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Abstract

A new theoretical model for the growth of saccular cerebral aneurysms is proposed by ex-
tending the recent constitutive framework of Kroon and Holzapfel (J. Theor. Biol., 247:775–
787, 2007). The continuous turnover of collagen is taken to be the driving mechanism in
aneurysmal growth. The collagen production rate depends on the magnitude of the cyclic
deformation of fibroblasts, caused by the pulsating blood pressure during the cardiac cycle.
The volume density of fibroblasts in the aneurysmal tissue is taken to be constant through-
out the growth process. The growth model is assessed by considering the inflation of an
axisymmetric membranous piece of aneurysmal tissue, with material characteristics repre-
sentative of a cerebral aneurysm. The diastolic and systolic states of the aneurysm are com-
puted, together with its load-free state. It turns out that the value of collagen pre-stretch, that
determines growth speed and stability of the aneurysm, is of pivotal importance. The model
is able to predict aneurysms with typical berry-like shapes observed clinically, and the pre-
dicted wall stresses correlate well with the experimentally obtained ultimate stresses of this
type of tissue. The model predicts that aneurysms should fail when reaching a size of about
1.2-3.6 mm, which is smaller than what has been clinically observed. With some refine-
ments, the model may, however, be used to predict future growth of diagnosed aneurysms.

Key words: Aneurysm; Saccular; Cerebral; Collagen; Membrane; Artery

1 Introduction

Rupture of an intracranial aneurysm and the resulting subarachnoid hemorrhage are
serious events associated with high rates of mortality and morbidity. About 50% of
patients die within one month after the event, and of those who survive more than
one third have major neurologic deficits (Brisman et al., 2006; Schievink, 1997).
Aneurysms are a common pathology only in human arteries and in some primates
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(Canham et al., 2006), and intracranial aneurysms are more prevalent in females
than in males (Mettinger, 1982). Intracranial aneurysms usually do not rupture
if they are less than 10 mm in diameter (Austin et al., 1993; Rinkel et al., 1998;
Wiebers et al., 1981), and at clinical centres, cerebral aneurysms are considered as
critical when their size is roughly larger than 5 mm. Considerable evidence supports
the role of genetic factors in the pathogenesis of intracranial aneurysms (Schievink,
1997), but other factors, such as hemodynamic stress at arterial bifurcations, con-
genital medial defects, degenerative arterial wall changes, smooth muscle cell apop-
tosis, smoking and excessive alcohol consumption are also believed to contribute
to aneurysmal development (Chen et al., 2004; Feigin et al., 2005; Matsubara et al.,
2004; Pentimalli et al., 2004; Wermer et al., 2005). Once detected, the changes of
the aneurysmal wall are already advanced or have been modified with other factors
such as atherosclerosis (Kondo et al., 1998), and little is therefore known about the
details of how they originate, grow, and rupture (Jamous et al., 2005). In order to
shed some light upon the development process of cerebral aneurysms, a number of
animal model aneurysms have been developed (AAssar et al., 2003; Espinosa et al.,
1984; Hashimoto et al., 1984; Kamphorst et al., 1991; Kim and Cervos-Navarro,
1991; Kim et al., 1992; Kojima et al., 1986; Kondo et al., 1998; Miskolczi et al.,
1998; Zhang et al., 2003). These models may give some guidance concerning the
development process, but it remains unclear to what extent these models actually
reflect the etiology of human aneurysms.

Cerebral arteries are muscular arteries having significantly less elastin in the media
(than elastic arteries) and lacking the external elastic lamina. Most bifurcations of
the cerebral vasculature are structurally stable, but a small number develop a weak-
ness that causes the wall to expand outwardly in the region near the flow divider
of the branching artery (Austin et al., 1993; MacDonald et al., 2000; Rowe et al.,
2003). Some measurements of the macroscopic mechanical properties of cerebral
arteries and aneurysms exist (Coulson et al., 2004; Monson et al., 2003, 2005; Scott
et al., 1972; Steiger, 1990; Tóth et al., 1998, 2005) and the structural organisation
of these tissues is fairly well documented (Canham et al., 1991b,a, 1992, 1996,
1999; Finlay et al., 1991, 1995, 1998; Hassler, 1972; MacDonald et al., 2000; Rowe
et al., 2003; Smith et al., 1981; Whittaker et al., 1988). In the aneurysmal wall, the
tunica media and the internal elastic lamina have often disappeared or are severely
fragmented (Abruzzo et al., 1998; Sakaki et al., 1997; Stehbens, 1963; Suzuki and
Ohara, 1978; Tóth et al., 1998). In either case, these layers do not seem to con-
tribute significantly to the structural integrity of the aneurysmal wall. Thus, the
wall of saccular cerebral aneurysms can roughly be described as a development of
the adventitia of the original healthy artery (Abruzzo et al., 1998; Scanarini et al.,
1978; Schievink, 1997). In the media of a healthy cerebral artery, the smooth mus-
cle and collagen components are almost perfectly aligned in the circumferential
direction of the artery (Finlay et al., 1995; Walmsley et al., 1983), whereas the col-
lagen of the adventitia (which dominates the mechanical behaviour of this layer)
shows a dispersion from the circumferential to the longitudinal orientation (Finlay
et al., 1995; Smith et al., 1981).
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The wall of an aneurysm is a living and metabolising structure, able to add to and
reinforce itself. Enlargement does not necessarily imply thinning, because new col-
lagen is added as the aneurysm expands. Collagen is a major component of blood
vessels, and Type I and III collagen together represent about 80-90% of the total
arterial collagen (Majamaa et al., 1992). The growth of aneurysms is associated
with an increased collagen turnover (Mimata et al., 1997). Collagen is produced
by fibre-producing cells such as fibroblasts and smooth muscle cells, and collagen
degradation is accomplished by collagenases (Dobrin and Canfield, 1984; Murphy
and Reynolds, 1985). Increased levels of collagenases have also been observed in
aneurysmal tissue (AAssar et al., 2003; Anidjar et al., 1992; McMillan et al., 1995;
Sluijter et al., 2004; Webster et al., 1991). The production of collagen (Type I) in
cerebral aneurysms is mainly accomplished by fibroblasts (Eastwood et al., 1998;
Espinosa et al., 1984; Kamphorst et al., 1991; Sluijter et al., 2004; Tóth et al., 1998),
and these cells therefore play a key role in aneurysmal growth. Fibroblasts produce
and organise the extracellular matrix (ECM). Conversely, the ECM influences the
development, shape, migration, proliferation, survival, and function of the fibrob-
lasts. The fibroblast belongs to the group of adherent cells, and attaches to the ECM
by integrins (Cukierman et al., 2001; Jiang and Grinnell, 2005). The mobility of the
fibroblast and its ability to contract the ECM are important properties in the mainte-
nance of the ECM (Barocas et al., 1995; Dembo and Wang, 1999; Eastwood et al.,
1998; Friedl and Bröcker, 2000; Friedrichs et al., 2007; Grinnell, 2003; Lo et al.,
2000; Poole et al., 2005). The fibroblast also has the ability to align itself in the
direction of existing collagen fibres and to produce new collagen that is aligned in
the same direction (Birk et al., 1990; Cisneros et al., 2006; Friedrichs et al., 2007;
Huang et al., 1993; Lin et al., 1999; Meshel et al., 2005; Tóth et al., 1998). Further-
more, the activity of adherent cells is strongly dependent upon mechanical stimuli
from the surrounding ECM (Pelham and Wang, 1997; Weyts et al., 2003). More
specifically, cyclic deformation (which fibroblasts embedded in an arterial wall are
exposed to) is known to influence the proliferation and collagen production rate of
fibroblasts (Butt et al., 1995; Eastwood et al., 1998; Lee et al., 2004; Wille et al.,
2006; Wu and Chen, 2000), and both of these factors are important for the growth
of aneurysmal tissue.

