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Abstract

We develop a simple mathematical model for forced flow of culture medium through
a porous scaffold in a tissue engineering bioreactor. Porous-walled hollow fibres pen-
etrate the scaffold and act as additional sources of culture medium. The model,
based on Darcy’s law, is used to examine the nutrient and shear stress distributions
throughout the scaffold. We consider several configurations of fibres and inlet and
outlet pipes. Compared with a numerical solution of the full Navier–Stokes equa-
tions within the complex scaffold geometry, the modelling approach is cheap, and
does not require knowledge of the detailed microstructure of the particular scaffold
being used. The potential of this approach is demonstrated through quantification
of the effect the additional flow from the fibres has on the nutrient and shear-stress
distribution.
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1 Introduction

Currently, efforts to induce healing and regeneration of damaged adult carti-
lage and bone are being directed towards improving existing cell therapies and
developing new tissue-engineering strategies. Small focal cartilage defects can
be successfully treated with autologous cells (Peterson et al., 2000). Multiple
and extensive defects require more complex osteochondral tissues, the success-
ful engineering of which could potentially provide long-term benefit to a huge
number of individuals. The general strategy for tissue engineering involves
seeding cells onto a biomaterial scaffold and culturing the seeded scaffold in a
bioreactor (Martin et al., 2004).

More complex osteochondral tissues require bilayered scaffolds and bespoke
bioreactors. Furthermore they require close monitoring of the cells. For ex-
ample, the cells require complex nutrition that includes oxygen, glucose, and
ascorbate. Waste products, such as lactate and carbon dioxide, can build up
locally. This lowers the pH of the surrounding culture medium, which can
be harmful to the cells. In addition, bone (Rubin et al., 2006) and cartilage
(Knobloch et al., 2008) are mechanosensitive tissues, and so it is critical for
the developing tissue to receive appropriate mechanical stimuli.

A current challenge is the development of bespoke bioreactors that will over-
come nutrient transport limitations and subject the cells to optimal dynamic
compression. Current strategies take advantage of the scaffold morphology.
Typically, the scaffolds are highly porous (70%–90%), with pore diameters
ranging from 250 �m to 600 �m. Perfusion bioreactors are used to force cul-
ture medium through the scaffold pores, enhancing nutrient transport and
providing mechanical stimuli to the cells (e.g. Abousleiman and Sikavitsas,
2006; Cimetta et al., 2007; Kim et al., 2007). For small tissue-engineered con-
structs these methods have been shown to be successful in comparison to static
culture (Glowacki et al., 1998; Goldstein et al., 2001; Bancroft et al., 2002;
Cartmell et al., 2003). However, problems arise when the tissue size is scaled
up. Cells residing away from the inlets and outlets may sit in almost stagnant
regions, where both nutrient delivery and shear stress are compromised. If the
centre of the construct is to receive adequate flow, then regions near the inlet
and outlet may suffer by receiving too much shear stress. The non-uniformity
of the flow and shear-stress distributions is problematic.

To address these issues, various new techniques are being developed. For ex-
ample, degradable poly(lactic-co-glycolic acid) (PLGA) porous-walled fibres
may be incorporated into the scaffold design. In addition to the standard per-
fusion of culture medium through the scaffold, additional culture medium is

∗ Corresponding Author.
URL: http://robert.mathmos.net/ (Robert Whittaker).
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Fig. 1. A photograph (a) and sketch (b) of the two-chamber modular bioreactor, set
up for configuration B (see �2). The tubes to the left and right provide flow to and
from the inlet and outlet pipes, and porous fibre can be inserted through the base.

injected through the fibres. Cartmell et al. (2007) and Michael et al. (2007)
describe a dual-chamber bioreactor, as shown in Fig. 1. In the larger bone
section, one or two porous fibres pass though holes drilled in the scaffold from
one side of the chamber to the other. As well as enhancing the distribution of
culture medium, the fibres can act as conduits for sensor probes, which can
provide data on nutrient levels. A typical porous hydroxyapatite scaffold is
shown in Fig. 2a (Gittings et al., 2005). A cross-section through the wall of a
typical porous fibre is shown in Fig. 2b (Ellis and Chaudhuri, 2007; Morgan
et al., 2007).

One method of predicting the flow field and nutrient transport in bioreactor
systems of this type is to use Computational Fluid Dynamics (CFD) simula-
tions (see, for example Porter et al., 2005; Boschetti et al., 2006). Such sim-
ulations can provide detailed solutions on the pore scale for a given system.
However, they are computationally expensive, and require detailed knowledge
of the pore-scale microstructure. In this paper, we show how simple mathe-
matical modelling can be used used as an alternative to experimental ‘trial and
error’ and full CFD simulations, to allow the optimisation of an experimental
protocol for desired flow and nutrient transport properties. Our modelling ap-
proach does not require full details of the microstructure and can be applied
to a wide variety of bioreactor systems.

