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Abstract:

We explore the use of a top-down approach to analyse the dynamics of icosahedral virus
capsids and complement the information obtained from bottom-up studies of viral vibrations
available in the literature. A normal mode analysis based on protein association energies is
used to study the frequency spectrum, in which we reveal a universal plateau of low-frequency
modes shared by a large class of Caspar-Klug capsids. These modes break icosahedral
symmetry and are potentially relevant to the genome release mechanism. We comment on
the role of viral tiling theory in such dynamical considerations.
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1. Introduction and summary

Viral protein capsids exhibit a surprising amount of symmetry, the consequences of which are
still far from fully explored. A major step forward in the understanding of the static properties of
icosahedral virus capsids was the introduction of viral tiling theory [1]. Viral tiling makes use of
non-crystallographic Coxeter groups [2] to predict the distribution of proteins on the faces of the
capsid. It fills an important hole in the Caspar-Klug classification [3], as it captures all known
icosahedral viruses, in particular those with an all-pentamer structure which so far defied classifi-
cation. There is also evidence that viral tiling plays a role in describing the clustering of proteins
into building blocks during capsid assembly [4]. The use of group theory thus provides important
insights not easily obtained otherwise (for a more extensive review of viral tiling, see [5]).
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Apart from understanding static properties of viral capsids, one would also like to understand
the influence of symmetries on the dynamics of these capsids. A first step in this direction was
taken in [6], where it was shown how the presence of approximate inversion symmetry puts a
clearly visible stamp on the spectrum of Raman and infrared vibrational modes. This analysis
suggests that there may be various properties of capsid vibrations which have a rather simple
explanation and do not require a great deal of knowledge about the detailed structure of the
capsid.

A lot of effort has been dedicated to the study of protein vibrations in the last forty years,
and more recently on viral capsid vibrations. The main goal so far has been to understand
whether conformational changes, which are of the utmost importance for the proper function
of these systems, occur in directions which overlap with some low-frequency normal modes of
vibration. It is however also interesting to identify as precisely as possible the frequencies of
viral vibrations which are susceptible to be targeted by near-infrared femtosecond laser pulses,
in an attempt to mechanically destroy viral particles without damaging neighbouring tissues [7].
Despite decades of encouraging results, almost all relying on variations of the spring-mass model
and high performance computing, the overall picture remains patchy and deserves to be revisited.

In order to determine the spectrum of vibrations of a viral capsid, one must, in principle,
analyse a complicated interaction potential between a large number of atoms (of the order of 105

or 106). This potential depends on bond lengths and angles, the minimum of which describes
the static configuration of the capsid. Small vibrations are described by a harmonic potential
around the equilibrium situation. The normal modes of the associated force matrix yield the
small fluctuation spectrum of the capsid. Computer simulations of this type have led to useful
insight, about the relation between normal and swollen forms of virus capsids [8, 9] for instance,
albeit at considerable computational cost (for recent reviews see [10, 11]).

It is clear that for the lowest-frequency modes, which are characterised by slow motions with
large amplitudes, many degrees of freedom are not relevant. Various coarse-graining procedures
have therefore been proposed, among which the popular rotation-translation block method [9, 12]
and the cluster normal mode analysis [13] (see [14] for a review). These have shown that, indeed,
some aspects of capsid dynamics can be understood from far fewer degrees of freedom than those
present in all-atom simulations. Many of these developments were driven by the requirement
to bring down the substantial computational cost of all-atom simulations. However, even if
computational cost is not an issue, it is important to reduce the number of degrees of freedom in
order to gain insight into the systematics of capsid dynamics.

Instead of using the “bottom-up” approach described above, in which one starts from the all-
atom structural information and attempts to coarse-grain from there, we suggest here that useful
complementary information can be obtained by using a “top-down” approach. The starting point
is a very minimalistic description of the capsid, in which entire protein chains are modelled by
point masses. These masses interact with each other through springs, whose strength is deter-
mined by the association energies of the protein chains. The relative values for the association
energies are taken from VIPERdb [15]. This approach is similar in spirit to the one underlying
viral tiling, in the sense that we attempt to see how much we can learn from such an extreme
caricature before introducing more degrees of freedom or more complicated interactions.

Although this drastic simplification cannot possibly be expected to describe any but the
lowest frequency modes, we will show here that it does uncover the systematics behind several
vibration patterns which were observed in all-atom simulations before, but for which a simple
explanation remained lacking. Further insight will be obtained by decomposing the spectrum
into irreducible representations of the icosahedral group (a method previously used for all-atom
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simulations [16–18]). The power of the “top-down” approach is thus to make it much easier to
see the common aspects of vibrational patterns among a large class of capsids. Moreover, it
allows us to systematically think about the qualitative aspects of modifying vibrational modes
(by changing bonds for example) without having to rely on the output of large-scale computer
simulations.

We begin in section 2 with an overview of the role played by group theory in the analysis
of normal modes of vibration of systems exhibiting some symmetry, and we state clearly the
dynamical hypotheses on which our modelling relies. Section 3 presents the low-frequency spectra
for eight viral capsids at various T -numbers, namely Satellite Tobacco Mosaic, Rice Yellow Mottle,
Tomato Bushy Stunt, Cowpea Chlorotic Mottle, Polio, MS2, Hong Kong ’97 and Simian 40. It
emerges from the results obtained that the low-frequency spectrum of all these stable1 capsids –
bar the last one, which is in a different class, having an all-pentamer structure – possess 24
near-zero normal modes of vibration which always fall in the same set of non-singlet irreducible
representations of the icosahedral group. The first singlet representation, which is associated
with a fully symmetric mode, always appears higher up in the spectrum, in accordance with the
expectation that such a motion requires more energy to develop. We argue in section 4 that the
presence of 24 near-zero-modes in the spectrum of viral capsids is deeply rooted in the fact that
the latter exhibit icosahedral symmetry. This is done by examining the clusters of protein chains
which make up a face of the icosahedral structure, and then linking the clusters from different
faces in the minimal possible way to obtain a stable structure. The mathematical argument is
illustrated by considering a hypothetical and very simple viral capsid, where a single protein
occupies the centre of each icosahedral face2, and all proteins are linked to form a dodecahedron,
as was first presented in [19]. More realistic capsids are then considered in the light of the group
theoretical properties discovered in the simple case. We also offer some remarks on the role of
tiling theory in our approach to virus dynamics. Finally, we conclude with some thoughts for
future work in this direction.

2. Viral capsid vibrations: a group theory perspective

2.1 Symmetry-based organisation of normal modes of vibration

The most direct evidence of icosahedral symmetry in a large class of viruses is the experimental
observation that the proteins, which form an almost spherical protective shell or capsid for the
DNA or RNA material, do cluster in groups of five (pentamers) around twelve equidistant discli-
nations corresponding to the vertices of an icosahedron, and in groups of six (hexamers) around
points at the intersection of the capsid with global 3-fold and/or local 6-fold symmetry axes of the
same icosahedron. This symmetry is at the core of the Caspar-Klug classification of icosahedral
viruses, which exploits well-chosen coordinate axes on a 2-dimensional planar hexagonal lattice
to label viruses according to the number of capsid proteins they exhibit [3].

Recent theoretical work by Twarock [1] corroborates the existence of an intrinsic icosahedral
symmetry, even in the case of all-pentamer capsids which appear in the polyoma- and papilloma-
viridae families. Apart from twelve pentamers located around the global 5-fold symmetry axes
of the icosahedron, more pentamers are organised around local 5-fold symmetry axes, whose

1Some capsids are not stable when one considers the association energies given in VIPERdb alone. In these
cases, extra theoretical bonds have been added to stabilise the capsid, and their occurrence is clearly stated in the
text.

2One may think of this approximation as being a limiting case for a T = 1 capsid whose three protein chains
per face are averaged by their centre of mass.
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existence is deeply rooted in the mathematics of the icosahedral group H3
3. A combination of

ideas, inspired by the affinisation of this non-crystallographic Coxeter group [20] as well as the
theory of quasicrystals and Penrose tilings, has led to interesting new insights on viral capsid
assembly and genome organisation [4, 21–23].

Symmetry arguments have proven very powerful in a variety of scientific contexts, and it is
natural to exploit the icosahedral symmetry to the full in attempts to understand dynamical
properties of viruses, such as their vibration patterns. The techniques, applicable to any complex
system whose N building blocks (considered as N point masses) are invariant under the action of
a symmetry group G 4, date back to Wigner [24] and have been applied in chemistry as early as
1934 [25]. Since then, the frequencies of vibration of the most standard chemical molecules, and
of some fullerene structures, have been analysed with group theory methods in the approximation
where the potential is quadratic.

Remarkably, many qualitative features of the normal modes of vibration depend mainly on the
symmetry of the system, and not on the potential chosen. For instance, it is quite straightforward
to decompose the motions of a ‘G-invariant N -atom molecule’ into irreducible representations of
the symmetry group G without reference to the harmonic potential chosen to model interactions
between the atoms. Such decomposition provides further insight into the universality of certain
motions, and we emphasise that it does not imply that we only keep the modes which respect
the symmetry G. The potential is required to be G-invariant, but the solutions to the equations
of motion, i.e. the vibration modes, can break this symmetry.

