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A new theoretical model for the growth of saccular cerebral aneurysms is proposed by extending the recent constitutive framework of Kroon and Holzapfel (J. Theor. Biol., 247:775-787, 2007). The continuous turnover of collagen is taken to be the driving mechanism in aneurysmal growth. The collagen production rate depends on the magnitude of the cyclic deformation of fibroblasts, caused by the pulsating blood pressure during the cardiac cycle. The volume density of fibroblasts in the aneurysmal tissue is taken to be constant throughout the growth process. The growth model is assessed by considering the inflation of an axisymmetric membranous piece of aneurysmal tissue, with material characteristics representative of a cerebral aneurysm. The diastolic and systolic states of the aneurysm are computed, together with its load-free state. It turns out that the value of collagen pre-stretch, that determines growth speed and stability of the aneurysm, is of pivotal importance. The model is able to predict aneurysms with typical berry-like shapes observed clinically, and the predicted wall stresses correlate well with the experimentally obtained ultimate stresses of this type of tissue. The model predicts that aneurysms should fail when reaching a size of about 1.2-3.6 mm, which is smaller than what has been clinically observed. With some refinements, the model may, however, be used to predict future growth of diagnosed aneurysms.

Introduction

Rupture of an intracranial aneurysm and the resulting subarachnoid hemorrhage are serious events associated with high rates of mortality and morbidity. About 50% of patients die within one month after the event, and of those who survive more than one third have major neurologic deficits [START_REF] Brisman | Cerebral aneurysms[END_REF][START_REF] Schievink | Intracranial aneurysms[END_REF]. Aneurysms are a common pathology only in human arteries and in some primates A c c e p t e d m a n u s c r i p t [START_REF] Canham | Collagen organization and biomechanics of the arteries and aneurysms of the human brain[END_REF], and intracranial aneurysms are more prevalent in females than in males [START_REF] Mettinger | Fibromuscular dysplasia and the brain. II. Current concept of the disease[END_REF]. Intracranial aneurysms usually do not rupture if they are less than 10 mm in diameter [START_REF] Austin | The significance of the extracellular matrix in intracranial aneurysms[END_REF][START_REF] Rinkel | Prevalence and risk of rupture of intracranial aneurysms[END_REF][START_REF] Wiebers | The natural history of unruptured intracranial aneurysms[END_REF], and at clinical centres, cerebral aneurysms are considered as critical when their size is roughly larger than 5 mm. Considerable evidence supports the role of genetic factors in the pathogenesis of intracranial aneurysms [START_REF] Schievink | Intracranial aneurysms[END_REF], but other factors, such as hemodynamic stress at arterial bifurcations, congenital medial defects, degenerative arterial wall changes, smooth muscle cell apoptosis, smoking and excessive alcohol consumption are also believed to contribute to aneurysmal development [START_REF] Chen | Natural history and general management of unruptured intracranial aneurysms[END_REF][START_REF] Feigin | Risk factors for subarachnoid hemorrhage[END_REF][START_REF] Matsubara | Incidence and risk factors for the growth of unruptured cerebral aneurysms: observation using serial computerized tomography angiography[END_REF][START_REF] Pentimalli | Role of apoptosis in intracranial aneurysm rupture[END_REF][START_REF] Wermer | Follow-up screening after subarachnoid haemorrhage: frequency and determinants of new aneurysms and enlargement of existing aneurysms[END_REF]. Once detected, the changes of the aneurysmal wall are already advanced or have been modified with other factors such as atherosclerosis [START_REF] Kondo | Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats[END_REF], and little is therefore known about the details of how they originate, grow, and rupture [START_REF] Jamous | Vascular corrosion cases mirroring early morphological changes that lead to the formation of saccular cerebral aneurysm: an experimental study in rats[END_REF]. In order to shed some light upon the development process of cerebral aneurysms, a number of animal model aneurysms have been developed [START_REF] Aassar | Aneurysm growth, elastinolysis, and attempted doxycycline inhibition of elastase-induced aneurysms in rabbits[END_REF][START_REF] Espinosa | Rupture of an experimentally induced aneurysm in a primate[END_REF][START_REF] Hashimoto | Animal model of cerebral aneurysms: pathology and pathogenesis of induced cerebral aneurysms in rats[END_REF][START_REF] Kamphorst | Pathological changes in experimental saccular aneurysms in the carotid artery of the rat[END_REF][START_REF] Kim | Spontaneous saccular cerebral aneurysm in a rat[END_REF][START_REF] Kim | Alterations in cerebral vessels in experimental animals and their possible relationship to the development of aneurysms[END_REF][START_REF] Kojima | Early changes of experimentally induced cerebral aneurysms in rats: scanning electron microscopic study[END_REF][START_REF] Kondo | Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats[END_REF][START_REF] Miskolczi | Saccular aneurysm induction by elastase digestion of the arterial wall: a new animal model[END_REF]Zhang et al., 2003). These models may give some guidance concerning the development process, but it remains unclear to what extent these models actually reflect the etiology of human aneurysms.