Several theoretical studies related to growth and remodelling of arterial tissue have
been presented (e.g. Baek et al. (2006); Humphrey and Rajagopal (2002); Kroon
and Holzapfel (2007a,b); Rachev et al. (1996); Ryan and Humphrey (1999); Taber
and Humphrey (2001); Watton et al. (2004)). In the present paper, we propose a
new theoretical model for the growth of human cerebral saccular aneurysms. The
approach has a few similarities with a model previously proposed by Kroon and
Holzapfel (2007a), but the present model has some important novelties. The model
rests on the assumption that collagen is the only load-bearing constituent in the
aneurysmal wall and that the continuous turnover of collagen is the driving mech-
anism for aneurysmal growth. The collagen is produced by fibroblasts, which are
dispersed throughout the aneurysmal wall. The collagen production rate is taken to
depend upon the number of fibroblasts available and the average production rate of
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fibroblasts. The average production rate per fibroblast is, in turn, taken to depend
on the cyclic deformation of the fibroblasts caused by the pulsating blood flow in
the parent artery. An axisymmetric model is used to assess the new growth model.

In Section 2, we introduce the necessary continuum mechanics framework and give
a detailed description of the model. To evaluate the proposed model, we use an
axisymmetric membrane exposed to a surface pressure. The geometry, the finite
element implementation, and the initial conditions of this numerical example is
outlined in Section 3. In Section 4, we present some numerical results, which are
further discussed and evaluated in the concluding Section 5.

2 A theoretical model for fibroblast-controlled growth and remodelling of
thin aneurysmal tissue

The wall of a saccular cerebral aneurysm is modelled as a hyperelastic membrane,
whose constitutive behaviour is governed by a 3D strain-energy function Ψ. We
assume that collagen is the only load-bearing constituent in the aneurysmal wall,
which is taken to be a development of the adventitia of the original healthy arte-
rial wall. Remnants of media, internal elastic lamina, and intima may well still be
present in the aneurysm, but are considered not to give any significant contribu-
tion to the mechanical strength of the aneurysmal wall. The continuous turnover
of collagen is the driving mechanism for aneurysmal remodelling and growth. This
remodelling and turnover of collagen is assumed to be accomplished by fibroblasts,
which are spread throughout the collagen network.

2.1 Continuum mechanics framework

Consider the membrane in Fig. 1. We introduce a reference frame of right-handed,
rectangular coordinate axes at a fixed origin with orthonormal basis vectors ei, i =
1, 2, 3. The position vector X in the reference configuration Ω0 is given as

X = Xiei, (1)

where Xi are the referential coordinates and are considered as being along the axes
introduced. The position vector x in the current configuration Ω is

x = xiei, (2)

where xi denote the related spatial coordinates. The same reference frame for the
reference and current configurations was used.
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X2, x2
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ζ1

ζ2
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Ω0

Fig. 1. The membrane in the reference configuration Ω0 and its reference frame of rectan-
gular coordinate axes at a fixed origin with orthonormal basis vectors ei, i = 1, 2, 3. The
referential and the spatial coordinates are labelled as Xi and xi, respectively, while ζ1 and
ζ2 are the convected coordinates, and ζ3 is a coordinate oriented normal to the membrane
surface.

The displacement vector u is then defined as

u = x−X = uiei. (3)

Material points on the membrane are labeled by the surface convected coordinates
ζ1 and ζ2, together with ζ3 oriented normal to the membrane surface. Greek indices
are used to denote the quantities measured by using the membrane intrinsic metric.
The associated base vectors a1, a2 and a3 define a local Euclidean frame on the
membrane, as indicated in Fig. 1. Derivatives with respect to the surface coordinates
ζ1, ζ2 and ζ3 in the reference configuration are denoted

(•),α =
∂(•)
∂ζα

. (4)

We define the deformation gradient F for this membrane according to

F =
∂xi

∂ζα
ei ⊗ aα. (5)

The loading imposed on the aneurysm is caused by the blood pressure p in the
parent artery. The pressure in a blood vessel varies in a pulsating manner, where the
lowest pressure (at diastole) is denoted pdia and the highest pressure (at systole) is
denoted psys. We consider four different deformed configurations, see Fig. 2. Three
of these configurations, Ωlf , Ωdia and Ωsys, are associated with the applied pressure
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Fig. 2. Decomposition of the deformation gradient.

