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Abstract 

In this paper we present a study of classification of the twenty Amino Acids via a fuzzy 

clustering technique. In order to calculate distances among the various elements we employ 

two different distance functions: the Minkowski distance function and the NTV metric. In the 

clustering procedure we take into account several physical properties of the Amino acids. We 

examine the effect of the number and nature of properties taken into account to the clustering 

procedure as a function of the degree of similarity and the distance function used. It turns out 

that one should use the properties that determine in the more important way the behaviour of 

the amino acids and that the use of the appropriate metric can help in defining the separation 

into groups. 

 

 Key words:  DNA, Amino acids, Protein, Fuzzy clustering. 
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Introduction 
 

The genetic code is formed by strings of four letters (nucleic acids): A (adenosine), T 

(thymidine), C (cytidine), and G (guanosine). A string of three nucleic acids is an amino acid 

(or codon). Given that we have 4 letters with the possibility of being at  3 positions of the 

codon this results in 64 possible combinations and thus 64 possible amino acids (See the 

table, for example, in http://psyche.uthct.edu/shaun/SBlack/geneticd.html, Freeland and Hurst 

1998). Three of these possible codons specify the termination of the polypeptide chain and 

thus they are called "stop codons". That leaves 61 codons to specify only 20 different amino 

acids (see Appendix A). The genetic code is degenerate in the sense that an amino acid can be 

represented by several triplets of nucleotides. For example, CAT is the amino acid Histidine 

(H), but CAC is also Histidine. Every triplet indicates a specific amino acid. A simple fuzzy 

cluster analysis of amino acids has been introduced by Mocz (Mocz 1995) to recognize 

secondary structure in proteins. 

One can calculate the biological distance among the 20 amino acids according to their 

classification results. This is because ever since the concept of pseudo amino acid 

composition was proposed by Chou (Chou 2001), many efforts have been made trying to use 

various digital numbers to represent the 20 native amino acids in order to better reflect the 

sequence-order effects through the vehicle of pseudo amino acid composition (PseAA). In an 

earlier paper (Chou 2000), the physicochemical distance among the 20 amino acids 

(Schnieder and Wrede 1994) was adopted to define PseAA. Subsequently, some investigators 

used complexity measure factor (Xiao et al 2005), some used the values derived from the 

cellular automata (Xiao et al. 2005b, 2005c, 2006, 2006b), some used hydrophobic and/or 

hydrophilic values (Chou 2005, Chou et al 2005, Feng 2002, Wang et al 2006, Wang et al 

2004, Gao et al 2005, Chen et al 2006, Mondal et al 2006), and some were through Fourier 
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transform (Guo et al 2006, Liu et al 2005). In view of this, the author’s finding might have a 

series of impacts to the aforementioned work.  

The pseudo amino acid composition was originally introduced to improve the prediction 

quality for protein subcellular localization and membrane protein type (Chou 2001), as well 

as for enzyme functional class (Chou 2005). The pseudo amino acid composition can be used 

to represent a protein sequence with a discrete model yet without completely losing its 

sequence-order information (Chou and Shen 2007a), and hence is particularly useful for 

analyzing a large amount of complicated protein sequences by means of the taxonomic 

approach.  Actually, it has been widely used to study various protein attributes, such as 

protein structural class (Chen et al 2006a , Chen et al 2006b , Xiao et al. 2006a , Lin and Li 

2007a , Ding 2007), protein subcellular localization (Chen and Shen 2008, Chou and Shen 

2007a, Shen and Chou 2007a, Chou and Shen 2007b), protein subnuclear localization (Shen 

and Chou 2005, Mundra et al 2007) protein submitochondria localization (Du and Li 2006), 

protein oligomer type (Chou and Cai 2003), conotoxin superfamily classification (Mondal et 

al 2006,Lin and Li 2007b) membrane protein type (Liu et al 2005, Shen and Chou 2005, 

Wang et al 2006, Shen et al 2006, Chou and Shen 2007b0 apoptosis protein subcellular 

localization (Chen and Li 2007a, Chen and Li 2007b) enzyme functional classification (Chou 

2005, Chou an Cai 2004, Zhou et al 2007, Shen and Chou 2007b) protein fold pattern (Shen 

and Chou 2006), and signal peptide [(Chou and Shen 2007c, Shen and Chou 2007 c).  