Relatively few mathematical modelling studies have focused on bioreactor cul-
ture of cell-seeded porous constructs for tissue engineering (see MacArthur
et al., 2004; O’Dea et al., 2008). While many studies consider reaction–diffusion
type systems (e.g. Galban and Locke, 1997; Nehring et al., 1999) fewer consider
reaction and transport by diffusion and convection within a polymer scaffold
(e.g. Lasseux et al., 2004). Some models have been developed that integrate
mechanical and chemical factors that control the functional development of
tissue engineered constructs (Sengers et al., 2004; Lemon et al., 2006). How-
ever, these models do not account for coupling between the externally driven
flow and the construct domains.
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Fig. 2. (a) A MicroCT image of a capped porous hydroxyapatite scaffold, provided
by Jon Gittings and Irene Turner at the University of Bath. (b) An SEM image of a
transverse cross-section through the wall of one of the PLGA fibres, manufactured
by Ellis and Chaudhuri. Typical dimensions for both constructs are given in Table 1.

Several theoretical studies have investigated the external flow and nutrient
fields surrounding a tissue construct in a bioreactor, in which the construct is
modelled either as an impermeable solid (Galban and Locke, 1999; Humphrey,
2003; Cummings and Waters, 2007) or an impermeable fluid bag (Waters
et al., 2006). These studies determine the shear stress experienced by, and the
nutrient delivery to, the surface of the tissue construct; however, no account
is taken of the processes occurring within the porous scaffold.

In contrast to these studies, we investigate the role of fluid flow within the
scaffold, including both externally driven flow and additional perfusion from
the porous fibres. We consider two flow domains — the fibres and the space
occupied by the scaffold around them — and couple the flows via continuity
conditions at the interfaces. The scaffold is modelled as a uniform isotropic
porous medium, with sources of fluid from inlet and outlet pipes, as well as the
porous fibres. Within the fibres, a separate fluid-dynamical problem is solved
to compute the outflow through the fibre walls. We exploit geometric features,
such as the slender geometry of the fibres, to simplify the full Navier–Stokes
equations, and enable analytical progress. The model results in a Poisson
problem for the flow in the scaffold, which we solve numerically. It is therefore
a much cheaper problem to solve than direct numerical simulation of the full
Navier–Stokes equations within the complex scaffold geometry. Once the fluid
flow is known, the distributions of shear stress, nutrients and waste products
can be determined, along with the consequences for cell proliferation. We
show the potential of this approach by providing example solutions to three
bioreactor systems similar to those proposed by Cartmell et al. (2007). We
pay particular attention to the effect of the additional flow from the porous
fibres, and demonstrate the power of our modelling for making predictions of
the optimal experimental protocol.

This paper is organised as follows. The bioreactor model is developed in ��2–4.
Numerical solutions for the fluid flow throughout the porous scaffold are pre-
sented in �5 for three different fibre configurations. In �6, we examine the
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Fig. 3. An overview of the bioreactor chamber in configuration A, showing the
positions of the inlet and outlet pipes (marked with filled circles), and the two
porous fibres (solid lines). The other configurations are shown in less detail in Fig. 4.

shear stress experienced by the growing cells, and in �7 the problem of nutri-
ent delivery and waste-product accumulation within the scaffold is considered.
Finally, in �8, we discuss the implications of the modelling results, and identify
areas for future work.

2 Idealised setup and problem description

The general setup is as follows: The bone chamber of the bioreactor comprises
a porous scaffold, with typical pore diameter δ, occupying a circular cylindrical
chamber of radius a and height 2h. The chamber is filled with a fluid culture
medium, which is assumed to be Newtonian and incompressible, with uniform
density ρ and dynamic viscosity μ. Flow is forced through the chamber via
inlet and outlet pipes, and also through N identical porous-walled fibres of
length 2� inserted through the scaffold. Fluid is injected at one end of each
fibre and the other end is sealed, so that the fluid is emitted through the
porous walls into the scaffold. See Fig. 3 for one possible configuration.

We adopt a Cartesian coordinate system (x, y, z) to describe positions within
the bioreactor chamber. The fluid velocity u and pressure p in the pore space
and within the fibres are governed by the incompressible Navier–Stokes equa-
tions (see, e.g. Batchelor, 1967):

∇· u = 0 , ρ
∂u

∂t
+ ρ(u ·∇)u = −∇p+ μ∇2u . (1)

Boundary conditions are no-penetration and no-slip (i.e. u = 0) on the cham-
ber walls and on the scaffold pore and fibre surfaces, together with appropriate
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A B C

Fig. 4. Sketches of the bioreactor chamber, showing the three configurations of
inlet/outlet pipes (filled circles) and porous fibres (thick lines) considered here. A
more detailed view of configuration A is shown in Fig. 3. In configuration C, the
whole of the cylindrical surface acts as a distributed outlet.

flux conditions at the various inlets and outlets.

The volume flux from the inlet pipe is Q+, and the flux injected into each fibre
Qf . Since the fluid is assumed to be incompressible, the flux at the outlet is
then Q− = Q++NQf . The fluxes Q+ and Qf are regarded as input parameters,
since they are typically set by the experimentalists using volumetric pumps.
The local flux per unit length emitted from each axial position along each
fibre is denoted q(s), where s measures distance along the fibre. We therefore
have

Qf =

�∫
−�

q(s) ds . (2)

Whereas the total flux Qf from each fibre is a known input parameter, the
distribution q(s) along their length must be determined as part of the solution
to the combined flow problem in the fibres and the scaffold.

