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Abstract 

 Transforming data sets to bring out expected model features can be valuable 

within limits and misleading outside them. Here we establish such limits for the widely 

used Gjedde-Patlak representation of dynamic PET data, with an application to hepatic 

encephalopathy. 

 
 
Introduction 

 A representation of data acquired in dynamic positron emission tomography 

(PET), introduced by Gjedde (1982) and extended by Patlak et al. (1983), has been 

widely used since. This Gjedde-Patlak (GP) representation, pertaining to a class of 

models exemplified below, lends itself to an illuminating graphical analysis of the 

transformed data. 

 In the simplest of the relevant models, a PET tracer introduced into plasma with a 

time-dependent activity c(t) enters tissue in a region of interest (ROI) with clearance K1. 

There it forms a pool of precursor with activity M1(t), which is metabolized irreversibly 

into the pool M2(t) with the rate constant k3, while also returning to plasma with the rate 

constant k2: 

 

                                                           (1) 

 

 

                                                                               (2) 

 

The initial conditions are 

 

                                                                      (3) 

 

at t = 0 when tracer injection begins. The pools M1(t) and M2(t) may represent more 

complicated processes (Bender et al., 2001). 

 The activity of the ROI observed by PET is  
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( ) 1321
1 MkkcK

dt
dM +−=

13
2 Mk

dt
dM =

( ) ( ) 000 21 == MM

( ) ( ) ( ) ( )tMtMtcVtM 210 ++=



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 
 3

 

where V0 is the vascular volume in the ROI. Plasma activity c(t) is usually sampled 

upstream of the organ of interest, but it is commonly taken to equal vascular activity 

throughout the ROI. Corrections to this convenient but unphysiological assumption have 

been developed (Munk et al., 2003), but they do not affect the present considerations.   

 The two observed quantities M(t) and c(t) are recorded typically for one hour. 

Nonlinear regression analysis of the resulting data aims at determining the kinetic 

constants V0, K1, k2, k3 in each ROI from (1) – (4). In contrast, by introducing the ratio 

M/c and a transformed time as new variables, the GP representation permits the 

determination of certain combinations of the kinetic parameters from a more robust 

linear regression involving M(t) only at late times. 

 In what follows we consider properties of the new variables and their effects on 

the data analysis. 

 
Time Reversal on Plasma Upslope 

The GP-transformed time variable is 

 

                                                                            (5)                              

 

 

for all positive t and c(t). Clearly, to each time t there corresponds just one value of �; but 

is the converse true? Multiplying (5) through with c, differentiating with respect to time 

and re-arranging, we find 

 

                                                                          (6) 

 
 

On the downslope of the plasma curve (negative dc/dt) we have positive d�/dt, so that � 

varies monotonically with t. But on the upslope there can occur temporary time-reversal, 

d�/dt negative, for sufficiently steep dc/dt, as we show by an explicit example. 

 Let the earliest upslope of plasma activity be given by 

 

                                                                                (7) 
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where b and � are positive constants. Substituting in (5) and integrating we find 

 

                                                                               (8) 

  
 

This � grows as ½ t for small �t, reaches a local maximum �max (0.319/α at 1.118/α 

approximately), and then declines as 1/(2α2t) (Fig. 1, solid line). As t increases, �(t) must 

pass through a minimum �min (dotted line in Fig. 1) in order to attain a positive slope 

which reaches d�/dt=1 at the time tp of the peak of plasma activity (dc/dt=0). Thus the 

transformed time � elapses in the opposite direction to t between �min and �max. We 

believe this to be the first time-reversal seen in the biosciences. 

 

 For any f(t) (such as M/c) 

 

 

                                                                    (9) 

 
so that, whenever d�/dt<0, a function rising (falling) with t is falling (rising) with �. To 

every � between �min and �max in Fig. 1 there correspond three values of t, each with its 

ordinate f(t). The GP representation thus transforms a monotonic f(t) into an S-shaped 

f(�), which is three-valued in the interval �min< �< �max. When f(t) stands for M(t)/c(t), it is 

apparent that the GP representation is not helpful on a steep plasma upslope. 

