight et al. 2008), with which it would be possible to run a variety 

of GAs, like those used here, and compare their performance directly in 

raising an aptamer to a target ligand. 

 

As well as providing a guide to the experimental design of evolutionary 

methods, this study casts light on the debate between stepwise and fully 

evolutionary methods within DE. The primary distinction between these two 

methods is in the selection of mutants to be screened. This issue is of the 

utmost importance in DE. As Reetz has stated: 

 

Efficient directed evolution is not a matter of generating huge libraries that 

then require considerable efforts in screening for the desired property. The 

goal is to create a maximum in structural diversity while minimizing the size of 

the libraries. (Reetz 2004) 

 

The belief that the selection of mutants to be screened is crucial to the 

success of DE has been a driving force behind the development of model-

based methods. However, our investigations suggest that such methods may 

not be useful and may even be detrimental. Looked at from the opposite point 

of view they show the power and resilience of evolutionary methods. Of 

course, the poor performance of stepwise methods compared to evolutionary 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

methods does not show that all model-based approaches are flawed but the 

authors believe that it indicates a significant problem with certain types of 

modelling. There are two likely sources of the problems observed with the 

stepwise approach used here. The first is that it fixed amino acids at each 

iteration, without allowing backtracking. The absence of backtracking is likely 

to cause particular problems in the presence of epistasis. Epistasis results in 

local optima and a procedure that does not include backtracking is likely to 

become trapped on one of these optima (Liebeton et al. 2000; Reetz et al. 

2006). The second likely source of inaccuracies is the use of a linear model to 

approximate non-linear interactions. Again this will cause problems when the 

contributions of individual amino acids are non-additive. 

 

The presence of appropriate selection pressure has been shown to greatly 

enhance the evolutionary process. Stepwise methods also have strong 

selection pressure, since library mutants are guided towards the regions of the 

protein space which the model indicates are best. Evolutionary methods 

concentrate on promising areas of protein space in a similar way. However, 

the selection of mutants occurs via the selection of parent proteins rather than 

through the accumulation of ‘knowledge’. It seems likely that the presence of 

strong selection pressure is essential during DE, given the small number of 

iterations that are generally available (Bäck 1996). Whether evolutionary or 

model-based methods are superior depends upon whether this selection 

pressure is selecting the best areas on which to concentrate the search 

procedure. Our results show that fully evolutionary methods with strong 

selection pressure are robust, giving good performance across a range of 
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problem landscapes. The model-based approach used here appears to be 

more fragile, performing well for smooth landscapes but less well for medium 

and rugged landscapes. 

 

While we have shown that model-based approaches should be used with care 

within the evolutionary process itself, we believe that they have two useful 

roles. The first is in choosing sites to be targeted for mutation. The 

incorporation of computational methods into this choice has been shown to be 

beneficial (Wong et al. 2007). However, the implication of our results is that 

simultaneous mutations at multiple sites are likely to be more successful than 

stepwise mutations at individual sites. The second use of models is in trying to 

describe a protein landscape after it has been explored using evolutionary 

methods. 

 

6 Conclusions and Future Work 
We have shown that simulating the Directed Evolution process in silico can 

give clear answers to questions concerning preferred experimental design. 

Based on our simulations, the following tentative recommendations may be 

made: 

• Strong selection pressure is highly advantageous during Directed 

Evolution. However it is possible to have too much selection pressure: 

selecting a single parent at each generation is likely to be detrimental. 

• A high mutation rate – 2/L to 3/L – combines well with strong selection 

pressure. 
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• Recombination is valuable in the presence of low or medium epistasis 

but detrimental in highly epistatic protein landscapes (K�5). 

These conclusions seem to be quite general. The advantages of strong 

selection pressure and fairly high mutation rates have been shown to operate 

on landscapes with highly-varied levels of ruggedness, operating in either 

high-throughput or low-throughput mode. 

 

A model-based approach has been seen to perform poorly compared to an 

evolutionary approach on landscapes of medium and high ruggedness. It is 

likely that a different type of modelling, particularly one incorporating non-

linearities, could well perform better. However, fitting the type of model to the 

observed protein landscape may be non-trivial. The two main issues to be 

considered are the selection of the model to be used and the way in which 

selection of library mutants is performed. The model used here is linear in 

nature and is therefore likely to perform well only when the contributions of 

individual amino acids are roughly additive. The problem may have been 

exacerbated by the selection procedure, which fixed a number of bases at 

each iteration. We would not recommend the fixing of individual amino acids 

based on model predictions, since this is likely to lead to stagnation at a local 

optimum. 