Recent research works on the extension of these kind of parameters in the form of 

Markov Chain invariants of 2D graph or networks representation of aminoacid, DNA, and 

RNA sequences to codify psuedo-aminoacid and pseudo-nucleotide bases composition 

(Agüero-Chapín et al. 2008, González-Díaz et al 2007a,González-Díaz et al 2007b, Agüero-

Chapin et al 2006). The reader can also consult some recent reviews which made a discussion 

of many of these previous results (González-Díaz et al 2008, González-Díaz et al 2007). 
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There are several methods that are used in order to extract characteristics of genomes and 

one of them is trying to find some common characteristics along its constituents. A method 

that can serve in this direction is the clustering procedure and more specifically fuzzy 

clustering. The fuzzy methods have the advantage to incorporate the uncertainties that exists 

for the data in the model (Torres and Nieto 2006). There are several methods of fuzzy 

clustering. Two of the most often employed methods are:  

a) The fuzzy c-means algorithm (Bezdek 1981), which needs an a priori definition of the 

number of classes (called clusters) and its final result critically depends on this choice. 

b) The fuzzy equivalence relation-based hierarchical clustering method (see, for example, 

Samaras et al. 2001, Klir and Yuan 1995) which avoids any a priori assumption on the 

number of classes. This is an immediate advantage whenever we want to extract unbiased 

results reflecting the structure of a given data set. 

In the present work we employ the second method since we did not want to impose any a 

priori choice on the clustering of the amino acids. 

When performing clustering, the elements that are to be classified are considered as 

points in a finite dimensional space where the axis correspond to the properties that we take 

into account in the clustering procedure. How similar are two elements is based on their 

“distance” in this space thus an important parameter is the metric used in order to calculate 

distances between the elements. There are several definition of metrics (Engelking 1977) and 

use of distances (Chou 1995, Chou and Zhang 1994, 1995), subcellular location (Chou and 

Elrod 1999, Chou 2000b), membrane protein type (Chou et al 2005,  Chou and Elrod 1999b), 

enzyme family class (Chou and Elrod 2003, Chou and Cai 2004), GPCR type (Chou and 

Elrod 2002, Chou 2005b), protein-protein interaction (Chou and Cai 2006), metabolic 

pathways (Chou et al 2006),  among many other protein attributes. 
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In the present paper we employ two metrics: 

1) the Minkowski distance function employed in several clustering works (see, for 

example, Samaras et al. 2001, Karakasidis and Georgiou 2004), and 

2) the NTV distance function introduced by Nieto et al.  (Nieto et al. 2003, Dress  and  

Lokot  2003) and employed in fuzzy properties of polynucleotides (Georgiou et al. preprint;  

Nieto et al 2006; Torres and Nieto 2003). 

In the present paper we perform a clustering analysis of the twenty amino acids based on 

several physical properties: number of codons that code the protein, molecular weight, 

hydrophobicity, the number of atoms of different type and the corresponding number of 

protons as well as the number of total protons and we examine the influence of the properties 

on the classification procedure as well as the effect of the metric employed in the clustering 

procedure. There are many properties that can be employed in the clustering procedure. The 

reader can consult the AAindex database (Kawashima et al. 1999, Kawashima and Kanehisa 

2000) and motivate selection of the considered properties.  The obtained results may have 

potential for stimulating the development of predicting subcellular location of proteins and 

their other attributes, currently a very hot topic in bioinformatics and proteomics.  