 Time-reversal is prevented by plasma activity rising sufficiently slowly. Thus, 

reducing � in the foregoing example so that 

 

                                                                                    (10) 

 

 

is sufficient to remove the domain of time-reversal in Fig. 1. This will be so for boluses 

that pass through the heart before reaching a brain ROI (Keiding et al., 2006), but may 

not be so when a 0.2 mL bolus is injected directly into the carotid artery (Phelps et al., 

1977). Data points on multiple-valued M(�)/c(�) seen in GP plots at early times would 

probably be attributed to experimental errors. 
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 Thus the inclusion of early data in GP plots requires injections which are 

sufficiently slow, as in (10). Rapid injections (e.g., intracarotid) succeed, without GP or 

related plots, at the exceptional extreme when the total amount of injected tracer that 

enters the ROI is present within the detector field of view at the instant at which the 

maximum count rate occurs (Raichle and Larson, 1981). 

     
 
Spurious Metabolism on Plasma Downslope 

The GP plot of M/c against � can have an asymptote at late times (Gjedde, 

1982): 

 

                                        (11) 

 

which holds under conditions outlined below. The widest use of the GP representation 

(11) is the determination of the metabolic clearance, the coefficient of �, (slope, K) and 

of the sum of the first two terms (intercept, V) by linear regression. This avoids the use of 

problematic early data, which must be included in non-linear regressions determining, 

from (1) – (4), all the kinetic parameters. 

 A non-metabolized diffusible PET tracer, such as (11C)methylglucose, has k3=0 

and M2=0, which reduces (11) to 

 

 

                                                              (12)               

 

This special case suffices to focus on the quasi-steady assumption underlying all GP 

asymptotics. In the domain of the asymptote, M1(t) must depend on time in the same 

way as c(t) (and approach zero in the same way) for M/c to tend to the constant in (12). 

On the other hand, substituting (12) in (1) we deduce that M1 is independent of time 

(dM1/dt=0). The use of � in place of t does not change these considerations on the 

downslope (Sect. 2). 

 To resolve this contradiction as simply as possible we represent c(t) 

asymptotically by a “final exponential” (Lassen and Sejrsen, 1971; Bass et al., 1984):  

-(dc/dt)/c = � = const., take the time-derivative of M1/c and use (1) with k3 = 0: 
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                (13) 

 

 

With M1(0)=0 from (3), integration of (13) gives 

 

                                                           (14) 

 

 

For k2 > � we find a horizontal asymptote with ordinate K1/(k2 -�) (Fig. 2, lowest line), 

which is more accurate than (12) but approaches it when � is small compared with k2. 

Here the inequality k2 > � ensures that c(t) falls slowly enough to match (and co-

determine) the efflux k2M1 by the influx K1c, whereby a quasi-steady state is maintained. 

This is the domain of validity of GP asymptotics. 

 For k2 < � we re-write (14): 

 

                                                             (15) 

 

 

As shown in Fig. 2 (upper curve), this M1/c rises monotonically to infinity with t (and so 

with �: Sect. 2). In this kinetic domain c(t) falls ahead of M1 so that K1c cannot match 

k2M1 to maintain proportionality of M1(t) to c(t): the denominator of the GP ordinate M/c 

approaches zero faster than the numerator. The resulting growth of M/c with � is 

unrelated to metabolism. In this domain the GP representation cannot be recommended 

for data analysis (Sect. 4). In Fig. 2 the two kinetic domains are separated by the line 

M1/c = K1t (case k2 = �). 

 In the presence of metabolism the domain of validity of GP asymptotics and 

hence of (11) is defined by k2 + k3 > � in place of k2 > � (see however end of Sect. 4). 

When k2 + k3 < �, the rise of M/c to infinity with t (and �) is non-linear. The absence of 

the familiar asymptote in the presence of k3 is due to non-metabolic terms (as in (15)), 

but it is apt to inspire modifications of the model (1) – (4) rather than a re-examination of 

its kinetics. 