We now describe in detail three specific configurations of inlet/outlet pipes and
fibres, which we shall use as examples to illustrate our modelling approach.
The configurations are depicted in Fig. 4. We note that all have a certain
degree of symmetry, since this is more likely to give a favourable (i.e. more
uniform) flow field. Cylindrical chambers are used because of their ease of
manufacture.

• Configuration A is shown in detail in Fig. 3. Inlet and outlet pipes are
situated on opposite sides of the curved surface, and two porous fibres run
across the scaffold in the perpendicular direction. The length of the fibres
is 2� = 2a, and they lie a distance d above and below the mid-plane of the
chamber. This configuration is based on the bioreactor prototype currently
under development (see Cartmell et al., 2007).

• Configuration B has the same inlet and outlet pipes as in A, but there is a
single fibre running vertically along the axis of the cylinder (2� = 2h).

• Configuration C retains the vertical fibre of B. However, instead of the inlet
and outlet pipes, the fluid only enters through the vertical fibre and the

6



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

whole of the cylindrical surface acts as a distributed outlet.

The distributed outlet in configuration C is different from the outlet pipes
used in A and B. It is realised by having a bioreactor chamber of a larger
radius than that of the scaffold, so that fluid is able to exit the scaffold in
all radial directions. The ease of free flow out of the scaffold relative to flow
within the scaffold (δ � a) means that the pressure variations outside the
scaffold will be minimal compared with those inside. Therefore, in this case,
we effectively have a constant pressure boundary condition on x2 + y2 = a2.

In each configuration, we consider the flow in the scaffold and the flow in
the fibres as two separate problems, coupled by the continuity of pressure
and volume flux per unit area at the outside of the fibre walls. In both regions
the full Navier–Stokes equations and complicated geometries can be simplified
leading to tractable problems. We now consider the scaffold and fibre problems
in turn.

3 Flow within the scaffold

A MicroCT image of a typical scaffold is shown in Fig. 2(a). The pore geometry
is of a random nature, with about 30 pores over the height of the scaffold. All
the pores appear to be interconnected. We model the scaffold as a porous
medium (see e.g. Bear, 1988), with a typical pore diameter δ, porosity φ (the
volume fraction of pore space), and tortuosity τ (defined as the average ratio of
streamline lengths to the straight-line distance between two points). 1 Typical
values for these parameters are given in Table 1.

The ratio of inertial and viscous effects is given by the the pore Reynolds
number

Rep =
ρ� δ

μ
, (3)

where � is a typical interstitial velocity. We estimate � by dividing the
typical volume flux Q− by the typical cross-sectional area of pore space 2φah.
This is then modified by a factor of the scaffold tortuosity τ . (The more
tortuous the scaffold, the faster the interstitial flow has to be to travel the

1 Note that there are several different definitions of tortuosity in use by various
authors. In particular, the quantity referred to as tortuosity in Bear (1988) is τ2 in
the notation used here. The equations are unaffected by this different nomenclature.
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Table 1
Dimensions and typical physical properties of the bioreactor setup being developed
by Cartmell and Michael.

Quantity Symbol Typical Value

Internal radius of chamber a 7.5 × 10−3 m

Internal height of bone section 2h 1.0 × 10−2 m

Length of each porous fibre 2� 10−2 m †
External radius of porous fibres bw 5 × 10−4 m

Internal radius of porous fibres bc 1.7 × 10−4 m

Internal radius of inlet/outlet pipes d 5 × 10−4 m

Pore diameter of scaffold δ 6.8 × 10−4 m

Porosity of scaffold φ 0.8

Tortuosity of scaffold τ 1.15

Permeability of scaffold k 2 × 10−9 m2

Typical pore diameter in fibre wall δw 1 × 10−7 m

Mean radial permeability of fibre wall kw 1 × 10−17 m2

Density of culture medium ρ 1 × 103 kg m−3

Viscosity of culture medium μ 7 × 10−4 kg m−1 s−1

Typical total volume flux Q− 1 × 10−7 m3 s−1

Lengths measured from experimental apparatus. Scaffold properties from analysis
of MicroCT data; permeability and tortuosity estimates detailed in Appendix A.1.
Fibre permeability estimate explained in Appendix A.2. Culture medium proper-
ties measured experimentally at 37◦C. † The length of the fibres in the bioreactor
depends on their position and orientation. In the configurations we consider here,
we have either � = a or � = h.

longer paths in the same time.) Therefore

� ∼ τ

φ

Q−
2ah

, (4)

and using the data in Table 1, we obtain

Rep ∼ ρτQ−δ
2φahμ

≈ 2 (5)

as an estimate for the pore Reynolds number.