loads p = 0+, p = pdia and p = psys, respectively. The configuration Ωlf defines
the load-free state of the aneurysm when an infinitesimally small pressure p = 0+

is applied. (As will be evident later on, an applied pressure p = 0 would allow for
an infinite number of possible deformation states, and therefore p = 0+ is required
in order to uniquely define the load-free state.) Due to the continuous remodelling
of the collagen, the load-free configuration Ωlf will, in general, not coincide with
the reference configuration Ω0. Since collagen fibres are continuously deposited
as the aneurysm evolves and grows, fibres, deposited at different times, will have
different natural configurations. In order to account for this, we also introduce a
fourth deformed configuration, say Ωdep, at which a specific fibre is deposited.

The total deformation gradient F is decomposed according to Fig. 2, where F is
evaluated in the four deformed configurations Ωlf , Ωdia, Ωsys and Ωdep. We em-
phasise, that the deformation gradients in Fig. 2 do not signify mappings of whole
configurations, but rather linear mappings of line elements within the configura-
tions. The deformation gradients Flf , Fdia and Fsys describe the deformations from
the reference configuration Ω0 to the load-free (Ωlf), the diastolic (Ωdia) and the
systolic (Ωsys) states, respectively. The deformation gradients F�

dia = FdiaF−1
lf and

F�
sys = FsysF−1

lf denote the deformations experienced by the aneurysmal wall from
the load-free configuration Ωlf to the diastolic Ωdia and systolic Ωsys states, respec-
tively. The entities F�

dia and F�
sys are introduced in order to quantify the actual de-

formation experienced by the aneurysmal wall at a certain point of time. The entity
Fcc = FsysF−1

dia is the deformation from the diastolic state Ωdia to the systolic state
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Ωsys, quantifying the cyclic deformation of the tissue during the cardiac cycle (the
index ‘cc’ stands for ‘cardiac cycle’). For all of the deformation gradients defined
above, dependence on time t and X is understood.

The deformed configuration Ωdep is introduced in order to track the deformations
of individual collagen fibres. The deformation gradient Fdep = F(tdep) is the de-
formation at time tdep at which a specific fibre is deposited. The deformations
F′

lf = FlfF−1
dep, F′

dia = FdiaF−1
dep and F′

sys = FsysF−1
dep quantify the subsequent de-

formation experienced by this particular fibre in the load-free, the diastolic and the
systolic states, respectively. Thus, F′

lf , F
′
dia and F′

sys will depend on t, tdep and X.
The configurations Ωlf , Ωdia and Ωsys will evolve with time t as the aneurysm grows,
and at each time t a range of fibres with different natural configurations Ωdep will
be active and contribute to the structural integrity of the aneurysmal wall.

The deformation gradient can be decomposed into a rotation R and a material
stretch U, according to F = RU, and the associated right Cauchy-Green defor-
mation tensor is then obtained as C = FTF = U2 (Holzapfel, 2000). In general, the
total deformation gradient F may be decomposed into F = F2F1, where F1 = R1U1

and F2 = R2U2. However, we instead choose to express the total deformation gra-
dient as F = R2U2U1, i.e. as two material stretches U1 and U2 followed by a single
rotation R2. Thus, the first deformation is taken to be a pure material stretch and
all rotations of the total deformation are confined to the rotation R2. The following
decompositions are now introduced:

Ωlf : Flf = RlfUlf ,

Ωdia : Fdia = RdiaUdia = R�
diaU

�
diaUlf ,

Ωsys : Fsys = RsysUsys = R�
sysU

�
sysUlf = RccUccUdia,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6)

and

Ωlf : Flf = R′
lfU

′
lfUdep,

Ωdia : Fdia = R′
diaU

′
diaUdep,

Ωsys : Fsys = R′
sysU

′
sysUdep.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7)

The associated decompositions of C are then

Ωlf : Clf = U2
lf ,

Ωdia : Cdia = U2
dia = UlfC

�
diaUlf ,

Ωsys : Csys = U2
sys = UlfC�

sysUlf = UdiaCccUdia,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8)

and
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Ωlf : Clf = UdepC′
lfUdep,

Ωdia : Cdia = UdepC
′
diaUdep,

Ωsys : Csys = UdepC
′
sysUdep,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9)

where the orthogonality property for the rotation tensor R and the symmetry of
the material stretch tensor U have been used in addition to the property C = U2.
From the expressions above we can now compute C�

dia = U−1
lf CdiaU−1

lf , C�
sys =

U−1
lf CsysU−1

lf , Ccc = U−1
diaCsysU−1

dia, C′
dia = U−1

depCdiaU−1
dep, and C′

sys = U−1
depCsysU−1

dep.
These entities will be actually used in the computations to follow. Thus, the type
of decomposition used here (on the form F = R2U2U1) allows us to express all
needed deformation measures purely in terms of material stretches related to the
reference configuration. Note that all material stretches are defined with respect to
the local reference frame defined by the basis vectors ai, see Fig. 1.

2.2 Constitutive model

We now consider the structure of the aneurysmal tissue. The aneurysmal wall is
assumed to consist of n discrete and distinct layers of collagen fibres (plies that
form a laminate). Thus, from a mechanical point of view, the structural organisa-
tion and properties of the collagen completely determine the mechanical response
of the aneurysmal wall. Within a layer (ply) with index i, the collagen fibres and
the embedded fibroblasts are perfectly aligned in a direction φi, defined with re-
spect to the local reference coordinate system, see Fig. 3. There is a continuously
ongoing process of production and degradation of collagen within each layer, and
this turnover is accomplished by the fibroblasts. Since the fibroblasts are oriented in
the same direction φi as the collagen fibres, newly produced collagen is deposited
in that direction as well, and the orientation of the fibres in the different layers is,
therefore, preserved during the growth process.