The ‘molecule’ we are interested in is a viral capsid, whose ‘atoms’ are its N capsid proteins,
each of them approximated by a point mass located at its centre of mass. The symmetry group
G is the icosahedral group H3 if the capsid exhibits a centre of inversion, or its 60-dimensional
proper rotation subgroup I otherwise. We remark here that Nature does not seem to favour
viruses whose capsid proteins have a centre of inversion at the atomic level. Nevertheless, in
coarse-grained approximations, including the one used here, the configuration of the N point
masses chosen to model the capsid may be very close to having a centre of inversion. Consequences
of this remark were explored in [6] in the context of viral tiling theory.

The decomposition of the vibrational modes of such a capsid into irreducible representations
of the group H3 (resp. I) is standard and is sketched in appendix A.2. For the proper rotation
subgroup I of the icosahedral group, the generic decomposition of the displacement representation
(which encodes the action of I on the displacements of the N protein-point masses from their
equilibrium position due to vibrations) reads,

Γ3N
displ =

3N

60

[
Γ1 + 3Γ3 + 3Γ3′ + 4Γ4 + 5Γ5

]
, (2.1)

where all representations Γ on the r.h.s. are irreducible, and the numerical superscripts refer to
the dimension of the representations. The decomposition (2.1) does not contain any information
about the force matrix, introduced in appendix A.1, and hence does not provide any insight
into the geometry of the vibration modes. In order to obtain that information, while preserving
the group theoretical structure, one must turn to a block diagonalisation of the force matrix, as
illustrated in appendix A.2 in the case of the ammonia molecule. Such a detailed analysis reveals
that, in accordance with the decomposition (2.1), the capsid undergoes vibrational motions which
can be expressed in terms of a linear combination of independent normal modes, some of them
degenerate, in the sense that they all have the same frequency and are transformed into each other

3The notation Ih is used in the chemistry literature.
4We will call such a system ‘a G-invariant, N-atom molecule’ although this is obviously an abuse of language.
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under the action of I. The expression (2.1) encodes how the 3N normal modes of vibration are
organised in subsets (irreducible representations) such that all normal modes within a given subset
have the same frequency and transform into each other under the group action. The number of
elements in a subset is given by the dimension on the corresponding irreducible representation.

Not all 3N normal modes of vibration of our viral capsids are ‘genuine’. Indeed, in this 3-
dimensional problem, three degrees of freedom correspond to the translations, and three to the
rotations of the capsid as a whole. These zero-modes belong to two Γ3 irreducible representations
and are usually discarded from dynamical considerations as they are trivial.

Further standard group theory considerations provide an easy method to pin down which are,
among the normal modes described in (2.1), those one could in principle detect using Raman and
infrared spectroscopy. The former relies on a physical phenomenon induced by sending a beam of
frequency ν on a molecule or capsid: some radiation is scattered, whose frequency is the incident
frequency ν shifted by ±νs. The electric field �E carried by the incident beam induces a dipole
moment �μ in the molecule or capsid, such that

μi = αijEj , i, j = 1, 2, 3 , (2.2)

and the polarisability tensor αij transforms under the symmetry group of the molecule as the six
quadratic expressions xixj , where xi, i = 1, 2, 3 are the coordinates of a point in space. For the
group I, the quadratic expression x2

1+x2
2+x2

3 transforms as a singlet (and thus belongs to Γ
1) while

the other five independent quadratic expressions belong to Γ5. From (2.1), one thus concludes that
our N protein-point mass capsid has 3N/60 non-degenerate5 and N/4 five-fold degenerate Raman
active modes of vibration. On the other hand, infrared active modes belong to Γ3 irreducible
representations (see [26] for instance), and therefore the capsid possesses (9N/60 − 2) three-fold
degenerate infrared active modes. Such information might become useful when experiments will
be sensitive enough to measure very low-frequency modes in macro-biomolecular assemblies.

2.2 Overview of existing models

Normal mode analysis (NMA) has been quite successful in its attempts to describe the confor-
mational changes in a variety of proteins [27–32], and it proves a useful tool in the study of the
dynamics of large macro-biomolecular assemblies, in particular viruses. In this context, the idea
is to verify whether various experimentally observed conformations of a given viral capsid could
be inferred from each other by arguing that conformational changes occur in directions which
maximally overlap with those of a few low-frequency normal modes of the capsid [8, 17, 33, 34].

The method, however, has limitations. One should keep in perspective that strictly speaking,
biologically significant low-frequency motions are typically not vibrational, due to the damping
influence of the environment. Furthermore, NMA assumes the existence of a single well potential
whose minimum is a given stable configuration of the viral particle studied, overlooking the
possibility of neighbouring multi-minima of energy. Also, the harmonic approximation to the
single-well potential most analyses consider is only valid if the particle undergoes small motions,
and this does not lend itself to an accurate description of the observed conformational changes.
Nevertheless, NMA provides dynamical data which are consistent with experimental results,
especially on proteins [35–38], and is supported by a recent statistical study [39]. It thus seems
reasonable to continue to use the method, provided the results are interpreted in the light of the
caveats above.

5The number N of capsid proteins of Caspar-Klug viruses is a multiple of 60.
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Viruses are much more complex structures than proteins, and the biggest challenge remains
the choice, within the NMA framework, of a potential which captures the physics of capsid
vibrations whilst taking into account a reduced number of degrees of freedom to enable practical
calculations. Many NMA applied to viruses implement variations of the simple Elastic Network
Model proposed a decade ago [40], in which the atoms are taken as point masses connected by
springs modelling interatomic forces, provided the distance between them is smaller than a given
cutoff parameter. Simplified versions include the restriction to Cα-atoms only, the approximation
in which each residue is considered as a point mass, or where even larger domains within the
constituent coat proteins are treated as rigid blocks [8].

The elastic potential in all analyses above has two major drawbacks: it does not discriminate
between strong and weak bonds since it depends on a single spring constant, and it uses the rather
crude technique of increasing the distance cutoff to resolve capsid instabilities. Consequently, the
frequency spectra have much less structure than one would expect in reality, and in particular
fail to reproduce areas of rigidity and flexibility of the capsid satisfactorily. This phenomenon is
illustrated in appendix B, where a system of 8 atoms is studied from two different perspectives.
On the one hand, the system is viewed as two proteins consisting of four atoms each, with
interactions characterised by two different bond strengths. On the other hand, the system of 8
atoms is subjected to a Tirion potential with varying cutoff distance but using only one bond
strength. The former is analysed within the rotations-translations of blocks method (RTB) [12]
and provides a spectrum with enhanced structure, when set against the Tirion-based analysis.

In order to obtain more accurate spectra, the authors in [41–43] implement a bond-cutoff
method. An elastic network whose representatives are N Cα- atoms is set up such that four
consecutive Cα-atoms are connected via springs, introducing 3N − 6 constraints in the system.
This backbone modelling provides stability of proteins with a less intricate elastic network than
the one obtained via the distance-cutoff method. Further springs with different spring constants
are added to model the various types of chemical interactions (disulfide bonds, hydrogen bonds,
salt-bridges and van der Waals forces) within each protein. The proposed model reproduces
conformational changes better than the conventional distance-cutoff simulations. Adapting this
model to viruses would certainly be enlightening, but remains a computational challenge at
present. Our model is close in spirit to the above, but takes fewer degrees of freedom into
consideration. It should be seen as a first step towards an implementation of the programme
in [41–43] for viral capsids.

2.3 Dynamical hypotheses in our model

We model capsids “top-down”, that is, by starting from as few degrees of freedom as possible.
A minimal set consists of the centre-of-mass positions of the protein chains, as well as sufficient
bonds to make the capsid stable. For the equilibrium positions of the proteins we make use of the
data in VIPERdb [15]. The equilibrium positions of the protein chains are assumed to respect
icosahedral symmetry.

The inter-protein forces away from equilibrium are approximated by a harmonic potential,
but we allow for the spring constants to be different for every bond. Denoting the spring constant
between protein n and m by κmn, we thus have

V =
N∑

m<n
m,n=1

1
2
κmn

(
|�xm − �xn| − |�x 0

m − �x 0
n |
)2

. (2.3)

Here �xm denotes the actual position of the protein and �x 0
m its equilibrium position. For small
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deviations from equilibrium, we can expand the potential as

V =
N∑

m=1

∂V

∂xi
m

∣∣∣∣
x=x0

(xi
m − x0i

m) +
N∑

m,n=1

1
2

∂2V

∂xi
mxj

n

∣∣∣∣∣
x=x0

(xi
m − x0i

m)(x
j
n − x0j

n ) + . . . . (2.4)

As there is only very little spread in the values of the protein masses in virus capsids, we will
normalise them all to one, thereby absorbing the overall mass into the spring constants κmn. The
equations of motion for the deviations from equilibrium then become

d2

dt2
(
xi

m − x0i
m

)
+ F ij

mn

(
xj

n − x0j
n

)
= 0 , i, j = 1, 2, 3 , (2.5)

where the force matrix is obtained as the second derivative of the potential with respect to the
positions, evaluated at the equilibrium positions. Explicitly, using the potential (2.3), one finds

F ij
mn =

∂2V

∂xi
m∂xj

n

∣∣∣∣∣
x=x0

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
p �=m

κmp
(xm − xp)i(xm − xp)j

(xm − xp)2

∣∣∣∣∣∣
x=x0

if m = n ,

−κmn
(xm − xn)i(xm − xn)j

(xm − xn)2

∣∣∣∣
x=x0

otherwise .