The large number of pores and the not-too-large pore Reynolds number make
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it appropriate to use Darcy’s law (see, e.g. Batchelor, 1967; Bear, 1988) to
model the flow of culture medium through the scaffold. We model the scaf-
fold as an isotropic porous medium, with a uniform permeability k. (See Ap-
pendix A.1 for a discussion of how to estimate k.)

Although the growth of the bone will alter this permeability, such growth
occurs over a period of several days, which is much longer than the minutes
required for fluid circulation. The slow variations of k can be captured using
a ‘quasi-static’ approximation, i.e. assuming that at any instant the solution
is as it would be with a constant value of k set by its instantaneous value.
For simplicity, and because such variations are likely to be small, we shall just
work with single fixed value of k in this paper.

Darcy’s law is used to relate the Darcy velocity v to the interstitial pressure
p. 2 Conservation of fluid is expressed in terms of a source strength per unit
volume ψ(x). We have

v = −k
μ

∇p , ∇ ·v = ψ . (6)

The various sources are modelled as points and lines and hence appear as delta
functions in ψ. Away from these sources ψ = 0.

Since the diameter of the porous fibres and the inlet and outlet pipes are
comparable with the pore size (see Table 1), it is consistent to model them as
line and point sources respectively. This simplifies the analysis, and reflects the
fact that the actual size of the fibres and pipes, and detailed flow distribution
near them, have little effect on the bulk flow in the scaffold.

Obviously, the point-source approximations will not be valid in the region sur-
rounding the real source within a few pore diameters. Thus when interpreting
the results, allowance must be made for the fact that the diverging velocities,
pressures and shear stresses in the neighbourhood of the sources are in fact
bounded and rise only to a magnitude of the order of that predicted a few
pore diameters away. Formally, the model represents an ‘outer’ solution away
from the sources, and a separate ‘inner’ solution would be needed to accu-
rately describe the flow in the neighbourhood of the sources. Such a solution
would require knowledge of the detailed pore structure around the source, and
is beyond the scope of this study.

2 The Darcy velocity is a local average of the true interstitial velocity, taken over
a volume that includes both the pore space and the solid scaffold. Hence, on the
macroscale, v gives the volume flux of fluid per unit cross-sectional area. The inter-
stitial pressure is the local average of the fluid pressure in the pore space.

9
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3.1 Non-dimensionalization

We non-dimensionalize all lengths with the chamber radius a, so in non-
dimensional coordinates (X, Y, Z) = (x, y, z)/a, the chamber occupies

X2 + Y 2 ≤ 1 , −H ≤ Z ≤ H , (7)

where H = h/a is the aspect ratio of the chamber. We non-dimensionalize the
fluxes with respect to Q−, so that the dimensionless total flux from the fibres
is given by

� =
NQf

Q−
. (8)

The dimensionless flux from each fibre is then �/N , and the dimensionless
flux from the inlet pipe is 1 − �. The distance s along the fibre is non-
dimensionalized on the length a, and we introduce ζ = s/a. The local flux per
unit length q(s) emitted from each point along the fibre is non-dimensionalized
by writing

q(s) =
Qf

a
θ(ζ) =

Q−
a

�

N
θ(ζ) . (9)

We non-dimensionalize velocities, pressure, and source strength in the natural
way by writing

v =
Q−
a2

V , p = p0 +
μQ−
ak

P , ψ =
Q−
a3

Ψ . (10)

The pressure must be considered relative to a reference pressure p0 ≡ p(x0)
taken at a particular point x0 in the scaffold. This is because the scaleQ−/ak is
only for variations in pressure within the scaffold, independent of any additive
constants. For each configuration, we choose x0 to be a convenient point in
the scaffold away from the singularities caused by the fibres and the inlet and
outlet pipes. For configuration A, we set x0 = 0, so the dimensionless pressure
is zero at the centre of the scaffold. For configuration B, we set x0 = (a/2, 0, 0).
Finally, for configuration C, we set x0 = (a, 0, 0) so that the dimensionless
pressure is zero on the curved surface of the scaffold.

10
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3.2 Dimensionless equations and boundary conditions

In terms of the non-dimensional variables, Darcy’s equation and the continuity
equation (6) become

V = −∇P , ∇· V = Ψ . (11)

Combining the two equations in (11), we obtain an equation for the dimen-
sionless pressure:

∇2P = −Ψinlet + Ψoutlet − Ψfibres , (12)

where the terms on the right-hand-side each correspond to one of the sources
or sinks in the obvious way. This equation is then solved within the scaffold,
subject to appropriate boundary conditions, to find P . The physical boundary
conditions generally involve the fluid velocity V , and so must be re-written
in terms of P using (11), so they can be applied to (12). Once P is known,
(11) is used to recover V and complete the solution in the scaffold. We now
present the source functions and boundary conditions on P for each of the
three configurations.