These clusters may help to explain the origin and emergence of the alphabet of amino 

acids encoded by the standard genetic code. Recently, Stepehn and Freeland (2008) have 

presented the first quantitative exploration of nature’s "choices" set against various models 

for plausible alternatives with the help of computational chemistry. It is clear, that fuzzy 

technology, fuzzy clustering (Torres and Nieto 2006) and fuzzy cognitive maps (Stephen and 

Freeland 2008), will be useful in the protein content prediction methods and the prediction of 

protein structural classes (Zhang et al 2008).  

The structure of the paper is as follows: First we present notions about fuzzy clustering 

using the fuzzy equivalence relation-based hierarchical clustering method. Then we present 
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clustering results as function of the degree of similarity and the number of physical properties 

taken into account in two cases : a) using the Minkowski distance function and b) using the 

NTV distance function. Finally we give the conclusions of the present work. 

 
 

Fuzzy Clustering Preliminaries 

In what follows by R we denote a fuzzy relation on a set X (see, for example, Bardossy 

and Duckstein 1995; Terano et al. 1992; Zimmermann 1991), that is, a fuzzy set in the direct 

product  ( ){ }XyxyxXX ∈=× ,:,  which is characterized by the membership function: 

[ ]1,0: →× XXRμ . 

Also by ℜ  we denote the set of all real numbers and by +ℜ  the set of all positive real 

numbers. 

Let { }nxxxX ,,, 21 �=  be a finite set. A fuzzy relation R in XX ×  can be expressed by a n x 

n matrix as following: 

( ) ( ) ( )
( ) ( ) ( )
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A fuzzy relation R on X is: 

(1) reflexive if ( ) 1, =xxRμ  for all  Xx ∈ , 

(2) symmetric if ( ) ( )xyyx RR ,, μμ =  for all Xyx ∈, , and 

(3) max-min transitive if 

( ) ( ) ( ){ }{ }Xyzyyxzx RRR ∈≥ :,,,minsup, μμμ   

A fuzzy  relation with the above properties is called fuzzy similarity relation or fuzzy 

equivalence relation. 
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A fuzzy relation on X that is reflexive and symmetric is usually called a compatibility 

relation. 

The max-min transitive closure of a fuzzy relation R on X  is defined as the smallest 

max-min fuzzy transitive relation containing R . 

It is known that (see, for example, Hashimoto  1983) if R is a fuzzy compatibility relation 

on a finite set { }nxxX ,,1 �=   then the max-min transitive closure TR  is the relation 

RRR n ���=− )1(  i.e., relation R composed with itself (n-1) times. 

We note that if  R  and S are two fuzzy relations on X the composition is characterized 

by the membership function: 

( ) ( ) ( ){ }{ }Xyzyyxzx SRSR ∈≥ :,,,minsup, μμμ �  

To illustrate the clustering method based on fuzzy equivalence relations (see, for 

example, Samaras et al. 2001, Klir and Yuan 1995), we consider a data set: 

{ }nxxX ,,1 �=   where { } m
imiii xxxx ℜ∈= ,, 21 �  and i=1,2,...,n. 

Then we proceed with the following three  steps: 

1. We define a fuzzy relation R on X  using the distance function of  Minkowski, via the 

membership function: 

( )
d

xx
xx

qm

j

q
kjij

kiR

1

11,
��
�

�
��
�

�
−

−=
�

=μ  

for all ( ) XXxx ki ×∈, , where +ℜ∈q  and 

	


	
�

�

	

	
�

�
=��

�

�
��
�

�
−= �

=

nkixxd
qm

j

q
kjij ,,2,1,:max

1

1

�  

Clearly R is a fuzzy compatibility relation but not necessarily a fuzzy equivalence relation  

(Klir and Yuan 1995).  
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Remark. Also we use (see the section entitled Fuzzy clustering using the NTV distance 

function) the distance function of  NTV (Nieto et al. 2003; Dress et al. 2004; Dress  and  

Lokot  2003) via the membership function: 

( )
{ }�

�

=

=

−

−
−= m

j
kjij

m

j
kjij

kiR

xx

xx
xx

1

1

max
1,μ  

for all ( ) XXxx ki ×∈,  and where ( ) m
ki xx ℜ∈≠ 0,,0,0, � . 