 

While care needs to be taken when using a model to select a mutant library, 

there are two situations in which modelling is undoubtedly useful. The first is 

that where the mechanism of the target protein function is well understood. In 

this situation a model could introduce constraints that restrict the search 
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space to those proteins that are known to fulfil the desired function well. A 

strategy such as this could combine ‘rational’ design with evolutionary 

methods (Wong et al. 2007; Xiong et al. 2007). The second role for modelling 

is in improving our understanding of mechanism after performing Directed 

Evolution. At the end of a DE run, a large number of proteins will have been 

sequenced and an assessment made of their ability to perform some desired 

function. From this information it is possible to construct models that indicate 

reactive sites and epistatic links. This information could support particular 

mechanisms of action. 

 

In future work we intend to investigate the extent to which predictions for 

optimal experimental design settings derived from in silico investigations may 

be applied to in vitro experiments. We also intend to explore further the uses 

(and limitations) of mathematical models within two areas of the Directed 

Evolution process: library generation and post-evolution explanation. The 

focus of our attention is likely to be on non-linear modelling techniques such 

as Random Forests (Breiman 2001) and Genetic Programming (Koza 1992; 

Kell 2002). 
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Appendix: Algorithms used 
The mutation operator was applied to each protein using the following 

procedure: 
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1. Select a protein using tournament selection. 

2. Set current bit = 1. 

3. Generate a random number between 0.0 and 1.0. 

4. If the random number is greater than the mutation rate, ‘flip’ the current 

bit. 

5. Set current bit = current bit + 1. 

6. If current bit > bit length, exit, else go to 3. 

 

Uniform crossover was used. This operator used the following procedure: 

1. Select 2 parents using tournament selection. 

2. Set current bit = 1. 

3. Generate a random number between 0.0 and 1.0. 

4. If the random number is greater than 0.5 assign the offspring the bit at 

the current bit position from parent 1, else assign the corresponding bit 

from parent 2. 

5. Set current bit = current bit + 1. 

6. If current bit > bit length, exit, else go to 3. 

 

The standard GA had the following control parameters: 

Mutation rate =1/L 

Crossover rate = 0.6 

Selection method = 4-fold tournament 

It used the following procedure: 

1. Generate a population of p sequences randomly. 

2. Set generation_no = 1. 
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3. Set current_sequence = 1 and new_population to null. 

4. Select parent(s) from the population using 4-fold tournament selection 

5. Generate offspring from parents using crossover/mutation operators 

6. Add offspring to new_population. 

7. Set current_sequence = current_sequence+1 

8. If current_sequence � p go to 4. 

9. Set population = new_population 

10. generation_no = generation_no +1. 

11. If generation_no > 10, exit, else, go to 3. 

 

The (μ,�) algorithm used the following procedure: 

1. Generate a population of � sequences randomly. 

2. Set generation_no = 1. 

3. Select the best μ sequences from the current population as parents. 

4. Set current_sequence = 1 and new_population to null. 

5. Select parent(s) randomly. 

6. Generate offspring from parents using crossover/mutation operators 

7. Add offspring to new_population. 

8. Set current_sequence = current_sequence+1 

9. If current_sequence � � go to 5. 

10. Set population = new_population 

11. generation_no = generation_no +1. 

12. If generation_no > 10, exit, else, go to 3. 

 

The stepwise algorithm used the following procedure 
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1. Generate a population of � sequences randomly. 

2. Create a PLS model. 

3. Fix the 4 positions that have the highest PLS coefficients. 

4. If all positions are fixed, exit. 

5. Vary the unfixed positions randomly. 

6. Go to 2. 
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Table legends 
Table 1. Experimental parameters used during DE 
 
Table 2. Algorithms applied to the NK-landscapes 
 
Table 3. Best fitnesses and best mutation rates achieved with a standard GA (high 
throughput). Bold entries indicate whether the mutation-only or with-crossover algorithm is 
superior. GAs have a population of 40,000 and are run for 10 generations. ‘Random’ is the 
best fitness achieved from 400,000 randomly generated sequences. 
 
Table 4. Best fitnesses and best mutation rates achieved with a (μ,�) GA, with μ=4000 and 
�=40000. Bold entries indicate whether the mutation-only or with-crossover algorithm gives 
the higher mean fitness. 
 