 Exact calculations, in which the “final exponential” is replaced by a form c(t) 

which is realistic at all times, reiterate the foregoing analysis. 
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Discussion 

 The possibility of time-reversal on the upslope of the plasma curve depends on 

experimental design (the site and rate of infusion: Sect. 2). In contrast, the validity of 

asymptotic GP analysis is not in the hands of the experimenter, but is determined by the 

interaction of each tracer with the ROI of the target organ (kinetic constants) as well as 

on its whole-body kinetics (downslope of c(t)). 

 The popularity of determining metabolic clearance K by linear regression to the 

GP asymptote (11) rests on its avoidance of determining all kinetic constants by non-

linear regression requiring the inclusion of problematic early data: but then k2 + k3 is not 

available for comparison with �. If GP asymptotics such as (11) was used outside its 

domain of validity, the slope of the late rise of M/c with � would simulate spurious 

metabolism (k3 = 0) or miscalculate the rate of actual metabolism (see Appendix). 

 The widely used glucose analogue PET tracers (such as 11C-methylglucose and 
18F-fluorodeoxyglucose) appear to be safely in the domain of validity of GP asymptotics, 

their kinetic constants and biological plasma activity decay having been established for 

organs such as the brain and the liver in humans and animals. In contrast, the 

magnitude (and even the existence) of a backflux of 13N-ammonia from human brain is 

controversial (Ott and Larsen, 2004, Keiding et al, 2006), while avid uptake of ammonia 

in the body increases � after correcting c(t) for metabolites (see Appendix II). 

 If k2 is negligible as compared with k3, then k3 cannot be determined from M(t), 

c(t): without an appreciable backflux, dynamic PET loses its grip on metabolism. To see 

this, we add (1) and (2), set k2 = 0 and integrate: 

 

                                                               (16) 

 

which is independent of k3. Dividing (16) by c(t) we see that (11) has become one 

straight line for all time, not merely an asymptote. Its intercept is the vascular volume V0, 

which in humans is of the order 0.2 mL cm-3 in the liver but less than 0.05 mL cm-3 in the 

brain. The intercepts in Fig.3, and in all our corresponding cases, are more than 20 

times greater, putting the backflux of ammonia from the brain beyond doubt. 
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 When k2 is positive, (16) holds for early data before the onset of backflux (while 

k2M1 is negligible: recall M2(0)=0 in (3)). Apart from microvascular heterogeneity, this 

time domain allows the simplest determination of K1. However, in dynamic PET the data 

sets c(t), M(t) are determined by two disparate experimental procedures: the times 

pertaining to blood samples must be synchronized on a joint time axis with the times of 

ROI activities recorded by the PET camera (Munk et al., 2003). Any asynchronism 

induces a spurious (positive or negative) increment of K1 in response to a temporal 

mismatch of c(t) and M(t). The resulting errors are maximal when these observables are 

changing rapidly during the first passage of the tracer bolus through the ROI, but are 

greatly attenuated in later downslope processes (hence a robust GP asymptote).  

 

The insensitivity of GP asymptotics to early data is particularly valuable in PET studies of  

the human liver with its dual blood supply. As sampling of the portal vein is not 

admissible in humans, the true input c(t) is not available until hepatic arterial and portal 

venous tracer inputs are equalized by several recirculations. The quantitative effect of 

this circumstance on complete kinetic analyses has been demonstrated in animal 

experiments (Munk et al.,2001). 