The aneurysmal wall is assumed to have a constant total initial thickness H0 in Ω0

and each collagen layer is assigned an initial thickness of H0/n. The fibre angles
φi are defined according to

φi =
i − 1

n
π, 1 ≤ i ≤ n, (10)

where the fibre orientations are thus uniformly distributed over the whole azimuthal
range and n ≥ 2 provides the even number of tissue layers.

Due to the pulsating blood pressure, the aneurysmal tissue – and thereby the em-
bedded fibroblasts – is exposed to cyclic deformation, quantified by the entity
Ccc = U−1

diaCsysU−1
dia, according to (8)3. The collagen production rate per fibroblast

8
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a1
a2

Fig. 3. The aneurysmal tissue is modelled as a multi-layered membrane consisting of n
plies. Fibroblasts are embedded in the plies, and are aligned in the same direction as the
fibres.

is assumed to be governed by the magnitude of the cyclic deformation of fibrob-
lasts. In addition, fibroblasts are known to proliferate in growing tissue. We here
assume that fibroblasts proliferate in order to maintain a constant fibroblast density
in the growing tissue. The current number of fibroblasts per unit reference volume
is denoted nfb(t). This entity is taken to be constant through the tissue thickness
and is expressed as

nfb(t) = nfb 0 Jlf(t), (11)

where nfb 0 = nfb(t = 0) is the concentration of fibroblasts in a healthy adventitia
and Jlf = detFlf . The mass production rate of collagen per unit reference volume
in layer i, denoted ṁi(t), is now expressed as

ṁi(t) = nfb(t)β0(Ccc i)
α. (12)

Thus, the collagen production rate ṁi(t) depends on the current concentration of
fibroblasts nfb(t) and the cyclic deformation of these cells Ccc i. The scalar Ccc i is
defined as Ccc i = Ccc : A(φi), where A(φi) = M ⊗ M is a structure tensor, and
M is a vector with components M1 = cos φi, M2 = sin φi, M3 = 0 defining the
direction of the fibres in layer i in the reference configuration. The influence of the
scalar Ccc i on the collagen production rate is modulated by the exponent α. The
parameter β0 may roughly be interpreted as the mean collagen production rate per
fibroblast of a healthy adventitia.
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Fibroblasts continuously produce and degrade collagen fibres in the ECM. Dur-
ing production, collagen fibrils are deposited outside the fibroblast cell, and these
fibrils are then inserted into the surrounding ECM. We assume that collagen fib-
rils, produced at time tdep, are inserted in the configuration Ωsys, implying that
Fdep = Fsys(tdep). However, fibroblasts also have the ability to contract the sur-
rounding ECM, and the new collagen fibrils are, therefore, attached to the remain-
ing ECM in a pre-stretched state. With regards to aneurysmal growth (and tissue re-
modelling in general), this pre-stretching is a very important mechanism and needs
to be accounted for. It appears that the tractions imposed by the fibroblasts on the
ECM are roughly proportional to the current stiffness of the ECM (Engler et al.,
2004). Thus, we conjecture that collagen fibres, deposited at time tdep, are deposited
in the configuration Ωsys with a constant pre-stretch λpre. The total deformation Cfib

of the fibres in the layer i, deposited at time tdep, can then be expressed as

Cfib = λ2
preC

′ : A(φi), (13)

where C′ = U−1
dep(tdep)C(t)U−1

dep(tdep). The right Cauchy-Green tensors C and C′

(defined with respect to Ω0 and Ωdep, respectively) are evaluated for the states Ωlf

and Ωdia, Ωsys. Again, the entity C′ will, in general, depend on the location X, on
current time t and on time of deposition tdep.

As a start, the strain energy ψfib per unit mass stored in the fibres is characterised by
a simple polynomial, accounting for the highly nonlinear response of the wave-like
collagen. Thus,

ψfib = μ(Cfib − 1)3, Cfib ≥ 1, (14)

where μ > 0 is a positive material parameter, associated with the stiffness of colla-
gen fibres. Note that Eq. (14) is valid when the fibres are in tension or are unloaded
(Cfib ≥ 1), whereas the fibres are assumed to have zero stiffness in compression
(Cfib < 1).

The total strain energy Ψ(t) per unit reference volume is then obtained by integra-
tion according to

Ψ(t) =
1

n

n∑
i=1

Ψi(t) =
1

n

n∑
i=1

t∫
−∞

g(t, tdep)ṁi(t, tdep)ψfib(t, tdep)dtdep, (15)

where Ψi(t) is the strain energy of layer i, and g is the life cycle function (cf.
Humphrey and Rajagopal, 2002; Kroon and Holzapfel, 2007a,b). This function g
accounts for the turnover of the collagen fibres, and a simple pulse function is
adopted according to

g(t, tdep) = Θ(t − tdep) − Θ(t − tdep − tcl), (16)

10
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where Θ(t) is the Heaviside step function, and tcl is the life-time of the collagen
fibres. This formulation implies that collagen fibres are assumed to have the same
mechanical properties from the moment they are deposited to the end of their life
time. Maturation and degradation of collagen fibres are taken to occur instantly at
t = tdep and t = tdep + tcl, respectively.

Membrane stresses are represented by a modified 2D second Piola-Kirchhoff stress
tensor, with components defined as

S�
αβ = 2

∂Ψ

∂C�
αβ

, (17)

with C� = U−1
lf CU−1

lf . The right Cauchy-Green tensors C and C� (defined with
respect to Ω0 and Ωlf , respectively) are evaluated for the states Ωlf and Ωdia, Ωsys.
Since we consider a membrane, we only evaluate in-plane stresses, and α and β
therefore only take on the values 1 and 2. This modified stress measure is employed
in order to obtain physically relevant stresses. A modified corotated Cauchy stress
σ�

αβ is also defined as

σ�
αβ =

H0

HlfJ�
U�

αγS
�
γδU

�
δβ , (18)

where J� = detU�, and Hlf is the current tissue thickness in the load-free state Ωlf .
In the deformation from Ωlf to the diastolic and systolic states we assume incom-
pressibility, which requires that J� ≡ 1. (J� pertains to the fully 3D deformation of
the tissue.) The tissue thickness will change as collagen is produced and degraded.
By assuming that the volume density of collagen fibres in the load-free state Ωlf is
constant, Hlf can be estimated as

Hlf =
H0

nλ1λ2

n∑
i=1

mi

m0

. (19)

where mi and m0 denote the current and initial collagen mass content, respectively,
and λ1 and λ2 are the in-plane principal stretches in the load-free state Ωlf . The
determinant Jlf in Eq. (11) may then consequently be estimated as

Jlf =
Hlfλ1λ2

H0

=
1

n

n∑
i=1

mi

m0

, (20)
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Fig. 4. Profile of the membrane, definitions of coordinates and principal directions, and
loading and boundary conditions.