Cerebral arteries are muscular arteries having significantly less elastin in the media (than elastic arteries) and lacking the external elastic lamina. Most bifurcations of the cerebral vasculature are structurally stable, but a small number develop a weakness that causes the wall to expand outwardly in the region near the flow divider of the branching artery [START_REF] Austin | The significance of the extracellular matrix in intracranial aneurysms[END_REF][START_REF] Macdonald | Directional wall strength in saccular brain aneurysms from polarized light microscopy[END_REF][START_REF] Rowe | Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy[END_REF]. Some measurements of the macroscopic mechanical properties of cerebral arteries and aneurysms exist [START_REF] Coulson | Mechanical properties of rat middle cerebral arteries with and without myogenic tone[END_REF][START_REF] Monson | Axial mechanical properties of fresh human cerebral blood vessels[END_REF][START_REF] Monson | Significance of source and size in the mechanical response of human cerebral blood vessels[END_REF][START_REF] Scott | Comparison of the elastic properties of human intracranial arteries and aneurysms[END_REF][START_REF] Steiger | Pathophysiology of Development and Rupture of Cerebral Aneurysms[END_REF][START_REF] Tóth | Sterically inhomogenous viscoelastic behavior of human saccular cerebral aneurysms[END_REF][START_REF] Tóth | Analysis of mechanical parameters of human brain aneurysm[END_REF] and the structural organisation of these tissues is fairly well documented (Canham et al., 1991b[START_REF] Canham | Effect of pressure on circumferential order of adventitial collagen in human brain arteries[END_REF][START_REF] Canham | Stereological analysis of the layered collagen of human intracranial aneurysms[END_REF][START_REF] Canham | Layered structure of saccular aneurysms assessed by collagen birefringence[END_REF][START_REF] Finlay | Fabric organization of the subendothelium of the human brain artery by polarized-light microscopy[END_REF][START_REF] Finlay | Three-dimensional collagen organization of human brain arteries at different transmural pressures[END_REF][START_REF] Finlay | Collagen organization in the branching region of human brain arteries[END_REF][START_REF] Hassler | Scanning electron microscopy of saccular intracranial aneurysms[END_REF][START_REF] Macdonald | Directional wall strength in saccular brain aneurysms from polarized light microscopy[END_REF][START_REF] Rowe | Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy[END_REF][START_REF] Smith | Orientation of collagen in the tunica adventitia of the human cerebral artery measured with polarized light and the universal stage[END_REF][START_REF] Whittaker | The molecular organization of collagen in saccular aneurysms assessed by polarized light microscopy[END_REF]. In the aneurysmal wall, the tunica media and the internal elastic lamina have often disappeared or are severely fragmented [START_REF] Abruzzo | Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms[END_REF][START_REF] Sakaki | Loss and apoptosis of smooth muscle cells in intracranial aneurysms. Studies with in situ DNA end labeling and antibody against single-stranded DNA[END_REF][START_REF] Stehbens | Ultrastructure of aneurysms[END_REF][START_REF] Suzuki | Clinicopathological study of cerebral aneurysms. Origin, rupture, repair and growth[END_REF][START_REF] Tóth | Sterically inhomogenous viscoelastic behavior of human saccular cerebral aneurysms[END_REF]. In either case, these layers do not seem to contribute significantly to the structural integrity of the aneurysmal wall. Thus, the wall of saccular cerebral aneurysms can roughly be described as a development of the adventitia of the original healthy artery [START_REF] Abruzzo | Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms[END_REF][START_REF] Scanarini | Histological and ultrastructural study of intracranial saccular aneurysmal wall[END_REF][START_REF] Schievink | Intracranial aneurysms[END_REF]. In the media of a healthy cerebral artery, the smooth muscle and collagen components are almost perfectly aligned in the circumferential direction of the artery [START_REF] Finlay | Three-dimensional collagen organization of human brain arteries at different transmural pressures[END_REF][START_REF] Walmsley | Interrelationships among wall structure, smooth muscle orientation, and contraction in human major cerebral arteries[END_REF], whereas the collagen of the adventitia (which dominates the mechanical behaviour of this layer) shows a dispersion from the circumferential to the longitudinal orientation [START_REF] Finlay | Three-dimensional collagen organization of human brain arteries at different transmural pressures[END_REF][START_REF] Smith | Orientation of collagen in the tunica adventitia of the human cerebral artery measured with polarized light and the universal stage[END_REF].

A c c e p t e d m a n u s c r i p t

The wall of an aneurysm is a living and metabolising structure, able to add to and reinforce itself. Enlargement does not necessarily imply thinning, because new collagen is added as the aneurysm expands. Collagen is a major component of blood vessels, and Type I and III collagen together represent about 80-90% of the total arterial collagen [START_REF] Majamaa | Synthesis of structurally unstable type III procollagen in patients with cerebral artery aneurysm[END_REF]. The growth of aneurysms is associated with an increased collagen turnover [START_REF] Mimata | Differential distribution and expressions of collagens in the cerebral aneurysmal wall[END_REF]. Collagen is produced by fibre-producing cells such as fibroblasts and smooth muscle cells, and collagen degradation is accomplished by collagenases [START_REF] Dobrin | Elastase, collagenase, and the biaxial elastic properties of dog carotid artery[END_REF][START_REF] Murphy | Current views of collagen degradation[END_REF]. Increased levels of collagenases have also been observed in aneurysmal tissue [START_REF] Aassar | Aneurysm growth, elastinolysis, and attempted doxycycline inhibition of elastase-induced aneurysms in rabbits[END_REF][START_REF] Anidjar | Correlation of inflammatory infiltrate with the enlargement of experimental aortic aneurysms[END_REF][START_REF] Mcmillan | In situ localization and quantification of seventy-two-kilodalton type IV collagenase in aneurysmal, occlusive, and normal aorta[END_REF][START_REF] Sluijter | Increased collagen turnover is only partly associated with collagen fiber deposition in the arterial response to injury[END_REF][START_REF] Webster | Collagen stability and collagenolytic activity in the normal and aneurysmal human abdominal aorta[END_REF]. The production of collagen (Type I) in cerebral aneurysms is mainly accomplished by fibroblasts [START_REF] Eastwood | Fibroblast responses to mechanical forces[END_REF][START_REF] Espinosa | Rupture of an experimentally induced aneurysm in a primate[END_REF][START_REF] Kamphorst | Pathological changes in experimental saccular aneurysms in the carotid artery of the rat[END_REF][START_REF] Sluijter | Increased collagen turnover is only partly associated with collagen fiber deposition in the arterial response to injury[END_REF][START_REF] Tóth | Sterically inhomogenous viscoelastic behavior of human saccular cerebral aneurysms[END_REF], and these cells therefore play a key role in aneurysmal growth. Fibroblasts produce and organise the extracellular matrix (ECM). Conversely, the ECM influences the development, shape, migration, proliferation, survival, and function of the fibroblasts. The fibroblast belongs to the group of adherent cells, and attaches to the ECM by integrins [START_REF] Cukierman | Taking cellmatrix adhesions to the third dimension[END_REF][START_REF] Jiang | Cell-matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices[END_REF]. The mobility of the fibroblast and its ability to contract the ECM are important properties in the maintenance of the ECM [START_REF] Barocas | The fibroblast-populated collagen microsphere assay of cell traction force -Part 2: Measurement of the cell traction parameter[END_REF][START_REF] Dembo | Stresses at the cell-to-substrate interface during locomotion of fibroblasts[END_REF][START_REF] Eastwood | Fibroblast responses to mechanical forces[END_REF][START_REF] Friedl | The biology of cell locomotion within threedimensional extracellular matrix[END_REF][START_REF] Friedrichs | Cellular remodeling of individual collagen fibrils visualized by time-lapse AFM[END_REF][START_REF] Grinnell | Fibroblast biology in three-dimensional collagen matrices[END_REF][START_REF] Lo | Cell movement is guided by the rigidity of the substrate[END_REF][START_REF] Poole | Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces[END_REF]. The fibroblast also has the ability to align itself in the direction of existing collagen fibres and to produce new collagen that is aligned in the same direction [START_REF] Birk | Collagen fibrillogenesis in situ. Discontinuous segmental assembly in extracellular compartments[END_REF][START_REF] Cisneros | Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy[END_REF][START_REF] Friedrichs | Cellular remodeling of individual collagen fibrils visualized by time-lapse AFM[END_REF][START_REF] Huang | Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices[END_REF][START_REF] Lin | Imaging real-time proteolysis of single collagen I molecules with an atomic force microscope[END_REF][START_REF] Meshel | Basic mechanism of three-dimensional collagen fibre transport by fibroblasts[END_REF][START_REF] Tóth | Sterically inhomogenous viscoelastic behavior of human saccular cerebral aneurysms[END_REF]. Furthermore, the activity of adherent cells is strongly dependent upon mechanical stimuli from the surrounding ECM [START_REF] Pelham | Cell locomotion and focal adhesions are regulated by substrate flexibility[END_REF][START_REF] Weyts | Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation[END_REF]. More specifically, cyclic deformation (which fibroblasts embedded in an arterial wall are exposed to) is known to influence the proliferation and collagen production rate of fibroblasts [START_REF] Butt | Mechanical load and polypeptide growth factors stimulate cardiac fibroblast activity[END_REF][START_REF] Eastwood | Fibroblast responses to mechanical forces[END_REF][START_REF] Lee | The combined regulation of estrogen and cyclic tension on fibroblast synthesis derived from anterior cruciate ligament[END_REF][START_REF] Wille | Cellular and matrix mechanics of bioartificial tissues during continuous cyclic stretch[END_REF][START_REF] Wu | Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals[END_REF], and both of these factors are important for the growth of aneurysmal tissue.