 When k2 < �, non-compartmental effects set in on the downslope of c(t). Thus, in 

the course of washout from a once-through preparation of cat gastrocnemius muscle, k2 

dropped after 5 minutes to 1/5 of its initial value for sucrose, and to 1/2 for labeled water 

(Crone and Garlick, 1970). This phenomenon occurs when uncompensated efflux 

depletes tracer in the tissue close to the capillary membrane, so that rate-determination 

of the efflux is shifted increasingly from membrane permeability to transport along tissue 

concentration gradients of the tracer. To ensure that this non-compartmental time-

dependence of k2 does not invalidate the fitting of kinetic “constants” using (1) – (4), the 

inequality k2 > � must hold. This in turn implies the validity of the condition k2 + k3 > � for 
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the validity of GP asymptotics. However, these conditions may not be sufficient to 

ensure constancy of k2 when the ROI extends over slow and fast non-vascular 

subcompartments (Lassen and Perl, 1979). 
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Appendix: Exactly soluble case 
 

I. Derivation 
 

To elucidate the Gjedde-Patlak representation of metabolism by an exactly soluble case, 

we choose a simple c(t) declining along a single exponential after an initial step-rise: 

 

 

(A1) 

 

 

where b and β are positive constants. 

Then, from (5), 

 

(A2) 

 

Using (A1) in (1)-(4), we calculate M(t), and after replacing t with θ by means of (A2) we 

find 

 

 

(A3) 

 

where 

 

(A4) 

 

 

which may be interpreted as the a reversible extravascular volume of distribution of a 

tracer. This is the GP representation of the kinetics (1)-(4) with input (A1), valid exactly 

for all θ�0. From it we deduce rigorously the late-time GP asymptotics including a 

corrected form of (11). 
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(a)  Slow plasma decay:  (k2+k3)/β>1. 

As θ grows to infinity, the last term in (A3) tends to zero because the exponent of (1+βθ) 

is negative. Thus we recover the GP asymptote (11) with the intercept corrected by the 

presence of β: 

 

(A5) 

 

 

with Vr given by (A4), so that the intercept is V=V0+Vr. The approach to the asymptote 

depends on (k2+k3)/β. For example, if k2+k3=2β, then (A3)-(A4) becomes 

 

 

(A6) 

 

 

the square bracket tends to 1 from below, and Vr=2K1k2/(k2+k3)2 as θ becomes large. 

 

(b) Fast plasma decay:  (k2+k3)/β<1. 

Here the exponent in (A3) is positive, and both the square bracket in (A3) and Vr in (A4) 

change sign: 

 

(A7) 

 

The last term increases non-linearly with θ: there is no asymptote. The form of increase 

depends on (k2+k3)/β. For example, if (k2+k3)=β/2, then (A7) becomes 

 

(A8) 

 

so that the “intercept” grows with large θ as θ½.  

 

(c) The limiting case:  k2+k3=β divides the regimes (a) and (b). From (A3) and (A4), 

we obtain: 
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(A9) 

 

 

At small θ all cases reduce to 

 

(A10) 

 

When k3=0, we recover (14) and (15) with t replaced with θ  by means of (A2). 

 

 

 

II. Application to hepatic encephalopathy. 
 

An important aspect of this disease is high plasma concentration of cold ammonia and 

slow biological decay of a bolus of ammonia tracer (small �), both resulting from 

deficient hepatic elimination of ammonia. Healthy subjects have distinctly lower plasma 

ammonia and faster biological decay of a tracer bolus (higher �). 

 

When GP asymptotics is found to hold for cerebral kinetics of ammonia (k2+k3>β: 

Keiding et al, 2006), then the kinetic parameters K1, k2, k3, V0 obtained from (1)-(4) by 

non-linear regression to all data determine the slope and the intercept of the asymptote 

(11) by full calculation. The same asymptote determined by linear regression to late data 

(Fig.3) yields the slope and intercept more directly (and robustly). The resulting slope is 

the same, but the intercept is higher than that calculated from (11).  

 

For mono-exponential c(t) this is apparent from the enhancement of Vr in (A4) by the 

subtraction of � in the denominator. This non-equilibrium effect persists for more realistic 

forms of c(t). Denoting by Vnl the intercept obtained by non-linear regression, and by Vl 

that obtained by linear regression, we find in all subjects a systematic inequality Vl>Vnl 

such that the ratio Vnl/Vl quantifies the degree of hepatic encephalopathy. This 

diagnostic coupling between hepatic and cerebral ammonia kinetics may be 

conveniently (though only approximately) thought of in terms of the magnitude of � in 
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(A4): the time-course of ammonia tracer in plasma is itself diagnostic (Sørensen and 

Keiding, 2006). 