3 Numerical example: Inflation of an axisymmetric membrane

3.1 FE formulation for an axisymmetric membrane

A saccular cerebral aneurysm is here modelled as an axisymmetric membrane,
which is hinged along its periphery and exposed to a (blood) pressure p. The mem-
brane formulation used here is based on a work by Fried (1982) (also utilised by
Kroon and Holzapfel (2007a) and Kyriacou et al. (1996)), and a brief review of the
formulation is provided below.

Consider the axisymmetric membrane, as illustrated in Fig. 4. The surface profile
can be parameterised using coordinates S and s in the reference and current config-
urations, respectively. Coordinates R(S), Z(S), r(s), and z(s) denote cylindrical
coordinates in the reference and current configurations, respectively. The mem-
brane is hinged at R = R0. Boundary conditions are thus imposed according to

R = 0 : r = 0,

R = R0 : r = R0 and z = 0,

⎫⎪⎬
⎪⎭ (21)

see Fig. 4.

Principal directions 1 and 2 coincide with the direction of s and the circumferential
direction, respectively, as indicated in Fig. 4. The convected surface coordinates ζ1

and ζ2, introduced in the previous section, are taken to coincide with the principal
directions 1 and 2 in Fig. 4, respectively. The principal stretches in the plane of the
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membrane can be expressed as

λ1 =
ds

dS
=

√√√√(
dr

dS

)2

+

(
dz

dS

)2

, λ2 =
2πr

2πR
=

r

R
. (22)

The potential energy Π of the membrane, inflated by a given constant pressure p is

Π =
∫
Ω0

ΨdV − p
∫

∂Ωσ

u · da = π

R0∫
0

(
2R

n∑
i=1

H0

n
Ψi − pr2 dz

dS

)
dS, (23)

where Ψ is the total strain energy per unit volume of the membrane, Ω0 is the
reference region of the membrane, with the infinitesimal volume element dV de-
fined in that region, and ∂Ωσ ⊂ ∂Ω is the current boundary surface on which the
pressure boundary condition acts. The second term in Eq. (23) denotes the energy
contribution due to the pressure p. In that term da = dan is a vector element of an
infinitesimally small area defined in the current configuration, where n is the direc-
tion of the (pointwise) outward unit vector, which is perpendicular to the pressure
loaded surface ∂Ωσ of the membrane region, and da is an infinitesimal surface ele-
ment in the current configuration (see Fig. 4). The displacement vector is denoted
by u. Making use of the symmetry conditions, the volume integrals can be recast
into a one-dimensional form, as indicated in Eq. (23)2.

Equation (23)2 is solved by using the finite element method with quadratic line
elements. The membrane is discretised in the S direction by nodes distributed with
a constant distance h in the reference configuration. The current geometry for an
element is approximated according to

r(ξ) =
1

2
ξ(ξ − 1)r1 + (1 − ξ2)r2 +

1

2
ξ(ξ + 1)r3, (24)

where ξ ∈ [−1, 1], and r1, r2 and r3 are the nodal values of r. In a similar way
R and z are approximated. According to Eq. (23)2, the potential energy Πe for an
element can thus be expressed as

Πe = π

1∫
−1

(2R
n∑

i=1

H0

n
Ψi − pr2z′

1

h
)hdξ, (25)

where (•)′ denotes differentiation with respect to ξ. Since S can be written as, e.g.,
S = S0 +hξ, it follows that dS = hdξ. The integration in Eq. (25) is approximated
using Gauss integration, i.e.

Πe ≈ πh
2∑

j=1

[
2R(ξj)

n∑
i=1

H0

n
Ψi(ξ

j) − pr2(ξj)z′(ξj)
1

h

]
, (26)

13



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

where ξ1, ξ2 denote the coordinates for the Gauss points, and the related weights are
1. The approximated total potential energy is achieved by a summation over all ele-
ments. Nodal values for r and z are stored in a vector q = (r1, . . . , rnn z1, . . . , znn)T,
where nn is the number of nodes in the model. To find the equilibrium state, the
potential energy Π is minimised with respect to q using a Newton-Raphson scheme.

3.2 Initial conditions

Initial conditions are required for the strain-energy function. In a healthy artery, the
load is mainly carried by the media, but as the media is degraded in a developing
aneurysm, the load from the blood pressure is transferred to the adventitia. The
initial conditions used here correspond to an instant transfer of the load from the
media to the adventitia. Thus, in the half-closed time interval t ∈ (−∞, 0], the
membrane is taken to have existed in the reference configuration with a surface
pressure p = 0, with the collagen production rate ṁi and the deformation Cfib in
the fibres according to

ṁi(t ≤ 0) = nfb 0 β0[I : A(φi)]
α = nfb 0 β0,

Cfib(t ≤ 0) = λ2
preI : A(φi) = λ2

pre, (27)

respectively, where I is the unit tensor. Accordingly, using Eqs. (14) and (27) in
Eq. (15), the strain energy per unit reference volume is for t ≤ 0

Ψ(t ≤ 0) =
1

n

n∑
i=1

t∫
t−tcl

nfb 0 β0μ(λ2
pre − 1)3dtdep = nfb 0 β0μ(λ2

pre − 1)3tcl. (28)