Several theoretical studies related to growth and remodelling of arterial tissue have been presented (e.g. [START_REF] Baek | A theoretical model of enlarging intracranial fusiform aneurysms[END_REF]; [START_REF] Humphrey | A constrained mixture model for growth and remodeling of soft tissues[END_REF]; Kroon and Holzapfel (2007a,b); [START_REF] Rachev | Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure[END_REF]; [START_REF] Ryan | Finite element based predictions of preferred material symmetries in saccular aneurysms[END_REF]; [START_REF] Taber | Stress-modulated growth, residual stress, and vascular heterogeneity[END_REF]; [START_REF] Watton | A mathematical model for the growth of the abdominal aortic aneurysm[END_REF]). In the present paper, we propose a new theoretical model for the growth of human cerebral saccular aneurysms. The approach has a few similarities with a model previously proposed by Kroon and Holzapfel (2007a), but the present model has some important novelties. The model rests on the assumption that collagen is the only load-bearing constituent in the aneurysmal wall and that the continuous turnover of collagen is the driving mechanism for aneurysmal growth. The collagen is produced by fibroblasts, which are dispersed throughout the aneurysmal wall. The collagen production rate is taken to depend upon the number of fibroblasts available and the average production rate of In Section 2, we introduce the necessary continuum mechanics framework and give a detailed description of the model. To evaluate the proposed model, we use an axisymmetric membrane exposed to a surface pressure. The geometry, the finite element implementation, and the initial conditions of this numerical example is outlined in Section 3. In Section 4, we present some numerical results, which are further discussed and evaluated in the concluding Section 5.

A theoretical model for fibroblast-controlled growth and remodelling of thin aneurysmal tissue

The wall of a saccular cerebral aneurysm is modelled as a hyperelastic membrane, whose constitutive behaviour is governed by a 3D strain-energy function Ψ. We assume that collagen is the only load-bearing constituent in the aneurysmal wall, which is taken to be a development of the adventitia of the original healthy arterial wall. Remnants of media, internal elastic lamina, and intima may well still be present in the aneurysm, but are considered not to give any significant contribution to the mechanical strength of the aneurysmal wall. The continuous turnover of collagen is the driving mechanism for aneurysmal remodelling and growth. This remodelling and turnover of collagen is assumed to be accomplished by fibroblasts, which are spread throughout the collagen network.

Continuum mechanics framework

Consider the membrane in Fig. 1. We introduce a reference frame of right-handed, rectangular coordinate axes at a fixed origin with orthonormal basis vectors e i , i = 1, 2, 3. The position vector X in the reference configuration Ω 0 is given as

X = X i e i , ( 1 
)
where X i are the referential coordinates and are considered as being along the axes introduced. The position vector x in the current configuration Ω is

x = x i e i , (2) 
where x i denote the related spatial coordinates. The same reference frame for the reference and current configurations was used. 
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Fig. 1. The membrane in the reference configuration Ω 0 and its reference frame of rectangular coordinate axes at a fixed origin with orthonormal basis vectors e i , i = 1, 2, 3. The referential and the spatial coordinates are labelled as X i and x i , respectively, while ζ 1 and ζ 2 are the convected coordinates, and ζ 3 is a coordinate oriented normal to the membrane surface.

The displacement vector u is then defined as 

u = x -X = u i e i . ( 3 
(•), α = ∂(•) ∂ζ α . ( 4 
)
We define the deformation gradient F for this membrane according to

F = ∂x i ∂ζ α e i ⊗ a α . ( 5 
)
The loading imposed on the aneurysm is caused by the blood pressure p in the parent artery. The pressure in a blood vessel varies in a pulsating manner, where the lowest pressure (at diastole) is denoted p dia and the highest pressure (at systole) is denoted p sys . We consider four different deformed configurations, see Fig. 2. Three of these configurations, Ω lf , Ω dia and Ω sys , are associated with the applied pressure A c c e p t e d m a n u s c r i p t loads p = 0 + , p = p dia and p = p sys , respectively. The configuration Ω lf defines the load-free state of the aneurysm when an infinitesimally small pressure p = 0 + is applied. (As will be evident later on, an applied pressure p = 0 would allow for an infinite number of possible deformation states, and therefore p = 0 + is required in order to uniquely define the load-free state.) Due to the continuous remodelling of the collagen, the load-free configuration Ω lf will, in general, not coincide with the reference configuration Ω 0 . Since collagen fibres are continuously deposited as the aneurysm evolves and grows, fibres, deposited at different times, will have different natural configurations. In order to account for this, we also introduce a fourth deformed configuration, say Ω dep , at which a specific fibre is deposited.

F sys F lf F dia * F dep F' sys F fb Ω 0 Ω dep Ω lf Ω dia Ω sys F sys * F dia F' lf F' dia dia dia * Ω 0 Ω dep Ω lf Ω dia Ω sys ' lf F F sys * F cc F sys F lf F dep F F ' dia F ' sys F p = 0 + p = p dia p = p sys
The total deformation gradient F is decomposed according to Fig. 2, where F is evaluated in the four deformed configurations Ω lf , Ω dia , Ω sys and Ω dep . We emphasise, that the deformation gradients in Fig. 2 do not signify mappings of whole configurations, but rather linear mappings of line elements within the configurations. The deformation gradients F lf , F dia and F sys describe the deformations from the reference configuration Ω 0 to the load-free (Ω lf ), the diastolic (Ω dia ) and the systolic (Ω sys ) states, respectively. The deformation gradients

F dia = F dia F -1 lf and F sys = F sys F -1
lf denote the deformations experienced by the aneurysmal wall from the load-free configuration Ω lf to the diastolic Ω dia and systolic Ω sys states, respectively. The entities F dia and F sys are introduced in order to quantify the actual deformation experienced by the aneurysmal wall at a certain point of time. The entity

F cc = F sys F -1
dia is the deformation from the diastolic state Ω dia to the systolic state

A c c e p t e d m a n u s c r i p t

Ω sys , quantifying the cyclic deformation of the tissue during the cardiac cycle (the index 'cc' stands for 'cardiac cycle'). For all of the deformation gradients defined above, dependence on time t and X is understood.