(2.6)

It is convenient to store all degrees of freedom in one vector, i.e. to introduce a vector �q with
components given by q3m−3+i = ri

m ≡ xi
m − x0i

m. In terms of this vector the equation of motion
reads

�̈q + F�q = 0 , (2.7)

and the frequencies of the normal modes are given by the eigenvalues of the matrix F , as reviewed
in A.1. Note that this matrix depends explicitly on the equilibrium positions of the masses.

The determination of the frequencies is therefore straightforward in principle. However, given
the fact that one is faced with highly complex systems, the rapidly increasing number of degrees
of freedom and the shape of the potential put severe constraints on actual calculations. Although
results based on a truly phenomenological potential are still out of reach, our model nevertheless
paves the way to more realistic situations. It introduces a drastic coarse-graining but on the other
hand, provides a hierarchy between bonds, dictated by the relative values of association energies
listed in VIPERdb. It also explores the conditions for iso-staticity of the viral capsids, in the
light of the icosahedral symmetry inherent to the system. In other words, the model is simple
enough to enable the identification of which type of bonds are crucial or not for the stability of
the capsids, as will be developed in section 4.

Beforehand, we calculate in section 3 the low-frequency spectra of a variety of Caspar-Klug
capsids within the technical framework summarised in the present section, and highlight the
remarkable feature announced in the Introduction, namely the presence of a very low-frequency
plateau of twenty-four normal modes in all Caspar-Klug viruses studied. We also analyse SV40,
an all-pentamer capsid which falls out of the Caspar-Klug classification, and note that the nature
of the plateau is slightly different. A proper understanding of this phenomenon requires further
investigation and is beyond the scope of this paper.

3. Results for specific virus capsids

In order to explore the consequences of our dynamical hypotheses we have analysed a variety
of virus capsids. Their Caspar-Klug T -numbers range from 1 to 7, and we have paid particular
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attention to T = 3 capsids in order to assess the role of viral tiling theory in shaping vibrational
spectra. We have indeed chosen our T = 3 capsids so that the 3 tiling types (triangle, rhomb and
kite) compatible with the structure of 12 pentamers and 20 hexamers are represented. Table 1
summarises our choice of capsids. We now discuss each capsid separately and highlight various
interesting features as we go along.6

name abbr. pdb T approx. centre tiling zero
code of inversion modes

Satellite Tobacco Mosaic STMV 1A34 1 no triangle 6

Rice Yellow Mottle RYMV 1F2N 3 no triangle 6
Tomato Bushy Stunt TBSV 2TBV 3 no rhomb 30
Cowpea Chlorotic Mottle CCMV 1CWP 3 no rhomb 90
Polio Polio 2PLV 3 no kite 6
MS2 MS2 2MS2 3 yes rhomb 90

Hong Kong ’97 HK97 2FTE 7l no rhomb 6
Simian 40 SV40 1SVA 7d yes rhomb/kite 6

Table 1: Summary of the viruses analysed in this section, together with some of their fundamental properties. If
the number of zero modes is larger than 6 additional bonds, over and above those given in VIPERdb, have to be
added to stabilise the capsid.

3.1 Satellite tobacco mosaic virus

The STMV virus capsid is one of the simplest capsids to analyse since it has T = 1 and only 60
capsid proteins. An all-atom molecular dynamics simulation for STMV was reported on in [44].
One of the main conclusions of their analysis is that the empty capsid (i.e. without RNA content)
is unstable. The instability manifests itself in the behaviour of two non-adjacent faces around a 5-
fold symmetry axes, which sink into the interior [44]. Although a molecular dynamics simulation
of this type cannot reach the very lowest frequency modes because the maximal evolution time is
limited, we can still use this analysis to draw some general conclusions about the low-frequency
spectrum. An important result is that the proteins remain essentially undeformed. This yields
support to one of our dynamical hypotheses, namely that the individual atoms from which the
proteins are built can be grouped together for an adequate analysis of the low-frequency modes.
The collapse should thus be part of the low-frequency spectrum, as captured by a coarse-grained
model.

In our simplified model the capsid is actually stable, but it has 24 normal modes with relatively
low frequency. The bond structure, obtained from the association energies as described earlier,
is displayed in figure 1. The resulting low-frequency spectrum is displayed there as well, with
modes marked according to their representation content. The most significant feature of this
spectrum is the appearance of a low-frequency plateau of 24 modes, separated by a large gap
from the remainder of the spectrum. The representation content of the plateau is

2Γ3′ + 2Γ4 + 2Γ5 . (3.1)

6The software used for the computation of these spectra is available upon request from the authors.
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Figure 1: The STMV protein positions and the inter-protein bonds (left). The longest bond in the figure is the
weak A1-A8 bond. Displayed on the right is the spectrum of the 40 lowest-frequency normal modes of STMV (up
to an overall normalisation). Clearly visible are the 6 trivial zero-frequency modes as well as the 24 low-frequency

modes. The modes � (resp. �) belong to 3-dimensional irreducible representations Γ3 (resp. Γ3′) of the icosahedral
group. The diamond (resp. pentagon) modes belong to 4 (resp. 5)-dimensional irreducible representations. The
x-axis labels the normal modes while the y-axis gives the wave numbers up to an overall normalisation.

Within our model, it is easy to verify that the height of this plateau is related to the strength of
the long A1-A8 bond. In the data provided by VIPERdb, this bond has a strength of only about
10% of the strongest bond present. By removing the A1-A8 bond, the 24 low-frequency plateau
modes come down to zero frequency.

If one focuses only on the structure on each individual icosahedral face, one observes that
the three protein chains form a relatively rigid triangle, which has 6 zero-modes (three rotations
and three translations). Without the A1-A8 bond, there are 3 edge-crossing bonds per edge, as
can be reconstructed from figure 1 by using the 2, 3 and 5-fold symmetries of the icosahedron.
Since each bond induces one constraint in the system, naive counting suggest that there should
be 6 · 20− 3 · 30 = 30 zero-modes in this case, as the icosahedron has 20 faces and 30 edges. We
will see how this type of reasoning provides insight in many other virus capsids in section 4.2.

3.2 Rice yellow, tomato bushy stunt and cowpea chlorotic mottle virus

The RYMV, CCMV and TBSV capsids share many features, some of which are obvious from their
common T = 3 structure, while others are less manifest. One of the most manifest differences is
their viral tiling structure. While RYMV has a triangle tiling, both TBSV and CCMV are tiled
by rhombs. The difference in tiling leads to a difference in dominant bond structure, but as we
will see, this turns out to be of relatively little importance for the low-frequency spectrum. A
somewhat related T = 3 virus, Polio, has an additional protein chain hidden slightly inside the
main capsid. This kite-tiled virus will be discussed separately.

Let us start with RYMV, which has a triangle tiling. Its spectrum was computed using RTB
techniques in [9] by making use of a Tirion potential with Cα atoms as fundamental degrees of
freedom. Their analysis, however, is focused on the icosahedrically symmetric (non-degenerate,
singlet) modes, while quite a few non-symmetric (degenerate) modes have lower frequency. In
our model, employing VIPERdb association energies for the bonds, the capsid is stable and
meaningful frequencies can thus be extracted. The spectrum of the first 40 modes is displayed
in figure 2. Just as for the simpler STMV capsid discussed above, the most manifest feature is
a plateau of 24 low-frequency modes (apart from the 6 trivial rotation and translation modes).
This plateau in fact has precisely the same representation content as the one found for STMV,
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Figure 2: The protein positions and inter-protein bonds for RYMV (left), as well as the 40 lowest-lying normal
mode frequencies (right). Again, there are 6 trivial zero-modes and 24 low-frequency modes, after which the
frequencies go up rapidly.
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Figure 3: The protein positions and inter-protein bonds for TBSV (left), as well as the 40 lowest-lying normal
mode frequencies (right). The bond indicated with a dashed line is a very weak bond which was added by hand to
make the capsid stable.

see (3.1).
The bond structure of RYMV exhibits, apart from “nearest neighbour” interactions, three

long-range bonds which stretch out from the C-chains (see figure 2; one of these arms stretches
from a (green) C-chain to a (red) B-chain and is hidden from view). These bonds are a conse-
quence of the long tail of atoms which extends from the C-chain (see figure 4), and turn out to
be crucial for stability of the capsid. Artificially removing the weakest two introduces additional
zero-modes which signal an instability against deformation. More precisely, what happens is that
removal of these long-range bonds brings down the plateau of 24 low-frequency modes, turning
them into zero-modes. Again, this is a perfect analogy with what happens for STMV.