3.3 Computation of the load-free state Ωlf

From time t = 0+ and onwards, the membrane is exposed to a pressure load that
pulsates between pdia and psys, and the development of the aneurysm is initialised.
The time-dependent aneurysmal growth process is discretised using a constant time
increment Δt. It is emphasised, that the analysis is completely quasi-static, and we
are not modelling the fully dynamic deformation that a real aneurysm undergoes
during the cardiac cycle. Thus, at each time step, we compute the deformed states
Ωdia and Ωsys for the applied loads pdia and psys, respectively, and these states are
used to predict the growth of the aneurysm, as described in the growth model pre-
sentation above. In addition, we need the load-free state Ωlf . However, finding Ωlf is
not a trivial task. The collagen fibres are assumed to have zero stiffness in compres-
sion, which means that by trying to find the solution for p = 0+ we are approaching
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deformation states in which the material has zero stiffness. From a numerical point
of view this is somewhat tricky.

Hence, we proceed as follows: when estimating the load-free state Ωlf we first ap-
ply a pressure of 0.2 pdia and compute the related deformed state Ω0.2. Hence, the
nodal displacement vector q = (r1, . . . , rnn z1, . . . , znn)T is known for the three
deformed states Ω0.2, Ωdia and Ωsys. Second, the nodal positions in the state Ωlf

are established by an extrapolation from the nodal positions in the states Ω0.2,
Ωdia and Ωsys. Thus, for a node with index i, six points are defined according to
(0.2pdia, ri,0.2), (pdia, ri,dia), (psys, ri,sys), (0.2pdia, zi,0.2), (pdia, zi,dia), and (psys, zi,sys),
denoting nodal displacements at the three different pressure levels considered. For
the radial displacements, a curve of the form r = a1 + a2exp(a3p) is fitted to the
three points (0.2pdia, ri,0.2), (pdia, ri,dia), (psys, ri,sys). When the fitting parameters
a1, a2 and a3 have been determined, the radial displacement for the load-free state,
ri,0, can be estimated by evaluating the fitted curve for p = 0. In a similar way, an-
other function on the same form is fitted to the points (0.2pdia, zi,0.2), (pdia, zi,dia),
(psys, zi,sys), and the vertical displacement for the load-free state, zi,0, can then be
estimated by again evaluating the fitted curve for p = 0. This procedure is repeated
for all nodal displacements at all time steps.

4 Numerical results

4.1 Geometrical and physical parameters

The aneurysmal growth model includes a number of geometrical and physical enti-
ties that need to be specified. The systolic blood pressure in a human carotid artery
is about 7.0 kPa (Chatziprodromou et al., 2007), and this pressure is taken to apply
for a cerebral artery in the vasculature of the Circle of Willis. Assuming a ratio
of 120/80 between the systolic and diastolic blood pressures under healthy condi-
tions, gives the respective pressure levels of psys = 7.0 kPa and pdia = 4.7 kPa.
The radius of a middle cerebral artery is about 1.2 mm, which gives the estima-
tion R0 = 1.2 mm (Monson et al., 2005), and the thickness of a healthy adventitia
is about H0 = 30μm (Smith et al., 1981). The stiffness of the collagen fabric of
the adventitia is accounted for by the factor nfb 0 β0μtcl = 3.3 MPa (Monson et al.,
2005). In the collagen production law (Eq. (12)), the exponent may be estimated to
α = 3.0 (Lee et al., 2004). There are two parameters that are difficult to estimate,
namely the life-time tcl of the collagen fibres and the pre-stretch λpre of collagen
fibres. The collagen life-time sets the time-scale for the aneurysmal growth process
and may be found in the range of 6 to 180 days (Humphrey, 1999). Aneurysmal
tissue is known to exhibit a higher rate of collagen turnover than healthy tissue
(Abdul-Hussien et al., 2007). The collagen pre-stretch λpre is very important for
the mechanical behaviour of the aneurysmal wall, and in the following numerical
investigation a particular emphasis is therefore put on the influence of this parame-
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Fig. 5. Evolution of load-free, diastolic and systolic states of the aneurysm with time rang-
ing from t = 0 to t = 50tcl (λpre = 1.028).

ter on the overall mechanical response. In the following numerical study, the time
scale is normalised by the collagen life-time tcl, and the time increment used in the
computations was Δt = 0.01tcl.

4.2 Numerical analysis of aneurysmal growth

We start to explore some of the general features of the proposed growth model.
Figure 5 shows how the aneurysm evolves with time for a case with λpre = 1.028.
The geometry of the aneurysm is normalised with the initial radius R0, and the
aneurysm is shown at six different stages of development. At each stage, the three
configurations Ωlf , Ωdia, Ωsys are shown. The size of the aneurysm increases ap-
proximately linearly with time, and after a time of 50tcl it has reached a size of
about 5R0 (both in terms of height and maximum diameter). This corresponds to
a size of 6 mm (R0 = 1.2 mm). Since the life-time of collagen fibres is about 6-
180 days, the time 50tcl thus corresponds to 300 days to about 25 years. At all
time stages in Fig. 5, the diastolic and systolic states are quite close to each other,
whereas the load-free states are more easily distinguishable.

The aneurysmal growth model depends strongly on the parameter λpre. Figure 6
shows how the size of the aneurysm evolves with time for different values of λpre.
The size of the aneurysm is quantified in terms of the displacement of the fundus
in the z-direction at systole. For λpre = 1.028, the aneurysm grows with an ap-
proximately constant speed. For values of λpre lower than this, the growth speed in-
creases in an accelerating manner, whereas for values of λpre higher than 1.028, the
size of the aneurysm reaches a peak and then starts shrinking. This type of shrink-
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Fig. 6. Evolution of the aneurysm size (displacement of the fundus in the z-direction at
systole normalised by R0) for different values of λpre.

ing appears when the contractile ‘force’ caused by the pre-stretching of fibres is
stronger than the applied blood pressure. Conversely, for values of λpre lower than
1.028, this contractile force is too weak to prevent accelerating aneurysm growth.