 

Fig. 3 shows GP representation of cerebral ammonia kinetics for a normal subject with 

arterial ammonia concentration of 20 μmol/L and Vl = 2.3 mL cm-3 (upper curve), and for 

a patient with arterial ammonia concentration elevated to 41 μmol/L and Vl = 0.9 mL cm-3 

(lower curve). The smaller slope of the patient’s asymptote is probably due to the 

relatively higher partial saturation of k3 (glutamine synthetase: Ott and Larsen, 2004). 

The ratio Vnl/Vl in the patient is 0.65 in cortex, 0.74 in the basal region, and 0.68 in the 

cerebellum, with corresponding values 0.27, 0.35, 0.30 in the normal subject. A similar 

distinction is seen in all subjects who had c(t) carefully corrected for metabolites of the 

tracer (Keiding et al, 2006), but not enough of these are currently available for standard 

tests of statistical significance. 
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List of symbols 

 

�, b positive constants describing early plasma upslope in Eq.7. 

� exponential decay of c(t) 

c(t)  input function i.e. activity concentration of blood entering the region (activity ml-1) 

K  slope of the Gjedde-Patlak asymptote (ml ml-1 min-1). In Eq.11, K is K1k3/(k2+k3)  

K1  clearance of tracer from blood to M1 (ml ml-1 min-1) 

k2  rate constant for the efflux of tracer from M1 (min-1) 

k3  rate constant for the transformation of tracer from M1 to M2 (min-1) 

M(t)  total regional activity concentration as recorded externally by PET (activity ml-1) 

M1(t)  regional activity concentration in precursor pool (activity ml-1) 

M2(t)  regional activity concentration in metabolized pool (activity ml-1) 

t  time (min) 

tp  time of the peak plasma activity(min) 

( )tθ   the Gjedde-Patlak transformed time variable (min) 

V  V=V0+Vr is the intercept of the Gjedde-Patlak asymptote (ml ml-1) 

V0  vascular volume in the region (ml ml-1) 

Vl  is V0+Vr (GP intercept) estimated by linear regression (ml ml-1) 

Vnl  is V0+Vr (GP intercept) calculated from parameters estimated by non-linear  

regression (ml ml-1) 

Vr  volume of reversible components in the region (ml ml-1) given by Eq.A4 or, with  

�=0 by K1k2/(k2+k3)2 in Eq.11 
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FIGURE LEGENDS 

 

Fig.1. Time-reversal seen in the falling part of the plot of transformed time � against 

ordinary time t. The plot was made using Eq.8 and �=5min-1 describing the early plasma 

upslope (solid line). The remaining part of the plasma curve up to its peak at tp is also 

shown (dashed line). Three different values of t (solid circles) correspond to any one 

value of � in the interval �min<�<�max. 

 

Fig.2. Non-metabolized tracer with kinetic parameters K1=0.15 mL mL-1 min-1, k2=0.25 

min-1. The Gjedde-Patlak (GP) ordinate is plotted against ordinary time for: a) slow 

plasma downslope (lower curve) using �=0.175 min-1; b) rapid plasma downslope (upper 

curve) using �=0.325 min-1. GP asymptotics holds for k2>�, and the two domains are 

separated by the line M1/c=K1 t corresponding to k2=�. 

 

Fig.3. Gjedde-Patlak (GP) plots of cerebral kinetics of ammonia tracer in a case of 

hepatic encephalopathy (lower curve) and in a normal subject (upper curve). The solid 

lines are GP asymptotes. The lower frame expands the early part of the upper frame. 

Both sets of measurements (circles) extend over 30 min of ordinary time. Within this time 

interval no reversal of the metabolizing step (which would have been seen as a 

concavity of the asymptote) is detectable. 
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