The deformed configuration Ω dep is introduced in order to track the deformations of individual collagen fibres. The deformation gradient F dep = F(t dep ) is the deformation at time t dep at which a specific fibre is deposited. The deformations

F lf = F lf F -1 dep , F dia = F dia F -1 dep and F sys = F sys F -1
dep quantify the subsequent deformation experienced by this particular fibre in the load-free, the diastolic and the systolic states, respectively. Thus, F lf , F dia and F sys will depend on t, t dep and X. The configurations Ω lf , Ω dia and Ω sys will evolve with time t as the aneurysm grows, and at each time t a range of fibres with different natural configurations Ω dep will be active and contribute to the structural integrity of the aneurysmal wall.

The deformation gradient can be decomposed into a rotation R and a material stretch U, according to F = RU, and the associated right Cauchy-Green deformation tensor is then obtained as C = F T F = U 2 [START_REF] Holzapfel | Nonlinear Solid Mechanics[END_REF]. In general, the total deformation gradient F may be decomposed into

F = F 2 F 1 , where F 1 = R 1 U 1 and F 2 = R 2 U 2 .
However, we instead choose to express the total deformation gradient as F = R 2 U 2 U 1 , i.e. as two material stretches U 1 and U 2 followed by a single rotation R 2 . Thus, the first deformation is taken to be a pure material stretch and all rotations of the total deformation are confined to the rotation R 2 . The following decompositions are now introduced:

Ω lf : F lf = R lf U lf , Ω dia : F dia = R dia U dia = R dia U dia U lf , Ω sys : F sys = R sys U sys = R sys U sys U lf = R cc U cc U dia , ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ (6) 
and

Ω lf : F lf = R lf U lf U dep , Ω dia : F dia = R dia U dia U dep , Ω sys : F sys = R sys U sys U dep . ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ (7) 
The associated decompositions of C are then 

Ω lf : C lf = U 2 lf , Ω dia : C dia = U 2 dia = U lf C dia U lf , Ω sys : C sys = U 2 sys = U lf C sys U lf = U dia C cc U dia , ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ ( 
Ω lf : C lf = U dep C lf U dep , Ω dia : C dia = U dep C dia U dep , Ω sys : C sys = U dep C sys U dep , ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ (9)
where the orthogonality property for the rotation tensor R and the symmetry of the material stretch tensor U have been used in addition to the property C = U 2 . From the expressions above we can now compute

C dia = U -1 lf C dia U -1 lf , C sys = U -1 lf C sys U -1 lf , C cc = U -1 dia C sys U -1 dia , C dia = U -1 dep C dia U -1 dep , and C sys = U -1 dep C sys U -1
dep . These entities will be actually used in the computations to follow. Thus, the type of decomposition used here (on the form F = R 2 U 2 U 1 ) allows us to express all needed deformation measures purely in terms of material stretches related to the reference configuration. Note that all material stretches are defined with respect to the local reference frame defined by the basis vectors a i , see Fig. 1.

Constitutive model

We now consider the structure of the aneurysmal tissue. The aneurysmal wall is assumed to consist of n discrete and distinct layers of collagen fibres (plies that form a laminate). Thus, from a mechanical point of view, the structural organisation and properties of the collagen completely determine the mechanical response of the aneurysmal wall. Within a layer (ply) with index i, the collagen fibres and the embedded fibroblasts are perfectly aligned in a direction φ i , defined with respect to the local reference coordinate system, see Fig. 3. There is a continuously ongoing process of production and degradation of collagen within each layer, and this turnover is accomplished by the fibroblasts. Since the fibroblasts are oriented in the same direction φ i as the collagen fibres, newly produced collagen is deposited in that direction as well, and the orientation of the fibres in the different layers is, therefore, preserved during the growth process.

The aneurysmal wall is assumed to have a constant total initial thickness H 0 in Ω 0 and each collagen layer is assigned an initial thickness of H 0 /n. The fibre angles φ i are defined according to

φ i = i -1 n π, 1 ≤ i ≤ n, ( 10 
)
where the fibre orientations are thus uniformly distributed over the whole azimuthal range and n ≥ 2 provides the even number of tissue layers.

Due to the pulsating blood pressure, the aneurysmal tissue -and thereby the embedded fibroblasts -is exposed to cyclic deformation, quantified by the entity is assumed to be governed by the magnitude of the cyclic deformation of fibroblasts. In addition, fibroblasts are known to proliferate in growing tissue. We here assume that fibroblasts proliferate in order to maintain a constant fibroblast density in the growing tissue. The current number of fibroblasts per unit reference volume is denoted n fb (t). This entity is taken to be constant through the tissue thickness and is expressed as

C cc = U -1 dia C sys U -1 dia ,
n fb (t) = n fb 0 J lf (t), (11) 
where n fb 0 = n fb (t = 0) is the concentration of fibroblasts in a healthy adventitia and J lf = detF lf . The mass production rate of collagen per unit reference volume in layer i, denoted ṁi (t), is now expressed as

ṁi (t) = n fb (t)β 0 (C cc i ) α . ( 12 
)
Thus, the collagen production rate ṁi (t) depends on the current concentration of fibroblasts n fb (t) and the cyclic deformation of these cells C cc i . The scalar C cc i is defined as

C cc i = C cc : A(φ i ),
where A(φ i ) = M ⊗ M is a structure tensor, and M is a vector with components M 1 = cos φ i , M 2 = sin φ i , M 3 = 0 defining the direction of the fibres in layer i in the reference configuration. The influence of the scalar C cc i on the collagen production rate is modulated by the exponent α. The parameter β 0 may roughly be interpreted as the mean collagen production rate per fibroblast of a healthy adventitia.

A c c e p t e d m a n u s c r i p t

Fibroblasts continuously produce and degrade collagen fibres in the ECM. During production, collagen fibrils are deposited outside the fibroblast cell, and these fibrils are then inserted into the surrounding ECM. We assume that collagen fibrils, produced at time t dep , are inserted in the configuration Ω sys , implying that F dep = F sys (t dep ). However, fibroblasts also have the ability to contract the surrounding ECM, and the new collagen fibrils are, therefore, attached to the remaining ECM in a pre-stretched state. With regards to aneurysmal growth (and tissue remodelling in general), this pre-stretching is a very important mechanism and needs to be accounted for. It appears that the tractions imposed by the fibroblasts on the ECM are roughly proportional to the current stiffness of the ECM [START_REF] Engler | Substrate compliance versus ligand density in cell on gel responses[END_REF]. Thus, we conjecture that collagen fibres, deposited at time t dep , are deposited in the configuration Ω sys with a constant pre-stretch λ pre . The total deformation C fib of the fibres in the layer i, deposited at time t dep , can then be expressed as

C fib = λ 2 pre C : A(φ i ), (13) 
where

C = U -1 dep (t dep )C(t)U -1 dep (t dep ).
The right Cauchy-Green tensors C and C (defined with respect to Ω 0 and Ω dep , respectively) are evaluated for the states Ω lf and Ω dia , Ω sys . Again, the entity C will, in general, depend on the location X, on current time t and on time of deposition t dep .