Turning now to TBSV, we first of all note that the association energies given in VIPERdb are
not sufficient to make the capsid stable. In fact, the TBSV spectrum has, in our model, a total of
30 zero-modes (including the trivial ones). By introducing one additional weak bond (indicated
by a dotted line in figure 3), it turns out that 24 of these zero-modes get lifted. The resulting
spectrum is again of the type we have seen before: a low-frequency 24-state plateau (3.1), followed
by a gap.

Let us finally discuss CCMV. Its protein positions are similar to those of RYMV, but the
bonds suggest a rhomb tiling instead of a triangular one. Unfortunately the association energies
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Figure 4: The capsid of RYMV. The large dots represent centre-of-mass positions of protein chains, while the
small dots represent individual residues for three of the chains. Clearly visible is the long arm of the (green)
C-chain which passes to the right of the (red) B-chain and stretches towards the top-right of the figure to establish
the capsid-stabilising bonds.

Figure 5: The protein positions and inter-protein bonds for CCMV as given in VIPERdb. The dashed bonds
were added by hand to stabilise the capsid.

listed by VIPERdb are not sufficient to make the capsid stable, but we can add three weak long-
range bonds similar to those in RYMV for stabilisation (see figure 5). Given the difference in
structure of the strong bonds (as compared to RYMV), one might now naively expect a rather
different low-frequency spectrum. However, it turns out that CCMV again exhibits the by now
familiar low-frequency 24-state plateau followed by a rather large gap (the size of which depends
on the strength of the bonds which were added by hand). It is at present not easy to compare
these results with other studies of the CCMV capsid. The analysis of [9] is based on a Cα-atom
analysis using a Tirion potential. As we argue in appendix B, this potential has the tendency to
smooth out sharp features of the spectrum. The fact that [9] find a singlet mode already after
17 non-singlet low-frequency modes may thus be due to this difference in the potential used.
Dynamical aspects of CCMV have also been analysed by [45], who focused on the connectivity
properties of the capsids rather than the precise form of the force matrix. Given the restrictions
of the VIPERdb bonds, we will refrain from making a comparison with their results at this stage.
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Figure 6: The protein positions and inter-protein bonds for the Polio virus (left), as well as the lowest-lying
normal mode frequencies (right). Again, there are 6 trivial zero-modes and 24 low-frequency modes, after which
the frequencies go up rapidly.
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Figure 7: The protein positions and inter-protein bonds for HK97 (left) as well as the low-frequency spectrum
(right).

3.3 Polio virus

The polio virus is a pseudo T = 3 virus. It has four protein chains, one of which lies inside
the main capsid. Ignoring this fourth chain, the tiling suggested by the remaining 180 protein
positions is of kite type. The spectrum obtained from our model is displayed in figure 6. Once
again, it exhibits a low-frequency plateau of 24 modes with the representation content (3.1).
The lowest frequency modes, and in particular the characteristic motions of the proteins, have
also been analysed to some extent in [17]. Of particular interest to us are their results on the
representation content of the lowest frequency modes, which differs slightly from ours, and a
visualisation of the motion of the atoms. The origin of this discrepancy remains unclear, as the
latter paper is not very specific about the potential function used.

3.4 MS2

The inter-protein bonds for MS2 as given by VIPERdb are not sufficient to ensure stability of
its capsid. For completeness we display the known bonds in figure 8. Although the number of
zero-modes (90) is the same as for CCMV, we now no longer have access to a similar but stable
capsid which we can use as a guideline to add stabilising bonds by hand (as we had for CCMV,
where we used the similarity with RYMV). We therefore refrain from discussing the low-energy
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Figure 8: The protein positions and inter-protein bonds for MS2.

Figure 9: The first singlet mode of HK97, viewed along a 5-fold symmetry axis (left) and along a 3-fold axis
(right). It occurs at position 67 with our particular bond choices, which is arguably still within the regime of the
low-frequency approximation. This mode exhibits protrusion of the hexamer units (or rather, one of the chains of
the hexamer), as also found in [46].

spectrum of MS2 here. It would be interesting to revisit the computation of the association
energies for MS2, or alternatively get a better handle on the inter-protein bonds of this virus
directly from experiment.

3.5 Hong Kong ’97

The Hong Kong ’97 virus has a T = 7l capsid. Its hexamer rings are bound rather rigidly, as
shown in figure 7. Once more we find that the low-frequency spectrum is dominated by a 24-state
plateau, clearly separated from the remainder of the spectrum by a large frequency gap. The
thickness of the faces is crucial for the stability of HK97, as a projection of the protein chains
onto the hypothetical icosahedral faces leads to the appearance of three additional zero-modes.
This yields a partial explanation for the extremely low frequency at which the plateau appears
for HK97. We will return to the face thickness issue in section 4.2.

The spectrum of HK97 has previously been analysed in the Tirion approximation using RTB
techniques by [9]. One of their key results is that the first two conformal modes correspond to
protrusion of the hexamer and pentamer groups respectively. The structure of these singlet modes
of HK97 has also been analysed by [46]. Our first singlet mode occurs well after the plateau, and
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Figure 10: The protein positions and inter-protein bonds for SV40 (left) as well as the low-frequency spectrum
(right).

has a structure which confirms these more elaborate computations. In particular, we see that the
first singlet (depicted in figure 9) exhibits the same type of hexamer protrusion.

The structure of the 24-state low-frequency plateau which we observe is in agreement with
the analysis of [34], who used an all-atom Tirion potential and a Lanczos eigenvalue solver to find
that the first singlet occurs at position 31. However, we again note that the use of more crude
approximations, such as in e.g. [9] or [13], gives a low-frequency structure that is different from
ours.

3.6 Simian virus 40

Simian virus 40 has an all-pentamer capsid, which falls outside the Caspar-Klug classification
scheme. It is captured, however, by viral tiling theory [1]. This particularity set aside, there is
also a considerable difference in the bond structure as compared to other viruses we have analysed
here. While HK97 exhibits a rather rigid structure around the edge of the hexamer, SV40 has
a relatively weakly bound pentamer edge and much stronger bonds to other pentamers. See the
left panel of figure 10 for details.

The difference between SV40 and all other capsids discussed so far is also clearly visible in the
low-frequency spectrum: instead of the 24-state plateau which we have seen for all Caspar-Klug
viruses, SV40 shows a much smoother structure. If a plateau is visible at all, it now contains 30
states, with representation content

2Γ3 + 2Γ3′ + 2Γ4 + 2Γ5 . (3.2)

We have so far not found any other virus with this low-frequency structure in its spectrum, which
suggests that it is not as universal as the 24-state plateau observed for the Caspar-Klug family,
but confirming this will require a more elaborate scan through the non-Caspar-Klug capsids.

4. Generic patterns in frequency spectra of viral capsids

4.1 The dodecahedron

In the previous section we presented the frequency spectra for a selection of icosahedral viral
capsids, calculated within the mathematical set-up discussed in section 2. We will now argue

14



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

that the distinctive low-frequency plateau of twenty-four normal modes, observed for all Caspar-
Klug capsids, is in fact a direct consequence of a few long-range edge-crossing bonds. More
precisely, we will show that, after an appropriate separation of the degrees of freedom of the viral
capsids, an explanation of the low-frequency plateau can be found in the vibrational spectrum of
a simple dodecahedral spring-mass model [19].

In order to explain this, let us first focus on a caricature virus capsid, namely an hypothetical
capsid with only one protein chain per icosahedral face, approximated by a point mass located
at the centre of the face. Such a system possesses 3 × 20 − 6 = 54 degrees of freedom after
subtraction of the trivial rotation and translation modes. We will also introduce a minimal set of
bonds, obtained by connecting the nearest-neighbour proteins, and view the latter as the vertices
of a polyhedron whose edges are the bonds. The resulting structure has thirty edges and is a
dodecahedron dual to the icosahedron naturally associated with the capsid considered.

The thirty bonds reduce the number of degrees of freedom from 54 to 24, and these remaining
degrees of freedom correspond to the 24 zero-modes which signal the instabilities of the dodeca-
hedral cage. We now argue that the representation theory content of these zero-modes coincides
exactly with that of the low-frequency modes of Caspar-Klug capsids. We first note that the
dodecahedral spring-mass system considered here possesses a centre of inversion. Therefore, the
relevant symmetry group is the full icosahedral group H3 and the decomposition of the displace-
ment representation of the dodecahedral capsid into a sum of irreducible representations of H3

reads,
Γdisp,60

dode = Γ1
+ ⊕ Γ3

+ ⊕ 2Γ3
− ⊕ Γ3′

+ ⊕ 2Γ3′
− ⊕ 2Γ4

+ ⊕ 2Γ4
− ⊕ 3Γ5

+ ⊕ 2Γ5
− . (4.1)

The numerical superscripts refer to the dimension of the representations, while the ± signs
differentiate between even and odd representations. This decomposition does not make use of
any information stored in the force matrix, and therefore does not tell us which of these modes
are zero-modes. In order to pin those down, we use the information encoded in the displacement
representation of the icosahedron to which the dodecahedron constructed above is dual. First of
all, the icosahedral vibration modes decompose as

Γdisp,36
ico = Γ1

+ ⊕ Γ3
+ ⊕ 2Γ3

− ⊕ Γ3′
− ⊕ Γ4

+ ⊕ Γ4
− ⊕ 2Γ5

+ ⊕ Γ5
− . (4.2)

In this context of vibrations, the link between the dodecahedron and the icosahedron comes from
considering the subset of motions of the dodecahedral system which are induced by the motion
of the 12 vertices of an icosahedron. By “induced” we mean that the dodecahedron moves in
such a way that its vertices are located at the centre of the deformed icosahedral faces, at all
times. All icosahedral modes belonging to a particular irreducible representation must induce a
linear combination of modes of the dodecahedral capsid which pertain to the same irreducible
representation. Hence, provided that the vibrational modes of the icosahedron induce a non-
vanishing component in the finite-frequency modes of the dodecahedron, we can conclude that
the modes in Γdisp,60

dode which are not contained in Γdisp,36
ico must have vanishing frequency. Under

this assumption, the zero-modes of the dodecahedron transform as

Γdisp
dode, zero = Γ3′

+ + Γ3′
− + Γ4

+ + Γ4
− + Γ5

+ + Γ5
− . (4.3)

As a matter of fact, an explicit calculation of the normal modes confirms this assumption. The full
frequency spectrum of the icosahedron and dodecahedron is displayed in figure 11 for reference.