3.2.1 Configuration A

The fibre source is given by

Ψfibres = 1
2
� θ(X) δ(Y )

(
δ(Z −D) + δ(Z +D)

)
, (13)

representing two fibres running along y = 0, z = −d and y = 0, z = d, from
x = −1 to x = 1. The vertical separation of the fibres is 2D = 2d/a, and δ( · )
is the delta-function. The rate of fluid emission by the fibres varies along their
length and is given by 1

2
�θ(X), where θ(X) is as yet unknown. The inlet and

outlet sources are given by

Ψinlet = 2(1 −�) δ(X) δ(Y + 1) δ(Z) , (14)

Ψoutlet = 2 δ(X) δ(Y − 1) δ(Z) , (15)

for an inlet at (0,−1, 0) and an outlet at (0, 1, 0), respectively. Since the point
sources are located on the domain boundary, the strengths are doubled in the
above expression to obtain the correct fluxes inside the domain.

11
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Using (11), the boundary conditions resulting from no normal flow through
the walls of the chamber are

n̂ ·∇P = 0 on X2 + Y 2 = 1 ,
∂P

∂Z
= 0 on Z = ±H , (16)

where n̂ is the unit normal to the curved walls. The definition of x0 means
that the pressure origin is set by P (0, 0, 0) = 0.

3.2.2 Configuration B

The fibre source is now

Ψfibres = � θ(Z) δ(Y ) δ(Z) . (17)

The inlet and outlet source terms and the boundary conditions are identi-
cal to (14)–(16) as used in configuration A. The pressure origin is set by
P (1/2, 0, 0) = 0, from the choice of x0.

3.2.3 Configuration C

The fibre source is as in configuration B:

Ψfibres = � θ(Z) δ(Y ) δ(Z) . (18)

However, there are no point inlet or outlet sources, so

Ψinlet = Ψoutlet = 0 (19)

Instead, the distributed outlet modifies the boundary condition on the curved
surface, which becomes

P = 0 on X2 + Y 2 = 1 , (20)

representing the fact that the pressure gradients required to drive flow in the
region outside the scaffold are much smaller than those required inside. The
no normal flow condition on the upper and lower chamber walls remains

∂P

∂Z
= 0 on Z = ±H . (21)

12
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Table 2
Typical values of the various dimensionless parameters appearing in ��2–4, com-
puted from the values in Table 1.

H ε λ k/a2 kw/b2
c α2

0.7 0.02 3 10−4 10−6 0.07

In all three configurations, the dimensionless flux per unit length θ(ζ) from the
fibres depends on the conditions applied at the fibre ends and the properties of
the fibre. If θ(ζ) is known, then (8), (12), and the appropriate equations from
(13)–(21) form a well-posed problem for the pressure P within the scaffold.
We now determine θ(ζ) by analysing the flow in the fibres.

4 Flow in the fibres

The porous fibres are modelled as circular cylinders of length 2� and external
diameter 2bw, with a hollow core of internal diameter 2bc. See Fig. 5. We use
cylindrical polar coordinates (r, ϕ, s) aligned with the fibre. In configuration
A, we have s = x, r2 = y2 + (z± d)2, and � = a (see Fig. 3). In configurations
B and C, we have s = z, r2 = x2 + y2, and � = h.

The fibre walls are modelled as an axisymmetric and axially uniform porous
medium, governed by Darcy’s law. The radial component of the permeability
tensor kw is denoted kw(r), and the other principal components are assumed
to be no larger than kw. In practice, the fibre pores are aligned predominantly
in the radial direction (see Fig. 2b), so that the resistance to radial flow is
significantly less than the resistance in any other direction, and the radial
permeability is greater than the other components.

Pressures are denoted by p and velocities by u = (u, v, w) with components
in the cylindrical polar coordinates defined above. We use subscripts c for the
core and w for the walls. In the porous walls, uw represents the Darcy velocity.
Boundary conditions are provided by continuity of pressure and radial volume
flux per unit area at r = bw, together with the imposed inlet flux Qf at s = −�,
and zero outlet flux at s = �. Assuming the axial flux is dominated by the flow
in the core, the flux conditions at the ends of each the fibre can be written as

2π

bc∫
0

wc(r,−�) r dr = Qf , 2π

bc∫
0

wc(r, �) r dr = 0 . (22)

A number of separations of scales help simplify the analysis of the flow in the
fibre, which follows below in ��4.3–4.5. We assume that the fibre is slender
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pc, uc

pw, uw

p, u

s

2�

2bw2bc

Qf

(Darcy flow, kw)

(Darcy flow, k)

Fibre Wall

Fibre Core

Outer Scaffold

(Viscous lubrication flow)

Fig. 5. The geometry of the porous-walled fibres, together with the coordinates and
variables used to describe the flow within them.

(bc/� � 1) and that the walls are relatively impermeable (kw � b2c , kw � k).
Both these assumptions are justified by the experimental setup (see table 1).
We show that this regime leads to predominantly axial flow in the fibre core,
and predominantly radial flow in the fibre walls. We also show that the pressure
difference across the fibre wall is large compared with both the pressure drop
along the length of the fibre, and the typical pressure variations within the
surrounding scaffold. This means that we can solve for the flow in the fibre
without needing to know the details of the flow and pressure fields in the
scaffold. Since the flow in the scaffold has no effect on the flow in the fibre,
there is no source of asymmetry, and we may assume axisymmetric flow in the
fibre, i.e. v ≡ 0, and no dependence on the azimuthal angle ϕ.