As a start, the strain energy ψ fib per unit mass stored in the fibres is characterised by a simple polynomial, accounting for the highly nonlinear response of the wave-like collagen. Thus,

ψ fib = μ(C fib -1) 3 , C fib ≥ 1, (14) 
where μ > 0 is a positive material parameter, associated with the stiffness of collagen fibres. Note that Eq. ( 14) is valid when the fibres are in tension or are unloaded (C fib ≥ 1), whereas the fibres are assumed to have zero stiffness in compression (C fib < 1).

The total strain energy Ψ(t) per unit reference volume is then obtained by integration according to

Ψ(t) = 1 n n i=1 Ψ i (t) = 1 n n i=1 t -∞ g(t, t dep ) ṁi (t, t dep )ψ fib (t, t dep )dt dep , ( 15 
)
where Ψ i (t) is the strain energy of layer i, and g is the life cycle function (cf. [START_REF] Humphrey | A constrained mixture model for growth and remodeling of soft tissues[END_REF]Kroon and Holzapfel, 2007a,b). This function g accounts for the turnover of the collagen fibres, and a simple pulse function is adopted according to

g(t, t dep ) = Θ(t -t dep ) -Θ(t -t dep -t cl ), (16) 

A c c e p t e d m a n u s c r i p t

where Θ(t) is the Heaviside step function, and t cl is the life-time of the collagen fibres. This formulation implies that collagen fibres are assumed to have the same mechanical properties from the moment they are deposited to the end of their life time. Maturation and degradation of collagen fibres are taken to occur instantly at t = t dep and t = t dep + t cl , respectively.

Membrane stresses are represented by a modified 2D second Piola-Kirchhoff stress tensor, with components defined as

S αβ = 2 ∂Ψ ∂C αβ , ( 17 
)
with

C = U -1 lf CU -1 lf .
The right Cauchy-Green tensors C and C (defined with respect to Ω 0 and Ω lf , respectively) are evaluated for the states Ω lf and Ω dia , Ω sys . Since we consider a membrane, we only evaluate in-plane stresses, and α and β therefore only take on the values 1 and 2. This modified stress measure is employed in order to obtain physically relevant stresses. A modified corotated Cauchy stress σ αβ is also defined as

σ αβ = H 0 H lf J U αγ S γδ U δβ , (18) 
where J = detU , and H lf is the current tissue thickness in the load-free state Ω lf .

In the deformation from Ω lf to the diastolic and systolic states we assume incompressibility, which requires that J ≡ 1. (J pertains to the fully 3D deformation of the tissue.) The tissue thickness will change as collagen is produced and degraded. By assuming that the volume density of collagen fibres in the load-free state Ω lf is constant, H lf can be estimated as

H lf = H 0 nλ 1 λ 2 n i=1 m i m 0 . ( 19 
)
where m i and m 0 denote the current and initial collagen mass content, respectively, and λ 1 and λ 2 are the in-plane principal stretches in the load-free state Ω lf . The determinant J lf in Eq. ( 11) may then consequently be estimated as 3 Numerical example: Inflation of an axisymmetric membrane

J lf = H lf λ 1 λ 2 H 0 = 1 n n i=1 m i m 0 , ( 20 

FE formulation for an axisymmetric membrane

A saccular cerebral aneurysm is here modelled as an axisymmetric membrane, which is hinged along its periphery and exposed to a (blood) pressure p. The membrane formulation used here is based on a work by [START_REF] Fried | Finite element computation of large rubber membrane deformations[END_REF] (also utilised by Kroon and Holzapfel (2007a) and [START_REF] Kyriacou | Finite element analysis of nonlinear orthotropic hyperelastic membranes[END_REF]), and a brief review of the formulation is provided below.

Consider the axisymmetric membrane, as illustrated in Fig. 4. The surface profile can be parameterised using coordinates S and s in the reference and current configurations, respectively. Coordinates R(S), Z(S), r(s), and z(s) denote cylindrical coordinates in the reference and current configurations, respectively. The membrane is hinged at R = R 0 . Boundary conditions are thus imposed according to

R = 0 : r = 0, R = R 0 : r = R 0 and z = 0, ⎫ ⎪ ⎬ ⎪ ⎭ (21) 
see Fig. 4.

Principal directions 1 and 2 coincide with the direction of s and the circumferential direction, respectively, as indicated in Fig. 4. The convected surface coordinates ζ 1 and ζ 2 , introduced in the previous section, are taken to coincide with the principal directions 1 and 2 in Fig. 4, respectively. The principal stretches in the plane of the
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membrane can be expressed as

λ 1 = ds dS = dr dS 2 + dz dS 2 , λ 2 = 2πr 2πR = r R . ( 22 
)
The potential energy Π of the membrane, inflated by a given constant pressure p is

Π = Ω 0 ΨdV -p ∂Ωσ u • da = π R 0 0 2R n i=1 H 0 n Ψ i -pr 2 dz dS dS, ( 23 
)
where Ψ is the total strain energy per unit volume of the membrane, Ω 0 is the reference region of the membrane, with the infinitesimal volume element dV defined in that region, and ∂Ω σ ⊂ ∂Ω is the current boundary surface on which the pressure boundary condition acts. The second term in Eq. ( 23) denotes the energy contribution due to the pressure p. In that term da = dan is a vector element of an infinitesimally small area defined in the current configuration, where n is the direction of the (pointwise) outward unit vector, which is perpendicular to the pressure loaded surface ∂Ω σ of the membrane region, and da is an infinitesimal surface element in the current configuration (see Fig. 4). The displacement vector is denoted by u. Making use of the symmetry conditions, the volume integrals can be recast into a one-dimensional form, as indicated in Eq. ( 23) 2 .

Equation ( 23) 2 is solved by using the finite element method with quadratic line elements. The membrane is discretised in the S direction by nodes distributed with a constant distance h in the reference configuration. The current geometry for an element is approximated according to

r(ξ) = 1 2 ξ(ξ -1)r 1 + (1 -ξ 2 )r 2 + 1 2 ξ(ξ + 1)r 3 , ( 24 
)
where ξ ∈ [-1, 1], and r 1 , r 2 and r 3 are the nodal values of r. In a similar way R and z are approximated. According to Eq. ( 23) 2 , the potential energy Π e for an element can thus be expressed as

Π e = π 1 -1 (2R n i=1 H 0 n Ψ i -pr 2 z 1 h )hdξ, (25) 
where (•) denotes differentiation with respect to ξ. Since S can be written as, e.g., S = S 0 + hξ, it follows that dS = hdξ. The integration in Eq. ( 25) is approximated using Gauss integration, i.e.

Π e ≈ πh 2 j=1 2R(ξ j ) n i=1 H 0 n Ψ i (ξ j ) -pr 2 (ξ j )z (ξ j ) 1 h , (26) 
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where ξ 1 , ξ 2 denote the coordinates for the Gauss points, and the related weights are 1. The approximated total potential energy is achieved by a summation over all elements. Nodal values for r and z are stored in a vector q = (r 1 , . . . , r nn z 1 , . . . , z nn ) T , where n n is the number of nodes in the model. To find the equilibrium state, the potential energy Π is minimised with respect to q using a Newton-Raphson scheme.