2. We  find the max-min transitive closure TR  

3. For every [ ]1,0∈a  called  the degree of similarity, we define a new  fuzzy matrix a
TR  as 

follows 

 

( )
( )
( )	

	
�
�

<
≥

= ayxif
ayxif

yx
T

T
a
T

R

R
R ,0

,1
, μ

μ
μ  

The intervals of a that determine the partitions are derived from the values of the matrix TR . 

In this way by the examination of the TR   matrix, we can determine the resulting partitions 

for all intervals of a-cuts. 

 

Results 

The clustering procedure is based on a number of physical properties of the amino acids that 

are presented in the Table1 of Appendix A. The columns c1 to c14 correspond to the 

properties of the amino acids. c1 contains the "Number of codons that code the protein", c2 

the "Molecular weight", (the use of the molecular weight in the clustering procedure is 

motivated by (Homaeian et al. 2007, Kedarisetti et al 2006). Column c3 the 

"Hydrophobicity". There are different hydrophobic indices (Kurgan et al 2007, Wolfenden 
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2007). Here we use the normalized  parameter for hydrophobicity of Table 2 in (Chechetkin 

2003).  It is of interest to note here work in (Kurgan et al. 2007) and applications of 

hydrophobic index to prediction of secondary structure content (Homaeian et al. 2007, Zhang 

et al. 2001, Lin and Pan 2001) and to prediction of structural classes (Kurgan and Chen 2007, 

Kedarisetti et al 2006). 

Columns c4 to c8 the "Number of atomes" of various type (H, C, N, O, S) and c9 to c13 the 

corresponding "Number of protons" for each type of atom (H, C, N, O, S). Finally the "Total 

number of protons" of all the atoms appears in c14.  

Of course there are several other properties that one could take into account in order to 

perform a clustering procedure however we should note that measures such as the aminoacid 

composition and hydrophobicity are employed in several methods of protein content 

prediction methods (Kurgan et al. 2007). Such properties also have been identified for their 

importance also by the work of Nakai et al. (1988).As is mentioned in (Kurgan et al 2007) 

and references there in hydrophobicity is not only one of the major structural forces but is 

also able to show periodicity of the secondary structure but can also show periodicity of the 

secondary structure. 

We used several scenarios in order to perform the clustering procedure. These are 

summarized in the following cases: 

Case 1 : All physical properties of Table in the Appendix B are employed (columns 1 to 14 of 

the Table are used). 

Case 2 : All physical properties of Table1 in the Appendix A are employed except the total 

number of protons (columns 1 to 13 of the Table are used). 

Case 3 : All physical properties of Table1 in the Appendix A are employed except the 

number of codons that code the protein (columns 2 to 14 of the Table are used). 
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Case 4 : All physical properties of Table1 in the Appendix A are employed except the 

number of codons that code the protein and the molecular weight (columns 3 to 14 of 

the Table are used). 

Case 5 : All physical properties of Table1 in the Appendix A are employed except the 

number of codons that code the protein, the molecular weight and hydrophobicity 

(columns 4 to 14 of the Table are used). 

First we present results concerning the clustering using the Minkowski distance function and 

then the results obtained using the NTV distance function 

 

Fuzzy clustering using the Minkowski distance function. 

We report in each case the values of m and n In all cases results are presented as function 

of the degree of similarity a. Amino acids that are in the same group appear within the same 

box. 

 

Case 1 (n=20, m=14) 

Results of the partitions as a function of the degree of similarity appear in Figure1. For 

a=0.60, 0.75 and 0.80 we obtain only one group of Amino Acids, which means that for these 

degree of similarity all amino acids appear similar to each other. For higher a values (a=0.83) 

only Trp appears different from all others and thus separated. We believe that this is due to its 

molecular weight and its total number of protons which are the largest among all amino acids. 