4.1 Non-dimensionalization

We begin by introducing two non-dimensional parameters

ε =
bc
a

� 1 , λ =
bw
bc

= O(1) , (23)

which describe the aspect ratio and relative wall thickness of the fibre.

The radial and axial coordinates are non-dimensionalized by the inner fibre
radius bc and chamber radius a respectively:

ξ =
r

bc
=

r

εa
, ζ =

s

a
. (24)
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The core then occupies 0 < ξ < 1 and the wall 1 < ξ < λ. The non-dimensional
length of the fibre is 2L = 2�/a = O(1), so −L < ζ < L. In configuration A,
we have L = 1, while in configurations B and C we have L = H .

We define a mean radial permeability kw for the fibres as the permeability that
would give a radially uniform fibre the same radial flux for a given transmural
pressure difference. As shown in Appendix A.2, this implies

1

kw

=
1

lnλ

bw∫
bc

1

rkw(r)
dr . (25)

We now non-dimensionalize the permeability as

kw(r) = kw Kw(ξ) . (26)

The non-dimensionalization of the axial velocity in the core and the radial
velocity in both the core and the wall is based on the imposed flux Qf :

wc =
Qf

b2c
Wc , uc =

Qf

bca
Uc , uw =

Qf

bca
Uw . (27)

The axial velocity ww in the wall is assumed to be much smaller than wc, since
the flow resistance is much larger in the wall.

The pressure p is scaled with the pressure difference required to drive the flux
Qf radially outwards through the fibre walls since, for relatively impermeable
walls, this is expected to be the largest resistance to overcome, and hence will
result in the largest pressure drop. We therefore write

pc = p0 +
μQf lnλ

akw

Pc , pw = p0 +
μQf lnλ

akw

Pw . (28)

4.2 Boundary conditions

At the ends of the fibres, we apply the flux conditions (22). In dimensionless
form these are

2π

1∫
0

Wc(ξ,−L) ξ dξ = 1 , 2π

1∫
0

Wc(ξ, L) ξ dξ = 0 . (29)

15



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

At ξ = 1, the boundary between the fibre wall and the core, we impose conti-
nuity of the normal velocity and pressure, giving

Uc(1, ζ) = Uw(1, ζ) , Pc(1, ζ) = Pw(1, ζ). (30)

Since the fibre wall is rigid and relatively impermeable, we have an effective
no-slip condition on the axial flow in the core:

Wc(1, ζ) = 0 . (31)

At ξ = λ, the outer edge of the fibre wall, we impose continuity of radial flux
and pressure. The flux condition yields an expression for θ:

θ(ζ) =

2π∮
0

Uw(λ, ζ)λ dϕ = 2πλUw(λ, ζ) . (32)

Using (10) and (28), the pressure condition is

Pw(λ, ζ) =
N

� lnλ

kw

k
P . (33)

As both P and Pw are O(1), and the remaining factor on the right-hand side
is very small (kw � k; see table 1), it is appropriate to approximate

Pw(λ, ζ) = 0 . (34)

We now proceed to solve for the flow and pressure field inside the fibres. The
general strategy is to express all the variables in terms of the pressure Pc in
the core, and then apply the boundary conditions to obtain a single equation
for Pc, which we solve. Once Pc is found, the other variables can be recovered.

4.3 Flow in the fibre core

The flow in the core is governed by the (dimensional) steady Navier–Stokes
equations

∇· uc = 0 , (35)

ρ (uc · ∇) uc = −∇pc + μ∇2uc . (36)
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Since the tube is slender, we use a viscous lubrication approximation (see
e.g. Ockendon and Ockendon, 1995) to neglect inertia and radial pressure
gradients. This relies on the reduced Reynolds number Rec being small, a
condition we verify in Appendix B. In the dimensionless variables defined in
(24), (27) and (28) the equations reduce to

Pc = Pc(ζ) , (37)

dPc

dζ
=
α2

16

1

ξ

∂

∂ξ

(
ξ
∂Wc

∂ξ

)
, (38)

∂Wc

∂ζ
+

1

ξ

∂

∂ξ

(
ξUc

)
= 0 , (39)

where we have introduced the dimensionless parameter

α2 =
16kw

ε4a2 lnλ
, (40)

which is a measure of the resistance to axial flow through the core compared
with that of radial flow out through the walls. The boundary conditions are
given by (29)–(31).

We now integrate (38) twice with respect to ξ. One constant is set by regularity
at ξ = 0, and the other by the boundary condition (31) at ξ = 1. We obtain
the Poiseuille flow

Wc = − 4

α2

dPc

dζ

(
1 − ξ2

)
. (41)

Using mass continuity (39) we recover the radial velocity. The single constant
of integration is set by regularity at ξ = 0. We obtain

Uc =
1

α2

d2Pc

dζ2
ξ
(
2 − ξ2

)
. (42)

Substituting for Wc, the flux conditions (29) can be written in terms of Pc as

dPc

dζ

∣∣∣∣∣
ζ=−L

= −α
2

2π
,

dPc

dζ

∣∣∣∣∣
ζ=L

= 0 . (43)
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4.4 Flow through the fibre wall

The flow within the porous wall is governed by Darcy’s law, and conservation
of mass:

uw = −1

μ
kw · ∇pw , (44)

∇· uw = 0 , (45)

where uw is the Darcy velocity. Boundary conditions arise from the continuity
of fluxes and pressures at r = bc and r = bw.