Initial conditions

Initial conditions are required for the strain-energy function. In a healthy artery, the load is mainly carried by the media, but as the media is degraded in a developing aneurysm, the load from the blood pressure is transferred to the adventitia. The initial conditions used here correspond to an instant transfer of the load from the media to the adventitia. Thus, in the half-closed time interval t ∈ (-∞, 0], the membrane is taken to have existed in the reference configuration with a surface pressure p = 0, with the collagen production rate ṁi and the deformation C fib in the fibres according to

ṁi (t ≤ 0) = n fb 0 β 0 [I : A(φ i )] α = n fb 0 β 0 , C fib (t ≤ 0) = λ 2 pre I : A(φ i ) = λ 2 pre , (27) 
respectively, where I is the unit tensor. Accordingly, using Eqs. ( 14) and ( 27) in Eq. ( 15), the strain energy per unit reference volume is for t ≤ 0

Ψ(t ≤ 0) = 1 n n i=1 t t-t cl n fb 0 β 0 μ(λ 2 pre -1) 3 dt dep = n fb 0 β 0 μ(λ 2 pre -1) 3 t cl . (28)

Computation of the load-free state Ω lf

From time t = 0 + and onwards, the membrane is exposed to a pressure load that pulsates between p dia and p sys , and the development of the aneurysm is initialised. The time-dependent aneurysmal growth process is discretised using a constant time increment Δt. It is emphasised, that the analysis is completely quasi-static, and we are not modelling the fully dynamic deformation that a real aneurysm undergoes during the cardiac cycle. Thus, at each time step, we compute the deformed states Ω dia and Ω sys for the applied loads p dia and p sys , respectively, and these states are used to predict the growth of the aneurysm, as described in the growth model presentation above. In addition, we need the load-free state Ω lf . However, finding Ω lf is not a trivial task. The collagen fibres are assumed to have zero stiffness in compression, which means that by trying to find the solution for p = 0 + we are approaching
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deformation states in which the material has zero stiffness. From a numerical point of view this is somewhat tricky.

Hence, we proceed as follows: when estimating the load-free state Ω lf we first apply a pressure of 0.2 p dia and compute the related deformed state Ω 0.2 . Hence, the nodal displacement vector q = (r 1 , . . . , r nn z 1 , . . . , z nn ) T is known for the three deformed states Ω 0.2 , Ω dia and Ω sys . Second, the nodal positions in the state Ω lf are established by an extrapolation from the nodal positions in the states Ω 0.2 , Ω dia and Ω sys . for a node with index i, six points are defined according to (0.2p dia , r i,0.2 ), (p dia , r i,dia ), (p sys , r i,sys ), (0.2p dia , z i,0.2 ), (p dia , z i,dia ), and (p sys , z i,sys ), denoting nodal displacements at the three different pressure levels considered. For the radial displacements, a curve of the form r = a 1 + a 2 exp(a 3 p) is fitted to the three points (0.2p dia , r i,0.2 ), (p dia , r i,dia ), (p sys , r i,sys ). When the fitting parameters a 1 , a 2 and a 3 have been determined, the radial displacement for the load-free state, r i,0 , can be estimated by evaluating the fitted curve for p = 0. In a similar way, another function on the same form is fitted to the points (0.2p dia , z i,0.2 ), (p dia , z i,dia ), (p sys , z i,sys ), and the vertical displacement for the load-free state, z i,0 , can then be estimated by again evaluating the fitted curve for p = 0. This procedure is repeated for all nodal displacements at all time steps.

Numerical results

Geometrical and physical parameters

The aneurysmal growth model includes a number of geometrical and physical entities that need to be specified. The systolic blood pressure in a human carotid artery is about 7.0 kPa [START_REF] Chatziprodromou | Haemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model[END_REF], and this pressure is taken to apply for a cerebral artery in the vasculature of the Circle of Willis. Assuming a ratio of 120/80 between the systolic and diastolic blood pressures under healthy conditions, gives the respective pressure levels of p sys = 7.0 kPa and p dia = 4.7 kPa.

The radius of a middle cerebral artery is about 1.2 mm, which gives the estimation R 0 = 1.2 mm [START_REF] Monson | Significance of source and size in the mechanical response of human cerebral blood vessels[END_REF], and the thickness of a healthy adventitia is about H 0 = 30μm [START_REF] Smith | Orientation of collagen in the tunica adventitia of the human cerebral artery measured with polarized light and the universal stage[END_REF]. The stiffness of the collagen fabric of the adventitia is accounted for by the factor n fb 0 β 0 μt cl = 3.3 MPa [START_REF] Monson | Significance of source and size in the mechanical response of human cerebral blood vessels[END_REF]. In the collagen production law (Eq. ( 12)), the exponent may be estimated to α = 3.0 [START_REF] Lee | The combined regulation of estrogen and cyclic tension on fibroblast synthesis derived from anterior cruciate ligament[END_REF]. There are two parameters that are difficult to estimate, namely the life-time t cl of the collagen fibres and the pre-stretch λ pre of collagen fibres. The collagen life-time sets the time-scale for the aneurysmal growth process and may be found in the range of 6 to 180 days [START_REF] Humphrey | Remodeling of a collagenous tissue at fixed lengths[END_REF]. Aneurysmal tissue is known to exhibit a higher rate of collagen turnover than healthy tissue [START_REF] Abdul-Hussien | Collagen degradation in the abdominal aneurysm: a conspiracy of matrix metalloproteinase and cysteine collagenases[END_REF]. The collagen pre-stretch λ pre is very important for the mechanical behaviour of the aneurysmal wall, and in the following numerical investigation a particular emphasis is therefore put on the influence of this parame- ter on the overall mechanical response. In the following numerical study, the time scale is normalised by the collagen life-time t cl , and the time increment used in the computations was Δt = 0.01t cl .

Numerical analysis of aneurysmal growth

We start to explore some of the general features of the proposed growth model. Figure 5 shows how the aneurysm evolves with time for a case with λ pre = 1.028. The geometry of the aneurysm is normalised with the initial radius R 0 , and the aneurysm is shown at six different stages of development. At each stage, the three configurations Ω lf , Ω dia , Ω sys are shown. The size of the aneurysm increases approximately linearly with time, and after a time of 50t cl it has reached a size of about 5R 0 (both in terms of height and maximum diameter). This corresponds to a size of 6 mm (R 0 = 1.2 mm). Since the life-time of collagen fibres is about 6-180 days, the time 50t cl thus corresponds to 300 days to about 25 years. At all time stages in Fig. 5, the diastolic and systolic states are quite close to each other, whereas the load-free states are more easily distinguishable.

The aneurysmal growth model depends strongly on the parameter λ pre . Figure 6 shows how the size of the aneurysm evolves with time for different values of λ pre . The size of the aneurysm is quantified in terms of the displacement of the fundus in the z-direction at systole. For λ pre = 1.028, the aneurysm grows with an approximately constant speed. For values of λ pre lower than this, the growth speed increases in an accelerating manner, whereas for values of λ pre higher than 1.028, the size of the aneurysm reaches a peak and then starts shrinking. This type of shrink- ing appears when the contractile 'force' caused by the pre-stretching of fibres is stronger than the applied blood pressure. Conversely, for values of λ pre lower than 1.028, this contractile force is too weak to prevent accelerating aneurysm growth.