For a=0.85 further separation occurs. Here again we observe that the elements that are not 

part of the largest group of amino acids are the ones  with the largest molecular weight as 

well as those with the largest number of total protons (although in fact these properties are 

related). Increasing the value of a (a=0.87 ) results in further separation. We can see again 

that the elements that are not part of the largest group are the ones  with the largest molecular 
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weight and the largest number of  protons. Phe and Tyr have similar atomic weights and the 

same number of codons while Arg, which has similar atomic weight but different number of 

codons, is separated. For a=0.90 we have more separation. We comment here that Asp and 

Asn have the same number of total protons. lle and Leu which are practically the same apart 

the number of codons so they are in the same group. Glu, His, Lys, Gln present quite similar 

molecular weights and number of codons and thus they are part of the same group. Finally for 

a=0.95 only lle and Leu, which are practically the same apart the number of codons, are in the 

same group. The rest of amino acids are separated apart. Such behaviour is expected since at 

such high values of a elements are expected to appear different from each other. 

 

Case 2 (n=20, m=13) 

Results are summarized in Figure 2. For a=0.60, 0.75 we obtain only one group of Amino 

Acids like in case 1 where we included the total number of protons in the clustering 

procedure. For a=0.80 only Trp appears separated from all other amino acids. We remind 

here that Trp corresponds to the largest molecular weight and number of total protons. 

Compared to case 1 we see that the separation in partitions starts at smaller values of the 

degree of similarity. Increasing a (a =0.83) we obtain further separation of Amino Acids. 

Again we observe, compared to case 1, that separation in partitions starts at smaller values of 

the degrees of similarity. For higher values (a=0.85, 0.87 and 0.90) we observe that 

increasing a results in increasing separation with slight differences compared to case 1 for the 

same a values. In fact separation starts at lower a values. Finally for a=0.95 we have similar 

behavior to case 1. In this case we can say that separation in the partitions starts at smaller 

values of similarity degree but we do not have significant differences in the tendency of 

group splitting with case 1 where we took into account the total number of protons. 
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 Case 3 (n=20, m=13) 

Results are summarized in Figure 3. For  a=0.60, 0.75 and 0.80 we obtain a trivial 

partition of the elements of Amino Acids in one group. The behavior is similar to that of case 

1 (it seems that the number of codons that code the protein does not result in any difference). 

For  a=0.83, 0.85 and 0.87 we observe similar behavior like in case 1 indicating that 

taking into account the number of codons that code the protein does not result in any 

difference. Only for a=0.90 we observe slight differences with case 1. For  a=0.95 we obtain 

the same behaviour ike in the previous cases 1 and 2 as expected. 

Concluding, we could say that if we omit the number of codons that code the protein in 

the clustering procedure we do not obtain any significant difference in the obtained partitions 

from the previous cases. 

 

 Case 4 (n=20, m=12) 

Results are summarized in Figure 4. For  a=0.60 and 0.75 we obtain only one group of 

Amino Acids: The behavior is similar to that of cases 1, 2 and 3 in the sense that for the 

lowest values amino acids appear to be similar. For higher a values (a =0.80 0.83, 0.85, 0.87) 

we have further separation and we observe differences from cases 1 and 2 and 3. It seems that 

when we neglect the molecular weight the separation in groups starts for smaller values of the 

similarity degree. For a=0.90 and 0.95 we obtain the same behaviour that we have seen for a 

=0.95 in all cases with only the lle Leu being in the same group and all other Amino Acids 

separated. 

To conclude we could say that if we neglect the number of codons that code the protein 

and the molecular weight, we observe slight differences with the cases where these properties 

are taken into account. However the global tendency of separation into groups of Amino 
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Acids seems to be the same and the separation occurs at lower values of the degree of 

similarity. 