Figures 7(a) and (b) show the growth speed ż of the fundus in the z-direction at
systole in some more detail. The growth speed is normalised by the entity R0/tcl.
Figure 7(a) shows the growth speed as a function of time, and Fig. 7(b) shows it as a
function of aneurysm size. As noted previously, the growth speed for λpre = 1.028
is fairly constant, whereas for values of λpre lower or higher than this leads to ac-
celerating or decelerating growth, respectively. Initially, there is a pronounced peak
in the growth speeds in both Figs 7(a) and (b). This peak appears as the aneurysm
passes from a resting reference state (t ≤ 0), with no blood pressure applied, to
a mode where it pulsates between the diastolic and systolic states (t > 0). This
instant application of the blood pressure is convenient for the present analysis but
somewhat artificial, as are the initial growth speeds.

Initially, the aneurysm (or adventitia) has a uniform thickness H0, but due to the
addition of new material, the thickness distribution will change and become inho-
mogeneous. This phenomenon is illustrated in Fig. 8, where the ratio Hlf/H0 is
displayed as a function of the curvilinear coordinate S (normalised by R0) for the
case with λpre = 1.028. Note that S/R0 is zero at the fundus of the aneurysm and
unity at the neck. Figure 8 shows the distribution of Hlf/H0 at six different times.
For t = 0, no net growth has yet occurred, and the ratio equals unity. The thickness
of the aneurysm increases monotonically with time up to t = 50tcl, and by then it
has reached a maximum ratio of almost Hlf/H0 = 9, implying that Hlf = 270μm.
After a time of about 20tcl, a peak in the thickness distribution may be observed.
During the subsequent development of the aneurysm, this peak becomes more and
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Fig. 8. Evolution of the normalised thickness distribution (λpre = 1.028).

more pronounced. At t = 50tcl, there is a distinct thickness peak located at approx-
imately S = 0.8R0. The thickness increase is actually lowest at the neck of the
aneurysm. The ratio between the highest and lowest thickness at t = 50tcl is about
2.5.

Another field parameter of interest is the true (Cauchy) stress of the aneurysmal
wall. For the present growth model, the maximum principal stress is always ori-
ented in the principal direction 1. Figure 9 shows the evolution of the distribution
of the maximum principal stress σ�

1 (at systole), computed on the basis of the mod-
ified Cauchy stress, as introduced in Eq. (18) (λpre = 1.028). The stress is pre-
sented in absolute numbers. Initially, the stress is rather evenly distributed over the
aneurysmal surface and reaches a value slightly below 0.5 MPa. As the aneurysm
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in Eq. (18) (λpre = 1.028).

evolves, the stresses increase monotonically. At all times, the peak stress appears
at the fundus. At t = 50tlf , the peak stress is almost 3.5 MPa. However, the stress
at the neck also reaches notable levels. The high stresses at the neck may, though,
to some extent be caused by the rigid boundary condition imposed there. In a real
aneurysm, that is situated in a more compliant environment, the stress concentra-
tion at the neck may not be as pronounced as here. The aneurysmal model also
predicts that the stresses over the aneurysmal surface may differ significantly. For
the most advanced state in Fig. 9 (t = 50tlf), the ratio between the highest stress
(at the fundus) and lowest stress (at S = 0.84R0) is about 5.6. The location of the
lowest stress roughly coincides with the peak in the thickness distribution in Fig. 8.

Figs 10(a) and (b) show some additional aspects of the maximum principal stress.
In Fig. 10(a), the stress distributions for the solutions of different values of λpre

are compared at a specific aneurysm size (z(S = 0) = 2R0) at systole. Thus,
at a certain aneurysm size, a lower value of λpre tends to cause a higher level of
stress in the aneurysmal wall. Since we are considering a membrane exposed to
a surface pressure, the Cauchy stresses in the aneurysmal wall are determined by
the principal curvatures of the membrane together with the current thickness of
the membrane. A lower value of λpre renders the aneurysmal wall more compliant.
Thus, for a given aneurysm size at systole, a more compliant aneurysmal wall will
have undergone larger deformations and thereby experienced a higher degree of
thinning (due to material incompressibility). This is probably the main reason why
lower values of λpre result in higher stresses for a given aneurysm size at systole.

In Fig. 10(b), the peak stress at the fundus σ�
1(S = 0) is plotted versus the aneurysm

size at systole. Again, solutions for different values of λpre are included. The ulti-
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versus aneurysm size at systole normalised by R0 for different values of λpre. Critical stress
range, obtained from experiments, is indicated.

mate stress of cerebral aneurysmal tissues have been obtained experimentally and
falls in a range of about 0.5-2.0 MPa (Humphrey, 2002; MacDonald et al., 2000).
This critical range is also indicated in Fig. 10(b). For the values of λpre consid-
ered in the present study, the critical aneurysm size at which rupture may be most
frequently expected is between R0 and 3R0. For our choice R0 = 1.2 mm, this
translates to a size of 1.2 to 3.6 mm in absolute numbers.

5 Discussion and concluding remarks

In the present paper, we have proposed a new theoretical model for the growth of
saccular cerebral aneurysms. More specifically, we have considered an axisymmet-
ric membranous piece of tissue, exposed to a surface pressure, and with material
characteristics representative for cerebral aneurysms. The new model is based upon
a previously presented model (Kroon and Holzapfel, 2007a,b), but there are some
important differences between them. In the previous model, we only considered two
deformed states, i.e. the state where fibres were deposited and the systolic state. In
the new model, however, we also introduce the diastolic state and the load-free
state. A key feature of the new model is that the collagen production rate of the
fibroblasts is governed by the cyclic deformation imposed on these cells during the
cardiac cycle, i.e. the cyclic deformation between the diastolic and systolic states.