We have visualised the twenty-four zero-modes in figure 12–14 and use the graphical represen-
tations to compare with the low-frequency modes of actual Caspar-Klug viruses.7 In comparing

7Animations of the dodecahedron vibration modes are available at http://biomaths.org/.

15



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

5 10 15 20 25 30 35

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60

0.5

1

1.5

2

2.5

Figure 11: The spectrum of the icosahedron (left) and dodecahedron (right), decomposed in irreducible rep-
resentations of the icosahedral group. Large symbols denote “−” representations, small symbols denote “+”
representations. Black dots denote singlets, red triangles Γ3± , blue triangles Γ3′± , green squares Γ4± and purple
pentagons Γ5± . Note that the structure of the non-zero modes is the same for both spring-mass models.

with those of the Polio capsid in [17], one should recall that we perform a linearised analysis, and
thus, any linear combination of eigenvectors with the same eigenvalue remains an eigenvector.

We end up this subsection with some insights in the multiplicity of the 24 zero-modes. Let us
start with the 5-fold degenerate representations. Motion in the Γ5+ representation is associated
to squeezing in the direction of one of the six 5-fold axes of the icosahedron. A linear combination
of all of them produces an icosahedrically symmetric motion, which is a singlet, so the degeneracy
of the Γ5+ modes is indeed five. Similarly, the modes in the Γ5− representation correspond to
motion in which two opposite caps centred on a five-fold axis are rotated in opposite directions.
Again, the linear sum produces a singlet, so the degeneracy is 5-fold. The Γ4+ and Γ4− modes
are related to the five cubes which are inscribed in the dodecahedral cage; again one linear
combination transforms as a singlet (see also [47]). Generically, the dimensions of the irreducible
representations are thus one lower than the multiplicity of modes with a similar geometrical
pattern.

4.2 Faces as building blocks

The analysis of the vibrations of the caricature virus capsid has revealed the existence of 24
zero-frequency modes. Despite its simplicity, this model can nevertheless be used to understand
the low-frequency pattern of more complicated capsids, such as those analysed in section 3. The
key ingredient here is to first analyse the vibration modes of the proteins on each icosahedral
face (for the caricature capsid above, those vibration modes are just the three trivial translation
modes).

Before we explain this logic in detail, let us summarise the situation for the various capsids
which we have discussed in section 3. In figure 15 (resp. 16) we display the non-zero bonds of
STMV, RYMV, Polio, HK97 (resp. SV40), restricted to those bonds which remain on a single
icosahedral face. A crucial observation is that the faces are rarely stable: only in the case of
STMV is there a sufficient number of inter-protein bonds to prevent the face from collapsing.
The faces themselves thus exhibit zero-modes in their eigenspectrum. Additional bonds, which
reach between proteins on different faces, are necessary for stability of the capsid as a whole and
the faces in particular.

It is interesting to comment at this point on how zero modes arise. If all proteins associated
with a given icosahedral face do actually lie in the plane of that face, “infinitesimal instabilities”
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Figure 12: The zero-modes of the dodecahedron in the Γ3′+ (top) and Γ3′− (bottom) representations.

Figure 13: The zero-modes of the dodecahedron in the Γ4+ (top) and Γ4− (bottom) representations.

17



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Figure 14: The zero-modes of the dodecahedron in the Γ5+ (top) and Γ5− (bottom) representation.

may develop, as the forces that can be exerted by all bonds connected to a node lie in a plane.
The force in the direction normal to the plane then vanishes at linear order, leading to a zero-
mode of the force matrix. Figure 17 illustrates these infinitesimal instabilities in two and three
dimensions. Generically, a fully connected network in the plane with n nodes has n zero-modes
which move the individual nodes out of the plane (the z direction). Of these, one is a translation
mode, and two others are rotations around the x- and y-axis respectively. Therefore, there are
n− 3 modes which are associated with infinitesimal instability. In the real world, the faces of the
icosahedral capsids always have a finite thickness, because the distance of the protein chains to
the centre of the capsid is not the same for all chains. As soon as this thickness is introduced,
all infinitesimal instabilities disappear. Nevertheless, due to the fact that the faces are relatively
thin, these lifted zero-modes will often have a small frequency.

Let us now turn to the general argument. A T = n Caspar-Klug capsid has 3n proteins per
face, and we will denote the number of links between these proteins with 3k. If there were no
links between proteins on different faces, one would expect a total of

N0 = (9n− 3k) · 20 = 60(3n − k) (4.4)

capsid zero-modes. A stable capsid, which only has 3 rotational and 3 translational zero-modes,
would thus require at least 60(3n− k)− 6 independent constraints (i.e. bonds). How these bonds
should be chosen remains an open mathematical problem. In two dimensions there exists an
elegant algorithm to determine the stability of a network. This “pebble game” algorithm scales
approximately linearly in the number of nodes [48]. The crucial ingredient which makes this
possible is the Laman theorem [49], which allows one to find redundant bonds by analysing strict
subgraphs of the full network. This theorem does not generalise to higher dimensions, and despite
considerable effort an exact analogue of the pebble game in three dimensions is not known.

The VIPERdb database, however, provides us with various association energies for edge-
crossing bonds which we can use to stabilise the capsids. By symmetry, these bonds come in

18



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

STMV bonds on face RYM bonds on face

Polio bonds on face HK97 bonds on face

Figure 15: Structure of bonds on the faces of various virus capsids. These faces have 6(6), 15(15), 6(15) and
12(27) zero-modes respectively, where numbers in brackets include the infinitesimal instabilities which go away
once the “thickness” of the face is taken into account.

multiples of 30 or 60 when one considers the capsid as a whole. The logic above suggests that,
if we keep the strongest e = 2(3n − k) − 1 bonds per edge, this would yield a capsid with 24
non-trivial zero-modes. A careful analysis of the “on-face” bond structure given earlier confirms
that this indeed is the case for all Caspar-Klug capsids which we have analysed. Here are some
examples.

The STMV capsid, with n = 1, is the simplest case to analyse. It has a stable triangular
face structure with k = 1, and from 2(3n − k) − 1 = 3 we expect to need e = 3 edge-crossing
bonds per edge. Looking at the left panel of figure 1 we observe that if we remove the weakest
(longest) bond from the capsid, there are indeed 3 bonds per edge (the figure shows two of these
bonds, of which one does not go through a two-fold axis and therefore really appears twice per
edge after the icosahedral symmetries are taken into account). This reduced capsid is visualised
in figure 18. An analysis of its spectrum indeed exhibits 24 non-trivial zero-modes in addition to
the 6 translation and rotation modes, in agreement with the counting argument given above.

For the RYMV capsid, which has n = 3, if we discard the two weakest bonds (which are both
edge-crossing) we end up with k = 4 on-face and e = 9 edge-crossing bonds, and 24 non-trivial
zero-modes, in accordance with 2(3n − k) − 1 = 9. As discussed in section 3.2, the bonds that
stretch from the C-chains are crucial for stability, and their weakness is responsible for the fact
that the zero-modes are only slightly lifted. For HK97, which has n = 7, the situation is more
subtle. Some of the weakest bonds on the faces of this capsid are actually weaker than some of the
edge-crossing bonds. Consistently removing the weakest six bonds leads to a capsid with k = 12

19



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

SV40 bonds on face

Figure 16: Structure of bonds on the face of SV40. Its faces have 18(21) zero-modes respectively (notation as in
figure 15).

Figure 17: Infinitesimal instabilities arise when the restoring force vanishes at linear order. The 2d structure in
figure a is stable, while the structures in b and c exhibit an infinitesimal instability.

and e = 17. The expression with 2(3n − k)− 1 = 17 thus suggests that in this case there should
be 24 non-trivial zero-modes, which we indeed observe. This type of analysis can be extended to
all the other Caspar-Klug viruses, with similar results.

4.3 Tiling independence

We have seen that, despite the considerable difference in the structure of Caspar-Klug capsids,
the low-frequency spectrum exhibits a remarkable uniformity. A priori one might have expected
that the way in which the strongest bonds are distributed over the capsid has a determining
influence on the low-frequency vibration pattern.