We now assume (subject to a posteriori verification in Appendix B) that the
axial flow ww is negligible in the continuity equation (45). (This is motivated
by the need for a large radial pressure gradient to drive flow out through the
walls, compared with a smaller axial pressure gradient linked to the axial flow
in the core.) In non-dimensional form, the governing equations are then

Uw = −Kw(ξ) lnλ
∂Pw

∂ξ
, (46)

1

ξ

∂

∂ξ

(
ξUw

)
= 0 . (47)

Boundary conditions are provided by (30), (32) and (34).

Substituting the expression (42) into the matching condition (30a) we obtain

Uw(1, ζ) =
1

α2

∂2Pc

∂ζ2
. (48)

Integrating (47) and applying (48), the radial velocity within the wall is

Uw(ξ, ζ) =
1

α2

∂2Pc

∂ζ2

1

ξ
. (49)

We substitute this expression into (46), integrate with respect to ξ, and apply
the boundary condition (34) at ξ = λ to obtain

Pw(ξ, ζ) =
1

α2

∂2Pc

∂ζ2

1

lnλ

λ∫
ξ

1

ξ′Kw(ξ′)
dξ′ . (50)
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From the definitions (25) and (26), the integral is equal to lnλ at ξ = 1, hence

Pw(1, ζ) =
1

α2

∂2Pc

∂ζ2
. (51)

4.5 The flux emitted by the fibres

Applying the final boundary condition (30b) to (51), we obtain an equation
for the variation of Pc along the length of the fibre:

d2Pc

dζ2
− α2Pc = 0 . (52)

This equation is solved subject to (43), giving

Pc(ζ) =
α

2π

cosh[α(L− ζ)]

sinh(2αL)
. (53)

With this solution, the flux θ(ζ) emitted from the fibre into the outer scaffold
can be derived from (32) and (49), and is

θ(ζ) =
α cosh[α(L− ζ)]

sinh(2αL)
. (54)

The parameter α, defined in (40), encapsulates how easy it is push fluid out
through the fibre walls compared with pushing it axially along the core. For
α 	 1, it is relatively easy for fluid to exit the fibre through the walls. We
then have

θ(ζ) ∼ α e−α(L+ζ) , (55)

so almost all of the flux Qf leaves through the wall within a distance of O(α−1)
from the inlet at ζ = −L. Since this is unlikely to offer any improvement
over a bioreactor system without fibres, we reject this possibility, and assume
α ≤ O(1).

For α = O(1), we see a significant variation of θ along the fibre, which is also
likely to offer less advantage than a uniform flux. At the other extreme, α � 1,
we have

θ(ζ) ∼ 1

2L
(56)
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so the emitted flux is uniform along the length of the fibre.

4.6 Summary

We have found the solution for the flow in the fibres. The pressure Pc in the
core is given by (53) and this can be substituted back into the previous expres-
sions for the other physical variables. The dimensionless flux per unit length
θ emitted at each point along the length of the fibre is given by (54). This
expression can now be used to complete the model for the flow in the scaffold
developed in �3. In Appendix B, we confirm that the various approximations
we have used are valid for the experimental setup being modelled.

5 Numerical solutions for the fluid flow

In all the numerical computations, we take α � 1 so that (56) holds and
the flux emitted by the fibres is uniform along their length. A uniform flux
is desirable from a theoretical standpoint, as it is likely to result in a more
even distribution of culture medium flow and shear stresses. Furthermore, for
the fibres being considered for use in the prototype bioreactors that motivated
this study, we have α = O(10−1) � 1 (see (40) and table 2).

With θ(ζ) given by (56), the model developed in �3 then leads to the problem of
solving Poisson’s equation (12) for the pressure P in the cylindrical bioreactor
chamber. We have Dirichlet and/or Neumann boundary conditions on the
walls, and a number of delta-function source terms representing the fibres and
inlet/outlet pipes. The equations and boundary conditions for the three fibre
configurations considered in this paper are given in �3.2.

Similar systems of equations arise in many physical problems, and solution
techniques are well-developed. We solved the system numerically using the
Electrostatics package of the ‘COMSOL Multiphysics’ computer program, 3

which uses a finite element technique. Once the pressure P has been computed,
the Darcy velocity V is determined from (11).

For each of the three configurations, the flow may be solved with typical
parameter values to provide insight into how the fibres affect the flow. In
all cases, we used an aspect ratio of H = 0.7, in line with the experimental
prototype shown in figure 1. The graphs show the magnitude |V | of the Darcy
velocity on a planar cross-section through the bioreactor chamber.