Figures 7(a) and (b) show the growth speed ż of the fundus in the z-direction at systole in some more detail. The growth speed is normalised by the entity R 0 /t cl . Figure 7(a) shows the growth speed as a function of time, and Fig. 7(b) shows it as a function of aneurysm size. As noted previously, the growth speed for λ pre = 1.028 is fairly constant, whereas for values of λ pre lower or higher than this leads to accelerating or decelerating growth, respectively. Initially, there is a pronounced peak in the growth speeds in both Figs 7(a) and (b). This peak appears as the aneurysm passes from a resting reference state (t ≤ 0), with no blood pressure applied, to a mode where it pulsates between the diastolic and systolic states (t > 0). This instant application of the blood pressure is convenient for the present analysis but somewhat artificial, as are the initial growth speeds.

Initially, the aneurysm (or adventitia) has a uniform thickness H 0 , but due to the addition of new material, the thickness distribution will change and become inhomogeneous. This phenomenon is illustrated in Fig. 8, where the ratio H lf /H 0 is displayed as a function of the curvilinear coordinate S (normalised by R 0 ) for the case with λ pre = 1.028. Note that S/R 0 is zero at the fundus of the aneurysm and unity at the neck. Figure 8 shows the distribution of H lf /H 0 at six different times. For t = 0, no net growth has yet occurred, and the ratio equals unity. The thickness of the aneurysm increases monotonically with time up to t = 50t cl , and by then it has reached a maximum ratio of almost H lf /H 0 = 9, implying that H lf = 270μm. After a time of about 20t cl , a peak in the thickness distribution may be observed. During the subsequent development of the aneurysm, this peak becomes more and more pronounced. At t = 50t cl , there is a distinct thickness peak located at approximately S = 0.8R 0 . The thickness increase is actually lowest at the neck of the aneurysm. The ratio between the highest and lowest thickness at t = 50t cl is about 2.5.

Another field parameter of interest is the true (Cauchy) stress of the aneurysmal wall. For the present growth model, the maximum principal stress is always oriented in the principal direction 1. Figure 9 shows the evolution of the distribution of the maximum principal stress σ 1 (at systole), computed on the basis of the modified Cauchy stress, as introduced in Eq. ( 18) (λ pre = 1.028). The stress is presented in absolute numbers. Initially, the stress is rather evenly distributed over the aneurysmal surface and reaches a value slightly below 0.5 MPa. As the aneurysm evolves, the stresses increase monotonically. At all times, the peak stress appears at the fundus. At t = 50t lf , the peak stress is almost 3.5 MPa. However, the stress at the neck also reaches notable levels. The high stresses at the neck may, though, to some extent be caused by the rigid boundary condition imposed there. In a real aneurysm, that is situated in a more compliant environment, the stress concentration at the neck may not be as pronounced as here. The aneurysmal model also predicts that the stresses over the aneurysmal surface may differ significantly. For the most advanced state in Fig. 9 (t = 50t lf ), the ratio between the highest stress (at the fundus) and lowest stress (at S = 0.84R 0 ) is about 5.6. The location of the lowest stress roughly coincides with the peak in the thickness distribution in Fig. 8.

Figs 10(a) and (b) show some additional aspects of the maximum principal stress. In Fig. 10(a), the stress distributions for the solutions of different values of λ pre are compared at a specific aneurysm size (z(S = 0) = 2R 0 ) at systole. Thus, at a certain aneurysm size, a lower value of λ pre tends to cause a higher level of stress in the aneurysmal wall. Since we are considering a membrane exposed to a surface pressure, the Cauchy stresses in the aneurysmal wall are determined by the principal curvatures of the membrane together with the current thickness of the membrane. A lower value of λ pre renders the aneurysmal wall more compliant. Thus, for a given aneurysm size at systole, a more compliant aneurysmal wall will have undergone larger deformations and thereby experienced a higher degree of thinning (due to material incompressibility). This is probably the main reason why lower values of λ pre result in higher stresses for a given aneurysm size at systole. mate stress of cerebral aneurysmal tissues have been obtained experimentally and falls in a range of about 0.5-2.0 MPa [START_REF] Humphrey | Cardiovascular Solid Mechanics. Cells, Tissues, and Organs[END_REF][START_REF] Macdonald | Directional wall strength in saccular brain aneurysms from polarized light microscopy[END_REF]. This critical range is also indicated in Fig. 10(b). For the values of λ pre considered in the present study, the critical aneurysm size at which rupture may be most frequently expected is between R 0 and 3R 0 . For our choice R 0 = 1.2 mm, this translates to a size of 1.2 to 3.6 mm in absolute numbers.

Discussion and concluding remarks

In the present paper, we have proposed a new theoretical model for the growth of saccular cerebral aneurysms. More specifically, we have considered an axisymmetric membranous piece of tissue, exposed to a surface pressure, and with material characteristics representative for cerebral aneurysms. The new model is based upon a previously presented model (Kroon and Holzapfel, 2007a,b), but there are some important differences between them. In the previous model, we only considered two deformed states, i.e. the state where fibres were deposited and the systolic state. In the new model, however, we also introduce the diastolic state and the load-free state. A key feature of the new model is that the collagen production rate of the fibroblasts is governed by the cyclic deformation imposed on these cells during the cardiac cycle, i.e. the cyclic deformation between the diastolic and systolic states.

It is a well established fact that biological cells respond to mechanical stimuli, however, it is not clear whether cell reaction is triggered by mechanical stress or mechanical deformation/strain (see [START_REF] Humphrey | Stress, strain and mechanotransduction in cells[END_REF] for a nice discussion on this 2006)) has the advantage that only knowledge of the current deformed state (together with loads and boundary conditions) is required. On the other hand, the use of a strain (deformation) measure requires knowledge of two states, since strain is, by definition, defined as the deformation change between two states. Normally, strain is defined as the deformation change between a reference state and the current deformed state. However, for growing soft biological tissues, a reference configuration can, in general, not be defined in a meaningful way since the load-free configuration is continuously updated. However, in the present paper, we use the deformation between the diastolic and systolic states and correlate cell (fibroblast) response with the magnitude of this cyclic deformation. Thus, the present paper is an important contribution to the ongoing discussion of the mechanical sensing of cells since we show that a well-defined deformation measure -a measure that is in principle obtainable without knowledge of any reference configuration -can indeed be obtained and correlated with mechanical sensing and resulting activity of biological cells.

In the present study, we use membrane theory to model the aneurysm wall. The applicability of membrane theory is determined by the ratio of the wall thickness over the radius of the aneurysm. Initially, this ratio is 30 μm/1.2 mm= 0.025, which means that the use of membrane theory is reasonably justified. For the numerical example that we show, this ratio has increased to 0.045 at the end of the analysis. Thus, due to the (finite) wall thickness of cerebral aneurysm walls, bending stresses will be present, however, they will probably be very small in comparison to (normal) membrane stresses.

