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General proof of the validity of a new tensor equation of plant growth 1 2
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Plant cell/organ growth may be partly described by a local tensor equation.

14

We provide a mathematical proof that the Lockhart (global) equation is the diagonal 15 component of this tensor equation.

Introduction Lockhart (1965) proposed a simple -first order time differential , 1985;Boyer and Silk, 2004). None of these, however, was able to , 1997;Silk andErickson, 1978, 1979). A local equation for anisotropic 12 Here, we show that this approach is mathematically appropriate. where V 0 can be interpreted as a volume for the initial time V 0 =V(t=t 0 ). coordinate -independent model, there is the problem that this simplistic approach is
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A c c e p t e d m a n u s c r i p t

unable to report on growth effects caused by a unidirectional stimulus, like the action 1 of (collimated) light, gravitational field or external pressure (force). In practice, there 2 is a need for a growth equation, like the Eq. ( 2), that includes a local coordinate homogeneity. Based on our recent experience, we hope that further use of Eq. ( 2)

12
will give more insight into biological processes where the problem of unidirectional 13 stimulus is considered. We also believe that the derivation of an anisotropic form of 

  summarized as describing the relative growth rate dV/V (where V 22 denotes the cell volume) linear dependence on hydrostatic pressure P in excess of 23 the yielding threshold Y. The proportionality coefficient Φ denotes the plastic 24 extensibility and in the most studies is treated as a constant (e.g. Cosgrove, 1986; 25 Proseus et al., 2000). The Lockhart equation describes the elongation of plant cells 26 during growth in a satisfactory fashion, providing that one takes into account only 27 water and osmotic relations and ignores any preferential growth directionality. In 28 elongation growth, as described by the Lockhart equation, the expanding volume V 29 (which is a global quantity) is coordinate -independent, and in reality fails to 30 accurately describe growth correctly because of course such growth must be treated 31 as coordinate -dependent (i.e. local). Any kind of tropism (like photo-or gravi-32 tropism), as direction -dependent phenomenon, requires tensor description, and the 33 Lockhart equation must be regarded as too simplistic.
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 34 Many papers have been written aiming to describe the problem of plant growth based 36 on the solution of a differential equation (e.g.Lockhart, 1965; Moltz and Boyer, 1978; 

  10 growth, based on (a) theory of visco-elasticity (see e.g. Atkin and Fox, 2005), and (b) 11 the Lockhart equation, has been proposed recently by Pietruszka and Lewicka, 2007.

Theory5 9 10

 9 Let us consider the time dependent spatial coordinate system (local) 15 equation, capable of describing anisotropic plant cell/organ growth in the form 16 where ξ is the displacement vector field describing cell deformation, x denotes the 17 Cartesian coordinates {x 1 , x 2 , x 3 } and the stress field G accounts for the internal equation, referring to many physiological phenomena, subsumes 21 the global (Lockhart) equation as a special limiting case. In fact, it turns out that the 22 Lockhart equation Eq. (1) is only the diagonal part of Eq. (2) providing that G ij 23 describes the stress tensor.24 25 To better demonstrate Eq. (2), we utilize (a) the definition of Lie derivative along the 26 displacement vector field ξ acting on the manifold M. (The volume form ω changes as 27 follows L ξ ω=(divξ)ω where L ξ is the Lie derivative along the displacement vector 28 field). We also make use of (b) Pascal's principle, that states that pressure applied to 29 a confined fluid at any point is transmitted undiminished through the fluid, in order to 30 fulfill the isotropy and homogeneity condition. Here we also assume that Φ, like in the By virtue of (b) we can put G=tr(G ij ), and utilize the properties of the Kronecker delta 6 function (δ ij ={1 if i=j and 0 if i≠j}). Since the divergence of the vector field ξ is given by 7 the derivative div(ξ)=∂ i ξ i then we may thus write 8 Because the divergence of the vector field ξ is related to the change of the volume by 11 the formula dV/V=div(ξ), we eventually obtain we see, if we substitute P-Y for G, this is exactly the Lockhart (global as 15 opposed to local) equation, we wanted to derive from Eq. (2). If G is homogeneous in 16 all space coordinates, then this equation has a general solution in the form 17 18

Conclusions

  Many experiments in plant physiology are subjected to the specific and 21 directional external perturbations. At the very core of the Lockhart equation, as 22

3

  system. The latter has been recently successfully applied to describe spatial 4 redistribution of auxin during phototropic response and the connection between light 5 perception and auxin protein carriers (PIN's) relocation (Pietruszka and Lewicka, 6 2007). Its applicability to the problems connected with the gravitropic response has 7 also been shown (Lewicka and Pietruszka, 2007). Here we provide the fundamental 8 reasoning, that such an approach to the problems of anisotropic plant (cell/organ) 9 growth is plausible. We show explicitly that the tensor equation Eq. (2) reduces to the 10 well-known Lockhart equation by fulfilling the assumptions of isotropy and 11
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  Lockhart equation, that may be tied to a visco-elastic model of plant cell wall extensibility whose relevance to living plant cell behavior has recently been called 16 into question, may have some usefulness for those interested in modeling cell 17 volume growth.

  Poisson ratios of tissues and their role in determination of the stresses. J. Exp. Bot. Moltz F.J., Boyer J.S., 1978. Growth-induced water potentials in plant cells and 3 tissues. Plant Physiol. 62, 423-429 4 Ortega J.K.E., 1985. Augmented growth equation for cell wall expansion. Plant. Pietruszka M., Lewicka S., 2007. Anisotropic plant growth due to phototropism. J. Proseus T.E., Zhu Guo-Li, Boyer J.S., 2000 Turgor, temperature and the growth of 9 plant cells: using Chara corallina as a model system. J. Exp. Bot. 51, 1481-1494 10 Silk W.K., Erickson R.O., 1978. Kinematics of hypocotyl curvature. Am. J. Bot. 65, Silk W.K., Erickson R.O., 1979. Kinematics of plant growth. J. Theor. Biol. 76, 481-

	5	
	6	Physiol. 79, 318-320
	7	
	8	Math. Biol. 54, 45-55
	18 19 20 21 22 23 24 25 26 11 12 13 14	LITERATURE CITED Atkin R.J., Fox N. An introduction to the theory of elasticity. Dover Publ. Inc., New York, USA (2005) Boyer J.S., Silk W.K., 2004. Hydraulics of plant growth. Funct. Plant Biol. 31, 761-773 Cosgrove D.J., 1986. Biophysical control of plant cell growth. Annu. Rev. Plant. Physiol. 37, 377-405 Hejnowicz Z., Sievers A., 1995. Tissue stresses in organs of herbaceous plants i. A c c e p t e d m 310-319 a n u s c r i p t 501
	28	
	29	46, 1035-1043
	30	Hejnowicz Z., 1997. Graviresponses in herbs and trees: a major role for the
		redistribution of tissue and growth stresses. Planta 203, 136-146
	32	
		gravitropism. J. Math. Biol. 54, 91-100

27 31 Lewicka S., Pietruszka M., 2007. Anisotropic plant cell elongation due to ortho-5 Lockhart A., 1965. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 1 264-275 2