Table 5. Best fitnesses and best mutation rates achieved with (μ,�) GAs with varying selection 
pressure (high throughput, K=5). Bold entries indicate whether the mutation-only or with-
crossover algorithm gives the higher mean fitness. 
 
Table 6. Best fitnesses achieved with standard and (μ,�) GAs with crossover (low throughput). 
Shading indicates the optimum selection pressure for each landscape. Bold entries indicate 
that crossover is advantageous. 
 
Table 7. Best fitnesses achieved with standard and (μ,�) GAs without crossover (low 
throughput) Shading indicates the optimum selection pressure for each landscape. Bold 
entries indicate that crossover is disadvantageous. 
 
Table 8. Best mutation rates for standard and (μ,�) GAs with crossover (low throughput) 
 
Table 9. Best mutation rates for standard and (μ,�) GAs without crossover (low throughput) 
 
Table 10. Best fitnesses achieved with the stepwise algorithm (low throughput) 
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Figure legends 
Figure 1. Best fitnesses achieved by a standard GA with crossover 
 
Figure 2. Best fitnesses achieved by a standard GA without crossover 
 
Figure 3. Best fitnesses achieved by a (μ,�) GA with crossover, with μ=4000 and �=40000 
 
Figure 4. Best fitnesses achieved by a (μ,�) GA without crossover, with μ=4000 and �=40000 
 
Figure 5. Normalised best fitnesses achieved by various GA algorithms and a stepwise 
algorithm (low throughput). All included GAs used crossover and the (μ,�) GA had μ=3 and 
�=120. Screen sizes are indicated in brackets, as a multiple of N, where N=40.  
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Table 1: 
 

reference screen 
size 

number 
selected 

number of 
generations 

mutation 
rate 

recombination 
used? 

(Chen and Arnold 
1993) 

~1300 1 3 unknown No 

(You and Arnold 
1994) 

~1000 1 7 unknown No 

(Moore and Arnold 
1996) 

1000-7500 1 4 1.5-4.5 No 

(Moore et al. 1997) ~1000 ~5 6 0.6 Yes 
(Reetz et al. 1997) ~2000 1 4 1-2 No 
(Zhang et al. 1997) 10000 20-40 7 ~1 Yes 
(Yano et al. 1998) 4000000 100 5 15 No 
(Oue et al. 1999) ~50000000 ~100 8  No 

(Zaccolo and 
Gherardi 1999) 

~40000 1 3 8.2-27.2 No 

(Zhao and Arnold 
1999) 

~5000 1-5 5 2-3 Yes 

(Daugherty et al. 
2000) 

~1000000 ~10000 4-5 1.7-22.5 No 

(Liebeton et al. 
2000) 

800 1 5 ~1 No 

(Reetz 2000) 2000 1 5 1, 2 No 
(Yano and 

Kagamiyama 2001) 
2000000-
6000000 

~200 50 ~4 Yes 

(Kaper et al. 2002) 2048  3 unknown Yes 
(Oh et al. 2002) ~10000 10 2 unknown Yes 

(Bessler et al. 2003) 7200 16 2 1 Yes 
(Bulter et al. 2003) ~2000 1-12 10  Yes 
(Ikebukuro et al. 

2005) 
10 5 7 1 Yes 

(Johannes et al. 
2005) 

~8000 1 3 1-2 No 

(Hayashi et al. 2006) 10 - 
1000000 

1 20 2.4 No 

(Piatesi et al. 2006) 10000000-
30000000 

unknown 4 <2, 2-4, 
>4 

No 

(Reetz et al. 2006) ~3000 1 6 2-3 No 
(Fox et al. 2007) ~14000 5-10 18 ~1 Yes 

 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Table 2: 
high throughput low throughput 

standard GA (population 40000) standard GA (population 120) 
GA with (μ,�) = (4000,40000) GA with (μ,�) = (12,120) 
GA with (μ,�) = (400,40000) GA with (μ,�) = (6,120) 
GA with (μ,�) = (40,40000) GA with (μ,�) = (3,120) 
GA with (μ,�) = (4,40000) GA with (μ,�) = (1,120) 
GA with (μ,�) = (2,40000)  
GA with (μ,�) = (1,40000) stepwise (population 120) 
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Table 3: 
mutation only with crossover 