In order to isolate the effects of variations in the bonding patterns from the effects of changing
protein locations, we have analysed three hypothetical T = 3 capsids. These are all based on the
protein positions of RYMV, but have different bond types corresponding to the three different
T = 3 tilings: triangle, rhomb or kite. In figure 19 we display these hypothetical capsids, while
in 20 we show the three possible tilings in their most ideal form. One can think of the capsids in
figure 19 as small deformations of RYMV, CCMV and Polio (without 4th chain), respectively, as
their protein positions are very similar. We have taken a hierarchy of bond strengths in which the
strongest bonds are of unit strength, most other bonds are of strength 1/5, and the long C-chain
arms are taken to be of strength α1 and α2 respectively. The positions of the bonds are based
on those of RYMV, ignoring the weak long-range bond between the B- and C-chain.

An analysis of the low-frequency spectrum exhibits a 24-state plateau in all cases, provided
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Figure 18: “Top” and “front” view of a geometric model of the capsid of STMV, including the inter-protein
bonds. Dots denote the centre-of-mass positions of the protein chains, tubes denote bonds between them. This
structure has 30 zero-modes without the A1-A8 bond (thin tubes); 24 of these are lifted by this weak bond.

that the bonds α1 and α2 are not simultaneously taken to be very small. Thus, the size of the gap
is at least partially caused by one of the long-range bonds not being extremely small. When one
of the α1,2 is set to zero, the 24 low-frequency modes come down to zero frequency. Interestingly,
when both long-range bonds are very small, i.e. α1 = α2 � 1, the plateau extends to a total
length of 64. In all three capsids, one then finds a state at position 71 which is a singlet conformal
mode.

We thus conclude that the structure of the bonds is far less relevant than one would expect,
and the spectrum is essentially determined by the few long-range edge-crossing bonds which make
the capsid stable. This provides some support for the analysis in section 4.1, in which most results
were obtained by analysing the displacement representation, which contains no information about
bonds. However, there clearly are many mathematical questions which these observations raise,
and we hope to return to some of these in a future publication.

5. Discussion and conclusions

Dynamical properties of viral capsids are undoubtedly key to our understanding of conformational
changes, maturation and function of viruses. They may even offer clues on how to interfere
mechanically and chemically with their assembly or, more generally, their replication cycle, with
potentially important repercussions in the health sector. Concrete steps in this direction, using
near-infrared laser pulses to produce damage on viral capsids by forced resonance, were reported
on recently [7].

In this paper, we have been concerned with slow, large amplitude vibrations of icosahedral
capsids, which are thought to be crucial for the onset of conformational changes. The underlying
techniques, which have been used for decades in the analysis of single protein vibrations, are in
principle applicable in the present context, but the complexity of large biomolecular assemblies
renders molecular dynamics simulations prohibitive in cost and computer time. A major tool
in the study of viral capsid vibrations is Normal Mode Analysis (NMA), despite its limitations,
briefly mentioned in section 2.2. The basic inputs of a NMA are the chosen level of coarse-graining
for the system under consideration and the quadratic potential adopted. The few existing analyses
are probing different aspects of virus vibrations, and are just too scarce to provide good ground
for identifying general patterns across viruses.

21



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Figure 19: Three hypothetical virus capsids, corresponding to a triangle, rhomb and kite bond structure respec-
tively.

Figure 20: The three possible tilings for T = 3 capsids. The central triangle denotes one face of the icosahedron.
The strongest inter-protein bonds are those between proteins on a single tile, i.e. on one of the yellow-coloured
polygons. Bonds between equal-type chains are all weak in the Caspar-Klug and kite tilings, while some of them
are strong in the rhomb tiling. The rhomb tiling is the only one without strong bonds between monomers on
different faces.

Our approach has been to study low-frequency modes of vibration from a coarse-grained
approximation which replaces each capsid protein by a point mass located at its centre of mass,
while interactions are dictated by a spring-mass model with all masses being equal and spring
constants reflecting the relative values of association energies listed in VIPERdb. Our analysis
further assumes that the capsid is empty. Although our coarse-graining is certainly drastic, its
combination with a quadratic potential sensitive to a variety of bond strengths has enabled us to
detect universal properties of the frequency spectra, namely a low-frequency plateau of twenty-
four states, which is present in all Caspar-Klug capsids analysed, i.e. in all capsids exhibiting
twelve pentamers at the vertices of an icosahedron and hexamers respecting the icosahedral
symmetry everywhere else, irrespectively of the tiling type (triangles, rhombs or kites).

Such signature is difficult to extract from most available molecular dynamics simulations
we are aware of. In some cases (e.g. [8, 9]), we believe the reason is that the distance cut-off
needed to stabilise capsids described by a Tirion potential smears the low-frequency spectrum
and loses the plateau structures, a phenomenon illustrated in a toy model in appendix B. Another
potential source of confusion comes from the fact that some analyses only keep normal modes
of vibration which are invariant under the proper rotation subgroup I of the icosahedral group,
while we argued in section 2.1 that although the potential must be invariant, the solutions to
the equations of motion need not be. Yet, there is one analysis which is compatible with our
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results: in the all-atom simulation with cut-off 7.3Å of the HK97 capsid in [34], the first non-
degenerate mode (a singlet of I) appears at position 31 in the spectrum, in total agreement with
our qualitative arguments on the number of low-frequency modes (6 trivial zero-modes and 24
very near zero-modes).

Let us, however, emphasise once more that we do not claim our approximations should be
expected to be adequate for all virus capsids. It is conceivable that in some cases one cannot
neglect contributions like bond-bending or angle-dependent forces, or cannot treat interactions
sensibly in a perturbation series. Even if the degrees of freedom arise from point-like masses, as
in the C60 fullerene for instance, our conclusion about the existence of a 24-state plateau does not
necessarily hold. As a matter of fact, our approximations hint at a plateau of 84 low-frequency
modes for C60. A discussion of any gap after that plateau is likely to be invalidated by the fact
that it would occur for too high frequencies in the spectrum. Experimentally one does not observe
any noticable gap in the spectrum of C60. Nevertheless, this observation for the fullerene does
not invalidate our analysis for Caspar-Klug capsids, for which the number of very low-frequcny
modes is much smaller.

Our top-down approach should therefore be seen as complementary to the all-atom simula-
tions, and paves the way for a new generation of models which should address several shortcomings
of the present coarse-graining methods. The most obvious extension which should be analysed
is one in which angle-dependent forces are included. Within the harmonic approximation, an
additional very interesting and deep mathematical question is how to minimise the number of
bonds in a 3-dimensional spring-mass model so that the structure remains stable. In the absence
of useful theorems, one can be guided by Nature and make use of the data on association ener-
gies in VIPERdb. However, there are several viral capsids for which interesting dynamics has
been observed using the RTB method or all-atom normal mode computations, but which cannot
currently be handled with the coarse-grained model proposed in this paper. This is due to the
limited number of bonds listed in VIPERdb. Capsids for which the available bonds are insuffi-
cient, even after introduction by hand of one or two additional bonds, include Hepatitis B and
MS2. In this light, it would be interesting to revisit the computation of the association energies
for these capsids. Another outstanding puzzle is a proper mathematical understanding of the
different low-frequency plateau structure of SV40, in particular whether the 30 near zero-modes
are a signature of all-pentamer capsids.

Finally, in view of the importance of conformational changes in viral capsids, which can only
be fully characterised by going beyond the harmonic approximation, it is desirable to develop
methods taking anharmonicity into account. For instance, one might consider generalising to
viral capsids the Elastic Network Interpolation method developed in [41] to generate anharmonic
pathways of macro-biomolecules.
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Appendix

A. Normal modes of vibration

A.1 Force matrix and normal coordinates

We consider a molecule with N atoms, which are approximated by point masses whose displace-
ments from equilibrium due to vibrational motion are encoded in 3N mass-weighted coordinates
qi(t), i = 1, .., N , where t is time. We drop the explicit time dependence in what follows, and use
the notation q̇i = dqi/dt and q̈i = d2qi/dt2. We also use Einstein’s summation convention, for
instance,

∑3N
j=1 Aij vj ≡ Aij vj . The 3N classical equations of motion are

q̈i + Fijqj = 0, i = 1, .., 3N , (A.1)

where the kinetic energy is given by T = 1
2 q̇i

2 and the potential energy, Taylor expanded about
its equilibrium position and normalised so that it vanishes at equilibrium, boils down, in the
harmonic approximation, to the following expression

V = Fijqiqj, (A.2)

with the 3N × 3N force matrix or Hessian given by,

Fij =
∂2V

∂qi∂qj

∣∣∣∣
qk=q0

k

, where q0
k are the atoms’ equilibrium positions. (A.3)

One is interested in changing basis from the general coordinates {qi} to a new set of coordinates
{q′k} so that the set of differential equations (A.1) is equivalent to the set

q̈
′
k + λ(k)q

′
k = 0, k = 1, .., 3N , (A.4)

for some real values λ(k) to be determined. If the orthogonal matrix of change of basis is μ,
i.e. q′k = μki qi, one must have, after constructing 3N linear combinations of (A.1) with coefficients
Cki,