 

Case 5 (n=20, m=11) 

In fact in this case we take into account only "electronic properties" of the Amino Acids 

like the number of atoms and their protons. Results are summarized in Figure 5 where we can 

see that there is no difference with the previous case 4 where we took into account 

hydrophobicity. We can also say in comparison with case 4 that when we perform the 

clustering procedure using the number of different kind of atoms and their corresponding 

number of protons, adding hydrophobicity does not make any difference in the results. 

 

Summarizing the obtained results it seems that when one has to perform a clustering 

procedure involving the amino acids the number of properties that must be taken into account 

may be limited to properties that are related to “electronic properties” like the number of the 

different types of atoms in the aminoacid and the corresponding protons and neglect other 

properties that are the simple outcome of the given configuration of atoms like the atomic 

weight and the total number of atoms. From a physical point of view it is these properties that 

determine the behaviour of the amicoacids. 
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Figure1. Clustering results as a function of the degree of similarity for the case1 with the 

Minkowski distance function  

 

 

Figure2. Clustering results as a function of the degree of similarity for the case2 with the 

Minkowski distance function  
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Figure3. Clustering results as a function of the degree of similarity for the case3 with the 

Minkowski distance function  

 

 

Figure4. Clustering results as a function of the degree of similarity for the case4 with the 

Minkowski distance function  
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Figure5. Clustering results as a function of the degree of similarity for the case5 with the 

Minkowski distance function  

 

 

Fuzzy clustering using the NTV distance function. 

Case 1 (n=20, m=14) 

Results are summarized in figure 6. For a=0.60, we have no discrimination for   the elements 

of Amino Acids: We have similar behavior like in case 1 of the previous section. Increasing a 

(a=0.75) we obtain further separation. Compared to figure 1 we observe that we have 

separation of the amino acids and this is different than in case 1 of Minkowski distance 

function since the separated elements present molecular weights which are among the lowest 

ones and not among the highest ones like in case 1 of the previous section. For higher values 

of the degree of similarity (a=0.80, 0.83, 0.85, 0.87) we obtain more classes than in case 1 of 

Minkowski distance function. For a=0.90 and 0.95 we obtain the same partition as foir 

a=0.95 in the case 1 wit the Minkowski distance function. 

Concluding we observe a different behavior than in case of Minkowski distance 

function since the separation in groups starts at smaller values of similarity degree and it 

follows a different tendency. 
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Case 2 ( n=20, m=13 ) 

Results are summarized in figure 7. We observe a different behavior from case 1 when we 

neglect the total number of protons. In fact for a=0.60 and 0.75 we obtain the trivial partition 

of the elements of Amino Acids. Increasing a results in further separation with differences 

compared to case1 of this section (NTV metric too). Only at a =0.95 we have the same results 

with the lle and Leu amino acids appearing in the same group and all other amino acids being 

separated. 

It is of interest, compared to case 2 using the Minkoski distance function (Figure 2), that 

we have exactly the same behaviour. 

 

Case 3 ( n=20, m=13) 

Results are summarized in figure 8. For a=0.60, we have the trivial partition of the 

elements of Amino Acids in only one group, like in all cases. For a=0.75 we see differences 

from cases 1 and 2. For higher values we have similar behaviour like in case 1. Globally 

speaking neglecting the number of codons that code the protein does not lead to significant 

differences. 

Comparing to case 3 with the Minkowski distance the exact separation presents 

differences. However the global behavior is in qualitative agreement with the tendency 

observed in this case. 

 

 Case 4 (n=20, m=12) 

Results for this case are summarized in Figure 9. For a=0.60 we obtain the following 

separation of Amino Acids. We have a different behavior than the one observed in case 3. 
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Increasing a (a=0.75)  we obtain further separation with more groups than in case 3 and 

the behavior is different. The same behaviour occurs for a=0.80, 0.83, and 0.85 where we 

have a different behavior than the one observed in case 3. For a=0.95  we obtain the usual 

separation observed in all cases with the Minkowski or the NTV distance function.  