K random best fitness best 
mutation rate best fitness 

best 
mutation 

rate 
0 0.5804 0.6234 4/L 0.6547 0.2/L 
2 0.6034 0.6655 3/L 0.6865 0.1/L 
5 0.6229 0.6785 2/L 0.6715 0.4/L 
7 0.6246 0.6795 1/L 0.6681 0.8/L 
10 0.6290 0.6798 1/L 0.6663 0.8/L 
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Table 4: 
mutation only with crossover 

K best fitness best mutation 
rate best fitness best mutation 

rate 
0 0.6394 4/L 0.6670 0.1/L 
2 0.6904 3/L 0.7188 0.1/L 
5 0.7063 2/L 0.7080 0.8/L 
7 0.7072 2/L 0.7053 1/L 

10 0.7050 1/L 0.7006 0.8/L 
 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Table 5: 
mutation only with crossover 

 (μ,�) best fitness best mutation 
rate best fitness best mutation 

rate 
(4000,40000) 0.7063 2/L 0.7080 0.8/L 
(400,40000) 0.7464 3/L 0.7478 2/L 
(40,40000) 0.7490 4/L 0.7495 4/L 
(4,40000) 0.7494 3/L 0.7488 3/L 
(2,40000) 0.7426 4/L 0.7434 3/L 
(1,40000) 0.7457 4/L   
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Table 6: 
K standard GA (12,120) (6,120) (3,120) (2,120) 
0 0.6482 0.6680 0.6686 0.6686 0.6671 
1 0.6744 0.7040 0.7052 0.7053 0.6996 
2 0.6875 0.7270 0.7286 0.7308 0.7178 
3 0.6928 0.7329 0.7376 0.7355 0.7287 
4 0.6981 0.7341 0.7397 0.7374 0.7303 
5 0.6984 0.7370 0.7350 0.7382 0.7313 
6 0.6962 0.7305 0.7337 0.7323 0.7231 
7 0.6935 0.7248 0.7259 0.7269 0.7189 
8 0.6944 0.7172 0.7201 0.7225 0.7148 
9 0.6904 0.7170 0.7156 0.7178 0.7092 
10 0.6874 0.7112 0.7136 0.7135 0.7071 
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Table 7: 
K standard GA (12,120) (6,120) (3,120) (2,120) (1,120) 
0 0.6392 0.6613 0.6657 0.6672 0.6659 0.7000 
1 0.6659 0.6972 0.7019 0.7038 0.6978 0.6987 
2 0.6791 0.7174 0.7240 0.7266 0.7177 0.7162 
3 0.6853 0.7272 0.7351 0.7364 0.7256 0.7227 
4 0.6901 0.7319 0.7374 0.73492 0.7296 0.7264 
5 0.6911 0.7299 0.7355 0.7337 0.7267 0.7260 
6 0.6968 0.7263 0.7280 0.7300 0.7232 0.7231 
7 0.6902 0.7218 0.7272 0.7252 0.7180 0.7157 
8 0.6872 0.7187 0.7200 0.7227 0.7150 0.7169 
9 0.6890 0.7147 0.7179 0.7170 0.7119 0.7094 
10 0.6862 0.7089 0.7139 0.7152 0.7085 0.7039 
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Table 8: 
K standard GA (12,120) (6,120) (3,120) (2,120) 
0 2 0.6 1 1 2 
1 2 0.8 2 3 2 
2 1 1 2 1 2 
3 0.8 2 2 1 2 
4 0.8 0.8 2 2 3 
5 0.6 1 2 2 3 
6 0.8 1 2 2 2 
7 0.8 2 2 2 2 
8 0.6 2 2 2 3 
9 0.6 1 1 3 3 
10 0.6 1 2 1 2 
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Table 9: 
K standard GA (12,120) (6,120) (3,120) (2,120) (1,120) 
0 2 2 2 2 2 2 
1 2 2 2 2 3 3 
2 2 2 2 3 3 3 
3 2 2 2 2 2 2 
4 2 2 2 2 3 3 
5 1 2 2 1 2 3 
6 1 2 2 2 2 3 
7 1 1 2 2 2 3 
8 1 2 2 3 3 2 
9 1 2 2 2 3 3 
10 1 0.8 2 2 2 3 
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Table 10: 
K best fitness 
0 0.6688 
1 0.706776 
2 0.727978 
3 0.72855 
4 0.723386 
5 0.716273 
6 0.708067 
7 0.694728 
8 0.685902 
9 0.669519 

10 0.666328 
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