Ckiq̈i + CkiFijqj = 0 = q̈
′
k + λ(k)q

′
k (A.5)

where Cki = μki and CkiFij = λ(k)μkj. This implies that one must find 3N sets of 3N coefficients
Ckj such that

(Fij − λ(k)δij)Cki = 0. (A.6)

It is clear from (A.6) that, unless all coefficients are zero, the λ(k) are eigenvalues of the force
matrix. For each such eigenvalue (fixed k), the equation (A.6) allows to determine 3N coefficients
Cki. The 3N normal coordinates q

′
k = Ckiqi are solutions of the differential equations (A.4), so

they read,
q
′
k = Ak cos(λ

1/2
(k) t+ ε(k)), k = 1, .., 3N , (A.7)

where ε(k) are phases and Ak are constants. Reverting to the original system of coordinates,

qi = Cij q
′
j = Cij Aj cos(λ

1/2
(j) t+ ε(j)), i = 1, .., 3N , (A.8)

and choosing all but one constant Ak to be zero yields the ith normal mode of vibration

qi = Cik Ak cos(λ
1/2
(k) t+ ε(k)), no summation on k (A.9)

of frequency ν(k) = λ
1/2
(k) /2π.
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A.2 Group theory patterns of normal modes of vibration

In this appendix we will briefly recall the method of decomposing vibration modes of aG-invariant
N -atom molecule into irreducible representations of the symmetry group G (for more details see
e.g. [50]). The goal is to find a new basis �q

′
for the atoms’ positions, such that the action of G

on �q
′
decomposes into a sum of irreducible representations. The action of the group G on �q

′
is

called the displacement representation, and is simply given by the tensor product

Γdisp(g) = P (g)⊗R(g) , g ∈ G. (A.10)

Equivalently, in terms of the components, we have (Γdisp)3m−3+i,3n−3+j = P (g)mn⊗Rij(g), using
the notation introduced above (2.7). The displacement representation matrices do not depend
on the positions of the masses, but only on the number of atoms.

We denote with U the matrix which achieves the coordinate transformation �q
′
= U�q such

that it block-diagonalises the displacement generators,

Γ′ disp(g) := U−1Γdisp(g)U = ⊕pnpΓp(g) . (A.11)

Here Γp(g) are the generators of the symmetry group G in the p-th representation. For every
symmetry generator of the molecule which leaves the potential invariant, we necessarily have

Γdisp(g)F = F Γdisp(g), (A.12)

where F is the force matrix introduced in appendix A.1. By Schur’s lemma, the block diagonal
form of the right-hand side of (A.11),

Γ′ disp(g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γp1

. . .
Γp1︸ ︷︷ ︸

np1×np1

Γp2

. . .
Γp2︸ ︷︷ ︸

np2×np2

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.13)

(in which all Γp are dp × dp matrices) thus implies a similar block-diagonal form of the U -
transformed force matrix F ′ = U−1FU ,

F ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

F p1
11 · · · F p1

1 np1
...

. . .
...

F p1
np1 1 · · · F p1

np1 np1

⎞
⎟⎠

︸ ︷︷ ︸
np1×np1

⊗dp1×dp1

⎛
⎜⎝

F p2
11 · · · F p2

1 np2
...

. . .
...

F p2
np2 1 · · · F p2

np2 np2

⎞
⎟⎠

︸ ︷︷ ︸
np2×np2

⊗dp2×dp2

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.14)
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Every irreducible representation Γp on the right-hand side of (A.11) thus corresponds to a set
of np eigenvalues of F , each occurring with multiplicity dp.

The coordinate transformation matrix U itself can be found using projection operators. These
are defined as
(Pp

mn

)
ab
=

dp

dimG

∑
g∈G

(
Γp(g)

)∗
nm

(
Γdisp(g)

)
ab

, m, n = 1, . . . , dp , a, b = 1, . . . , 3N . (A.15)

(In the case of the icosahedral group the representations are all real and the complex conjugation
symbol can be ignored). A crucial property of these operators is that they provide us with basis
vectors transforming according to the representation Γp. To see this, let us transform a row of
the matrix Pp

mn by acting on it with a group element h in the displacement representation,

(Pp
mn

)′
ba
=

(
Γdisp(h)

)
ac

(Pp
mn

)
bc
=

dp

dimG

∑
g

(
Γp(g)

)∗
nm

(
Γdisp(g) Γdisp(h−1)

)
ba

=
dp

dimG

∑
g′=gh−1

(
Γp(g′)

)∗
nk

(
Γp(h)

)∗
km

(
Γdisp(g′)

)
ba

=
(
Γp(h)

)∗
km

(Pp
kn

)
ba

.

(A.16)

This shows that the rows of the matrices Pp
mn transform into each other according to the p-th

representation. In order to construct a transformation matrix which takes us to the symmetry-
adapted basis, we thus have to construct the span of all row vectors in all Pp

mn matrices (for
fixed p and all m,n). In fact, the normalised row-vectors of the matrices Pp

mm, with m = 1 . . . dp,
together already span an np-dimensional subspace transforming as Γp. The matrix UT is now
constructed by taking an orthonormal basis in each of these subspaces, and then using these
basis vectors to populate the rows of UT . The matrix U then also block-diagonalises the force
matrix F . Note once more that U only depends on the number of capsid proteins, not on their
precise positions. For more details we refer the reader to e.g. [50].

If one is only interested in the multiplicities of the various irreducible representations, the U
matrix is not needed and it is more convenient to use the character formula

np =
1

dimG

∑
g∈G

χ∗disp(g)χp(g) . (A.17)

Here the character of a group element g in a given representation is obtained by computing the
trace of the associated matrix, χ(g) = Tr

(
R(g)

)
. For the displacement representation (A.10) the

character becomes

χdisp(g) = Tr
(
P (g)

) · Tr (R(g)) = ±(# of proteins unmoved by g) · (1 + 2 cos θ) , (A.18)

where θ is the angle of the rotation associated with g, and the minus sign is taken whenever g
involves an inversion. The characters of irreducible representations of finite groups are widely
available in the literature, and are reproduced in appendix C for the icosahedral group H3. This
fixes the multiplicities np and can be used as a check on the intermediate step of the calculation
of the projection operators.

Let us, to conclude, illustrate the technique described above for the case of the ammonia
molecule (see figure 21), whose point group is C3v and whose displacement representation matrices
can be shown to satisfy

Γdisp ′(g) = U−1 Γdisp(g)U = 3Γ1(g) + Γ1′(g) + 4Γ2(g), ∀g ∈ C3v. (A.19)
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Hence the multiplicities are n1 = 3, n2 = 1 and n3 = 4. The matrix F
′
can be partitioned

in nine blocks of dimensions ni × nj, i, j = 1, 2, 3 to match the structure of the displacement
representation (A.19), and use the following notations

F
′
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F
′11

11 F
′11

12 F
′11

13 F
′12

11 F
′13

11 F
′13

12 F
′13

13 F
′13

14

F
′11

21 F
′11

22 F
′11

23 F
′12

21 F
′13

21 F
′13

22 F
′13

23 F
′13

24

F
′11

31 F
′11

32 F
′11

33 F
′12

31 F
′13

31 F
′13

32 F
′13

33 F
′13

34

F
′21

11 F
′21

12 F
′21

13 F
′22

11 F
′23

11 F
′23

12 F
′23

13 F
′23

14

F
′31

11 F
′31

12 F
′31

13 F
′32

11 F
′33

11 F
′33

12 F
′33

13 F
′33

14

F
′31

21 F
′31

22 F
′31

23 F
′32

21 F
′33

21 F
′33

22 F
′33

23 F
′33

24

F
′31

31 F
′31

32 F
′31

33 F
′32

31 F
′33

31 F
′33

32 F
′33

33 F
′33

34

F
′31

41 F
′31

42 F
′31

43 F
′32

41 F
′33

41 F
′33

42 F
′33

43 F
′33

44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In the above, the expressions F
′pq

αβ , α = 1, .., np;β = 1, .., nq ; p, q = 1, 2, 3 are matrices of dimension
dp × dq.