In short, we can say that we have differences since separation starts at lower values of 

degree of similarity when neglecting molecular weight in the clustering procedure. Compared 

to the results of case 4 with the Minkowski distance function we observe that separation starts 

for lower values of the similarity degree. 

 

 Case 5 (n=20,   m=11) 

In fact in this case we take into account only "electronic properties" of the Amino acids 

like the number of atoms and their protons. Results are the same as in Figure 5 where we can 

see that there is no difference with the previous case where we took into account 

hydrophobicity. 

Concluding we can say that when performing the clustering procedure  using the number 

of different kind of atoms and their corresponding number of protons  adding hydrophobicity 

in the procedure does not make any significant difference to the obtained partitions. This 

behavior is in qualitative agreement with that obtained in case 5 of the previous section   

(Minkowski distance function). Quantitatively we observe a difference since compared to the 

results based on Minkowski distance, separations in the NTV case starts at smaller values of 

degree of similarity. 

Summarizing again the obtained results like in the case of the Minkowski metric we see 

that it is again the “electronic properties” that determine the basics of the partition since from 

a physical point of view it is these properties that determine the behaviour of the amicoacids. 

The fact that amino acids Ile and Leu are partioned always in the same group even is due to 
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the fact that they have nearly the same properties. This could indicate that further properties 

should be included in the analysis. 

As far as the comparison of the two metrics used it turns out that in the case of the NTV 

metric although the results for high values of the similarity degree a are the same with that of 

the Minkowski metric, for lower a values the distinction of several groups starts earlier in the 

case of the NTV metric than in the case of Minkowski metric. This may be due to the fact 

that in the case of NTV metric the form of the membership function maximizes the effects of 

the difference between two amino acids. This is an important result that should be taken into 

account in clustering analysis of aminoacids but not only. 
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Figure 6. Clustering results as a function of the degree of similarity for the case1 with the 

NTV distance function  

 

Figure 7. Clustering results as a function of the degree of similarity for the case2 with the 

NTV distance function  
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Figure 8. Clustering results as a function of the degree of similarity for the case3 with the 

NTV distance function  

 

 

Figure 9. Clustering results as a function of the degree of similarity for the case4 with the 

NTV distance function  
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Conclusions 

In the present work we perform a clustering analysis of the twenty Amino Acids using the 

fuzzy equivalence relation-based hierarchical clustering method. We examined the influence 

of using different distance function definitions by applying the Minkowski distance function 

and the NTV function. The effect of the number and nature of properties of the amino acids 

taken into account in the clustering procedure is also examined. 

It turns out that in the case of NTV definition separation in partitions starts for smaller 

values of the degree of similarity than in the case of the Minkowski distance definition. This 

is due to the fact that due to its definition maximizes the possible differences on properties of 

the studied aminoacids. It seems that the main role in the partitioning comes from the number 

of atoms and their contribution to the number of protons. Adding hydrophobicity does not 

change results. We observe slight differences when we include the molecular weight and no 

difference when we add the number of codons that code the protein. This behavior is 

probably due to the fact that all additional properties (apart the number of different kind of 

atoms and their corresponding protons) are related to the number of atoms and the 

corresponding number of protons. Thus we could think that the number of atoms and the 

corresponding number of protons may be considered as the basic properties for comparing 

amino acids. 

These indications show could be very useful in the taxonomy of larger sequences 

occurring in biological system since they indicate that one can use a minimum of information 

to perform the clustering, especially when one has to deal with a large amount of data and on 

the other hand they indicate that the proper choice of metric can lead to more clear 

separations of the data. It would be of interest in a future work to take into account more 

properties or examine the effect of use of a hydrophobicity scale instead of hydrophobicity 

index since recent work (Kurgan et al 2007) has shown that secondary structure content along 
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the protein sequence is characterized by about 2.5 times stronger relation with the two 

proposed hydrophobicity scales when compared with the currently used raw index values. 
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