The model includes a number of parameters. Most of these can be estimated fairly well on the basis of experimental surveys. Two parameters, however, are difficult to obtain (from the literature), namely the collagen life-time t cl and the pre-stretch λ pre of the collagen fibres. The collagen life-time essentially sets the time-scale of the aneurysmal growth process. The collagen pre-stretch λ pre determines both the growth speed of the aneurysm and its stability properties. Hence, the collagen pre-stretch is of pivotal importance within the growth process. A numerical study was performed, and the results indicate that λ pre should be roughly of the order 1.02-1.04. For lower values in this range, the growth process would continue at an accelerating speed, and for higher values, the process would decelerate and even cause the aneurysm to shrink back to a configuration close to its original reference state. This may actually be interpreted as a recovery of the arterial wall.

In experimental studies, single fibroblasts have been placed on 2D collagen gels, and fibroblasts have then been observed to contract the collagen gel with up to 15-20% [START_REF] Engler | Substrate compliance versus ligand density in cell on gel responses[END_REF]. This would enable a pre-stretching of collagen fibres considerably higher than the pre-stretches used in the present study. However, this experimental result was for a 2D surface, which is easier to contract than a 3D matrix (provided that the stiffness of the material is the same). In addition, the max-
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imum contraction that the fibroblast is able to impose on the ECM only serves as an upper limit to the pre-stretching of collagen fibres, and the actual pre-stretching by which fibres are attached may well be lower than this number.

In the predicted stress distributions over the aneurysmal surface, the peak stress always appears at the fundus, which makes sense since real aneurysms tend to rupture at this location [START_REF] Canham | Collagen organization and biomechanics of the arteries and aneurysms of the human brain[END_REF]. The ultimate stress of tissues from cerebral aneurysms have been experimentally obtained, and this fact allowed us to predict the size range for which the aneurysm could be expected to fail, see Fig. 10(b).

It was predicted that aneurysms should fail approximately in the size range 1.2 to 3.6 mm. However, aneurysms usually do not rupture when smaller than 10 mm in size [START_REF] Austin | The significance of the extracellular matrix in intracranial aneurysms[END_REF][START_REF] Rinkel | Prevalence and risk of rupture of intracranial aneurysms[END_REF][START_REF] Wiebers | The natural history of unruptured intracranial aneurysms[END_REF]. Hence, the predicted range is below what has been observed clinically. As discussed earlier, the Cauchy stresses in the aneurysmal wall are determined by the principal curvatures of the membrane together with the current thickness. One reason why the stresses are overestimated in the model could be that the thickness of the aneurysmal wall is underestimated by the model. Another reason could be that the shape of the aneurysm is somewhat misrepresented by the axisymmetric model used here, leading to inaccurate surface curvature predictions.

Even though the size of the aneurysm is currently used as an indicator to determine the risk of rupture, it has been suggested that the growth rate of the aneurysm may also be a strong indicator of the rupture risk [START_REF] Imaizumi | Growth of small unruptured intracranial aneurysm[END_REF][START_REF] Kamitani | Bleeding risk in unruptured and residual cerebral aneurysms -angiographic annual growth rate in nineteen patients[END_REF]. The growth rate of the present model aneurysm depends strongly on the life-time of the collagen fibres. In principle, the collagen life-time t cl could be estimated if accurate growth rate data from clinical studies on aneurysms were available. Such data do in fact exist, but the scatter in these growth rate data is enormous. Yamaki et al. (1986), for example, report about a cerebral aneurysm that enlarged from 2 mm to 15 mm in only 24 days, whereas [START_REF] Imaizumi | Growth of small unruptured intracranial aneurysm[END_REF] report of an aneurysm that grew from about 4 mm to 10 mm in one year. [START_REF] Kamitani | Bleeding risk in unruptured and residual cerebral aneurysms -angiographic annual growth rate in nineteen patients[END_REF] study the growth rate of a large population of unruptured cerebral saccular aneurysms. They report growth rates ranging from 1% up to 120% of size increase per year. The aneurysms in this study had sizes in the range of 2.0 to 25 mm. Thus, the wide scatter in growth rate data makes a general estimation of t cl less meaningful. However, it may still be possible to make an estimation for a specific aneurysm, and in this way be able to predict the future growth scenario of that particular lesion. For example, if the geometry of a detected aneurysm is known at two stages of its history with, say, a year between measurements, the proposed growth model could be applied to estimate the future growth of this aneurysm. This kind of prediction could actually help clinicians decide whether or not the aneurysm is or will become critical or not.

In summary, a new theoretical model for the growth of saccular cerebral aneurysms has been proposed. The continuous turnover of collagen is taken to be the driving mechanism in aneurysmal growth, and the collagen production depends on the The model is able to predict aneurysms with the berry-like shape often observed clinically, and the predicted wall stresses correlate well with the experimentally obtained ultimate stresses of this kind of tissue. The pre-stretch λ pre , by which newly produced collagen is deposited, turns out to be of pivotal importance for growth stability and growth speed of the aneurysm. 

  average production rate per fibroblast is, in turn, taken to depend on the cyclic deformation of the fibroblasts caused by the pulsating blood flow in the parent artery. An axisymmetric model is used to assess the new growth model.
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  Material points on the membrane are labeled by the surface convected coordinates ζ 1 and ζ 2 , together with ζ 3 oriented normal to the membrane surface. Greek indices are used to denote the quantities measured by using the membrane intrinsic metric. The associated base vectors a 1 , a 2 and a 3 define a local Euclidean frame on the membrane, as indicated in Fig. 1. Derivatives with respect to the surface coordinates ζ 1 , ζ 2 and ζ 3 in the reference configuration are denoted
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 3 Fig.3. The aneurysmal tissue is modelled as a multi-layered membrane consisting of n plies. Fibroblasts are embedded in the plies, and are aligned in the same direction as the fibres.
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 5 Fig. 5. Evolution of load-free, diastolic and systolic states of the aneurysm with time ranging from t = 0 to t = 50t cl (λ pre = 1.028).
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 6 Fig. 6. Evolution of the aneurysm size (displacement of the fundus in the z-direction at systole normalised by R 0 ) for different values of λ pre .
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 78 Fig. 7. Speed of the fundus in the z-direction at systole normalised by R 0 /t cl as a function of (a) time and (b) size. Solutions for different values of λ pre are shown.

  Fig. 9. Evolution of the maximum principal stress σ 1 based on the modified stress measure in Eq. (18) (λ pre = 1.028).

  Fig. 10. (a) Distributions of the maximum principal stress σ 1 for solutions of different values of λ pre but at a fixed aneurysm size z(S = 0) = 2R 0 ; (b) fundus stress σ 1 (S = 0) versus aneurysm size at systole normalised by R 0 for different values of λ pre . Critical stress range, obtained from experiments, is indicated.

  cell response with, say, the Cauchy stress (cf., for example,Baek et al. (

  fibroblasts, that are taken to be spread throughout the tissue.
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