The equality Γdisp ′(g)F ′ = F
′
Γdisp ′(g) ∀g ∈ C3v is equivalent to

Γp(g)F
′pq

αβ = F
′pq

αβ Γ
q(g), ∀g ∈ C3v, (A.20)

for α = 1, .., np;β = 1, .., nq ; p, q = 1, 2, 3. We are now in a position to make good use of Schur’s
Lemma. If p �= q, the irreducible representations Γp and Γq are not equivalent, and this implies

F
′pq

αβ =
{

0, if p �= q
fp

αβ Idp , if p = q
(A.21)

where fp
αβ are a set of (np)2 complex numbers obeying fp

αβ = (fp
βα)

∗ as F , and hence F
′
is

hermitian. So Schur’s Lemma and the hermiticity of F
′
allow us to write

F
′
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
11 f1

12 f1
13

(f1
12)

∗ f1
22 f1

23

(f1
13)

∗ (f1
23)
∗ f1

33

f2
11

f3
11 0 f3

12 0 f3
13 0 f3

14 0
0 f3

11 0 f3
12 0 f3

13 0 f3
14

(f3
12)

∗ 0 f3
22 0 f3

23 0 f3
24 0

0 (f3
12)
∗ 0 f3

22 0 f3
23 0 f3

24

(f3
13)

∗ 0 (f3
23)
∗ 0 f3

33 0 f3
34 0

0 (f3
13)
∗ 0 (f3

23)
∗ 0 f3

33 0 f3
34

(f3
14)

∗ 0 (f3
24)
∗ 0 (f3

34)
∗ 0 f3

44 0
0 (f3

14)
∗ 0 (f3

24)
∗ 0 (f3

34)
∗ 0 f3

44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 21: The structure of ammonia.

where all entries not explicitly written are zero. After a further similarity transformation that
reshuffles rows 7, 9 and 11, and then columns 7, 9 and 11, we arrive at (noticing also that F and
U are real)

F
′′
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
11 f1

12 f1
13

f1
12 f1

22 f1
23

f1
13 f1

23 f1
33

f2
11

f3
11 f3

12 f3
13 f3

14

f3
12 f3

22 f3
23 f3

24

f3
13 f3

23 f3
33 f3

34

f3
14 f3

24 f3
34 f3

44

f3
11 f3

12 f3
13 f3

14

f3
12 f3

22 f3
23 f3

24

f3
13 f3

23 f3
33 f3

34

f3
14 f3

24 f3
34 f3

44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.22)

So we have managed to transform the force matrix F into an equivalent matrix, F
′′
, which is

block diagonal. It now remains to calculate the eigenvalues and the eigenvectors of the smaller
size matrices appearing in the block diagonal form to obtain the normal modes of vibration. Note
that each eigenvalue of F is associated with one irreducible representation Γp of C3v, and each
such eigenvalue is dp-fold degenerate, where dp is the dimension of Γp.

B. The Tirion and RTB approximations

In order to understand the approximations made with the Tirion potential and the rotations-
translations of blocks (RTB) method, let us consider a simple example. This example models
two protein chains, each individually bound together by strong covalent bonds, and mutually
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interacting through weak Van der Waals bonds. This is a caricature of the real world situation,
but useful to understand the logic of these two approximations.

The model we will consider lives in two dimensions. We have two protein chains of 4 atoms
each, positioned on the nodes of a square. These two chains interact weakly, as in figure 22.

Figure 22: Two simplified protein chains whose mutual interaction is very weak compared to the interatomic
forces within each protein. The thickness of the lines symbolises the strength of the bonds.

This “protein” has one zero-mode in addition to the three trivial ones (translation and rota-
tion). This additional zero-mode corresponds to shearing motion of the central square. In order
to exhibit the consequences of a large hierarchy of interaction strengths, we will take the ratio
of the strong to weak bonds to be 10. The force matrix of this model is computed as described
earlier, keeping track of the different spring constants. The exact spectrum of this model is given
by the black dots in the plot of figure 23.

In the “rotations-translations of blocks” (RTB) method, one computes the spectrum of the
low-frequency modes by grouping together clusters (blocks) of atoms which form relatively rigid
structures. By making these clusters completely rigid and keeping only their translation and
rotation degrees of freedom, the total computational complexity is reduced. In our example
above, we will use the two protein chains as blocks. There are two translations for each block,
and one rotation, yielding a total of 6 coordinates. These are given by

t1x =
1
2
(e1

x + e2
x + e7

x + e8
x) ,

t1y =
1
2
(e1

y + e2
y + e7

y + e8
y) ,

t2x =
1
2
(e3

x + e4
x + e5

x + e6
x) ,

t2y =
1
2
(e3

y + e4
y + e5

y + e6
y) ,

r1 =
1
2
(e1

x + e2
x − e7

x − e8
x) ,

r2 =
1
2
(e3

x + e4
x − e5

x − e6
x) .

(B.1)

Note that the rotation coordinates are so simple because we only look at the linearised approxi-
mation. The resulting projection matrix P reads

P =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0
0 0 0 0 1 0 1 0 −1 0 −1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(B.2)

This projection matrix is orthogonal, i.e. it satisfies

P · P T = 16×6. (B.3)
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Figure 23: Exact frequency spectrum of the two protein chains’ system.

The force matrix for the reduced system now reads

P · F · P T =
1
4

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 0
0 0 0 0 0 0
−1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 11 −1
0 0 0 0 −1 11

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B.4)

The eigenvalues of this matrix are

0, 0, 0,
1
2
,
5
2
,
6
2

. (B.5)

These frequencies are, as expected [51], larger than the actual frequencies. They are depicted by
the small red dots in the figure above, where a scaling by a factor of 1/5 was applied. We thus
see that this method does a decent job at reproducing the low-frequency spectrum of the exact
model, and correctly throws away all the high-frequency modes.

Now consider the Tirion approximation. In this approximation, we forget about all details
of the bonds, and instead write down a potential which depends on only one overall spring
constant (to be fixed by hand). Moreover, the potential depends on a cutoff radius. In figure 24
we show three configurations for three cutoff radii Rc = 2.1, 3.1 and 5.1. We arbitrarily fix

Figure 24: Visualisation of the Tirion bonds of the toy model protein for three cutoff radii..

the spring constant to be 3, so the plots of the spectrum should be read modulo an overall
normalisation. For the three cutoff radii mentioned above, the spectra are presented in figure 25.
From these plots it is obvious that this method can produce results which are both quantitatively
and qualitatively wrong. In particular, it fails to reproduce the separation between high-frequency
and low-frequency modes; instead, one is “supposed to know” where to stop trusting the Tirion
spectrum. Note, however, that a sufficiently small cutoff can still change the zero-mode structure
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Figure 25: The exact frequency spectra for the Tirion potential with three different cutoffs, for the two protein
chains’ system.

and introduce instabilities (the standard solution, see e.g. [52], is to simply increase the cutoff
length until the capsid is stable, but this seems rather arbitrary).

C. Irreducible representations and characters of the icosahedral group

For completeness we list here the irreducible representations of the icosahedral group, based
on those of [53]. There are ten irreducible representations, with generators labelled as M i±

g ,
where i = 1 . . . 5 (labelling the representation) and g ∈ {−, 2, 5} (indicating the inversion element,
the two-fold and the five-fold generator respectively). They thus come in pairs, in which the action
of the inversion element in the ‘+’ representation is trivial, while it inverts all coordinates in the
‘−’ representation. That is,

M i+
− = 1 , M i−

− = −1 . (C.1)

The form of the two-fold and the five-fold rotation generators is listed below. Here τ = 1
2(1+

√
5)

denotes the golden ratio.

M1±
2 = 1 , M1±

5 = 1 ,

M2±
2 =

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ , M2±

5 =
1
2

⎛
⎝τ−1 −τ 1

τ 1 τ−1

−1 τ−1 τ

⎞
⎠ ,

(C.2a)

M3±
2 =

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ , M3±

5 =
1
2

⎛
⎝−τ −τ−1 1

τ−1 1 τ
−1 τ −τ−1

⎞
⎠ ,

M4±
2 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , M4±

5 =

⎛
⎜⎜⎝
−1 1 0 0
−1 0 1 0
−1 0 0 1
−1 0 0 0

⎞
⎟⎟⎠ ,

M5±
2 =

⎛
⎜⎜⎜⎜⎝

0 −1 1 0 0
0 −1 0 0 0
1 −1 0 0 0
0 −1 0 1 0
0 −1 0 0 1

⎞
⎟⎟⎟⎟⎠ , M5±

5 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 1
0 0 0 0 −1
0 0 0 1 −1
0 1 0 0 −1
0 0 1 0 −1

⎞
⎟⎟⎟⎟⎠ .

(C.2b)
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For the decomposition of the displacement representation into irreducible representations we
frequently make use of the characters of the icosahedral group. These are listed in table 2, both
for H3 as well as its proper rotational subgroup I.

conj. class C(e) C(g5) C(g2
5) C(g3) C(g2) C(g0) C(g0g5) C(g0g

2
5) C(g0g3) C(g0g2)

size 1 12 12 20 15 1 12 12 20 15

Γ1
+ 1 1 1 1 1 1 1 1 1 1

Γ3
+ 3 τ τ ′ 0 −1 3 τ τ ′ 0 −1

Γ3′
+ 3 τ ′ τ 0 −1 3 τ ′ τ 0 −1
Γ4

+ 4 −1 −1 1 0 4 −1 −1 1 0
Γ5

+ 5 0 0 −1 1 5 0 0 −1 1

Γ1− 1 1 1 1 1 −1 −1 −1 −1 −1
Γ3− 3 τ τ ′ 0 −1 −3 −τ −τ ′ 0 1
Γ3′− 3 τ ′ τ 0 −1 −3 −τ ′ −τ 0 1
Γ4− 4 −1 −1 1 0 −4 1 1 −1 0
Γ5− 5 0 0 −1 1 −5 0 0 1 −1

Table 2: Characters of the irreducible representations of the icosahedral group H3 and the subgroup I which does
not include the inversion element (top left quadrant). The notation used is τ = 1

2
(1 +

√
5) and τ ′ = 1

2
(1 − √5),

and C(g) denotes all elements in the conjugacy class of the element g.
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