It is a well established fact that biological cells respond to mechanical stimuli,
however, it is not clear whether cell reaction is triggered by mechanical stress or
mechanical deformation/strain (see Humphrey (2001) for a nice discussion on this
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topic). Correlating cell response with, say, the Cauchy stress (cf., for example, Baek
et al. (2006)) has the advantage that only knowledge of the current deformed state
(together with loads and boundary conditions) is required. On the other hand, the
use of a strain (deformation) measure requires knowledge of two states, since strain
is, by definition, defined as the deformation change between two states. Normally,
strain is defined as the deformation change between a reference state and the cur-
rent deformed state. However, for growing soft biological tissues, a reference con-
figuration can, in general, not be defined in a meaningful way since the load-free
configuration is continuously updated. However, in the present paper, we use the
deformation between the diastolic and systolic states and correlate cell (fibroblast)
response with the magnitude of this cyclic deformation. Thus, the present paper
is an important contribution to the ongoing discussion of the mechanical sensing
of cells since we show that a well-defined deformation measure – a measure that
is in principle obtainable without knowledge of any reference configuration – can
indeed be obtained and correlated with mechanical sensing and resulting activity of
biological cells.

In the present study, we use membrane theory to model the aneurysm wall. The ap-
plicability of membrane theory is determined by the ratio of the wall thickness over
the radius of the aneurysm. Initially, this ratio is 30 μm/1.2 mm= 0.025, which
means that the use of membrane theory is reasonably justified. For the numerical
example that we show, this ratio has increased to 0.045 at the end of the analy-
sis. Thus, due to the (finite) wall thickness of cerebral aneurysm walls, bending
stresses will be present, however, they will probably be very small in comparison
to (normal) membrane stresses.

The model includes a number of parameters. Most of these can be estimated fairly
well on the basis of experimental surveys. Two parameters, however, are difficult
to obtain (from the literature), namely the collagen life-time tcl and the pre-stretch
λpre of the collagen fibres. The collagen life-time essentially sets the time-scale
of the aneurysmal growth process. The collagen pre-stretch λpre determines both
the growth speed of the aneurysm and its stability properties. Hence, the collagen
pre-stretch is of pivotal importance within the growth process. A numerical study
was performed, and the results indicate that λpre should be roughly of the order
1.02-1.04. For lower values in this range, the growth process would continue at an
accelerating speed, and for higher values, the process would decelerate and even
cause the aneurysm to shrink back to a configuration close to its original reference
state. This may actually be interpreted as a recovery of the arterial wall.

In experimental studies, single fibroblasts have been placed on 2D collagen gels,
and fibroblasts have then been observed to contract the collagen gel with up to
15-20% (Engler et al., 2004). This would enable a pre-stretching of collagen fi-
bres considerably higher than the pre-stretches used in the present study. However,
this experimental result was for a 2D surface, which is easier to contract than a 3D
matrix (provided that the stiffness of the material is the same). In addition, the max-
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imum contraction that the fibroblast is able to impose on the ECM only serves as
an upper limit to the pre-stretching of collagen fibres, and the actual pre-stretching
by which fibres are attached may well be lower than this number.

In the predicted stress distributions over the aneurysmal surface, the peak stress al-
ways appears at the fundus, which makes sense since real aneurysms tend to rupture
at this location (Canham et al., 2006). The ultimate stress of tissues from cerebral
aneurysms have been experimentally obtained, and this fact allowed us to predict
the size range for which the aneurysm could be expected to fail, see Fig. 10(b).
It was predicted that aneurysms should fail approximately in the size range 1.2
to 3.6 mm. However, aneurysms usually do not rupture when smaller than 10 mm
in size (Austin et al., 1993; Rinkel et al., 1998; Wiebers et al., 1981). Hence, the
predicted range is below what has been observed clinically. As discussed earlier,
the Cauchy stresses in the aneurysmal wall are determined by the principal cur-
vatures of the membrane together with the current thickness. One reason why the
stresses are overestimated in the model could be that the thickness of the aneurys-
mal wall is underestimated by the model. Another reason could be that the shape of
the aneurysm is somewhat misrepresented by the axisymmetric model used here,
leading to inaccurate surface curvature predictions.

Even though the size of the aneurysm is currently used as an indicator to determine
the risk of rupture, it has been suggested that the growth rate of the aneurysm
may also be a strong indicator of the rupture risk (Imaizumi et al., 2002; Kamitani
et al., 1999). The growth rate of the present model aneurysm depends strongly on
the life-time of the collagen fibres. In principle, the collagen life-time tcl could
be estimated if accurate growth rate data from clinical studies on aneurysms were
available. Such data do in fact exist, but the scatter in these growth rate data is
enormous. Yamaki et al. (1986), for example, report about a cerebral aneurysm that
enlarged from 2 mm to 15 mm in only 24 days, whereas Imaizumi et al. (2002)
report of an aneurysm that grew from about 4 mm to 10 mm in one year. Kamitani
et al. (1999) study the growth rate of a large population of unruptured cerebral
saccular aneurysms. They report growth rates ranging from 1% up to 120% of size
increase per year. The aneurysms in this study had sizes in the range of 2.0 to
25 mm. Thus, the wide scatter in growth rate data makes a general estimation of
tcl less meaningful. However, it may still be possible to make an estimation for a
specific aneurysm, and in this way be able to predict the future growth scenario of
that particular lesion. For example, if the geometry of a detected aneurysm is known
at two stages of its history with, say, a year between measurements, the proposed
growth model could be applied to estimate the future growth of this aneurysm. This
kind of prediction could actually help clinicians decide whether or not the aneurysm
is or will become critical or not.

In summary, a new theoretical model for the growth of saccular cerebral aneurysms
has been proposed. The continuous turnover of collagen is taken to be the driv-
ing mechanism in aneurysmal growth, and the collagen production depends on the
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cyclic deformation of fibroblasts, that are taken to be spread throughout the tissue.
The model is able to predict aneurysms with the berry-like shape often observed
clinically, and the predicted wall stresses correlate well with the experimentally ob-
tained ultimate stresses of this kind of tissue. The pre-stretch λpre, by which newly
produced collagen is deposited, turns out to be of pivotal importance for growth
stability and growth speed of the aneurysm.
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