3 Developed and distributed by COMSOL Inc. Full details available online at
http://www.comsol.com/.
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Fig. 6. The magnitude of the dimensionless Darcy velocity V in the vertical plane
X = 0.3 in configuration A with � = 0 (i.e. no flux from the fibres). The inlet is
out of the plane to the left, and the outlet lies similarly to the right. The two fibres
run perpendicular to the plane through Y = 0, Z = ±0.35. From the dimension-
less Darcy velocity, the dimensional equivalent can be recovered from (10), and an
estimate for the shear stress found using (58).

For configuration A, we used a fibre separation 2D = 0.7 (see fig. 3). Re-
sults are shown on an off-centre vertical plane perpendicular to the fibres at
X = 0.3. We consider a fixed total flux Q− with three different values of the
proportion� from the fibres: 0, 0.2, and 0.4. The results are shown in Figs. 6–
8. Other parallel planes show essentially the same qualitative structure, with
a dipole structure around the fibres and larger velocities in the vicinity of the
inlet and outlet pipes. The off-centre planes were chosen to avoid the singu-
larities at these points.

For configurations B and C, there is a single vertical fibre, and we use off-
centre horizontal cross-sections at Z = 0.3 instead. For configuration B, we
again present results for � = 0, 0.2, 0.4. See Figs. 9–11. For configuration
C, there are no separate input flows so � ≡ 1. The solution, which can be
obtained analytically, is of purely radial flow, and is shown in Fig. 12.

The computations show that without the fibres (� = 0), flow rates are highest
in the vicinity of the inlet and outlet pipes, as would be expected. The slowest
regions of the flow are found near the chamber walls on the plane Y = 0. The
addition of the fibres increases relative flow rates on the downstream side of
them (Y > 0), but also decreases the flow on the upstream side (Y < 0).
These increases and decreases become more pronounced as � increases.
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Fig. 7. The magnitude of the dimensionless Darcy velocity in the plane X = 0.3 in
configuration A with � = 0.2. Other details as in Fig. 6. Flow is generally from left
to right, and fluid is emitted by the fibres.
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Fig. 8. The magnitude of the dimensionless Darcy velocity in the plane X = 0.3 in
configuration A with � = 0.4. Other details as in Fig. 6. Flow is generally from left
to right, and fluid is emitted by the fibres.

6 Shear stress

As discussed in the introduction, bone cells are sensitive to fluid shear stresses.
Some shear stress is necessary for viable growth, but higher levels may damage
the cells. It is therefore important to calculate the shear stress distribution
associated with the flow fields computed in �5. The shear stresses will be
proportional to the overall flow rate Q−, which therefore needs to be adjusted

22



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

X

Y

|V |

 

 

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 9. The magnitude of the dimensionless Darcy velocity V in the plane Z = 0.3
in configuration B with � = 0 (no flow from the fibre). The single fibre runs
perpendicular to the plane, through X = Y = 0. The inlet pipe is to the left and
the outlet pipe to the right, both in the plane Z = 0. From the dimensionless Darcy
velocity, the dimensional equivalent can be recovered from (10), and an estimate for
the shear stress found using (58).
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Fig. 10. The magnitude of the Darcy velocity in the plane Z = 0.3 in configuration
B with � = 0.2. Other details as in Fig. 9. Flow is generally from left to right, with
fluid emitted by the fibre.
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Fig. 11. The magnitude of the Darcy velocity in the plane Z = 0.3 in configuration
B with � = 0.4. Other details as in Fig. 9. Flow is generally from left to right, with
fluid emitted by the fibre.
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Fig. 12. The magnitude of the Darcy velocity in any horizontal plane Z = Z0 in
configuration C. Other details as in Fig. 9. Flow is radially outwards from the central
fibre source.
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so as to provide sufficient shear (and nutrient delivery) over as much of the
scaffold as possible, while constraining excessively high shear to as small a
region as possible.

The shear stress experienced by the cells within the individual scaffold pores
can be estimated from the Darcy velocity as follows. We first take the estimate
� ∼ |v|τ/φ for the mean magnitude of the interstitial velocity. We then use
Poiseuille flow of mean velocity � through a circular duct of diameter δ as
an approximate model for the local flow within each scaffold pore. With r as
a local radial coordinate, the velocity profile is

v ≈ 2�

[
1 −

(
2r

δ

)2
]

(57)

and the wall shear stress is

S = μ

∣∣∣∣∣∂v∂r
∣∣∣∣∣
(r=δ/2)

≈ 8μ�

δ
≈ 8μτ

φδ
|v| =

8μQ−τ
φδa2

|V | . (58)

The first two approximations for S use the velocity profile (57) and the esti-
mate for � above; the final equality comes from the non-dimensionalization
(10). While obviously not precise, (58) gives a reasonable estimate (at least
in order-of-magnitude terms) for the shear stress experienced by the cells in
terms of the local Darcy velocity and the fluid and scaffold properties. For the
values given in Table 1 we obtain

S =
(

Q−
4.8 × 10−6 m3 s−1

)
|V | Pa . (59)

From the numerical results, |V | = O(1) over most of the chamber, and exceeds
2 only in small regions near the fibres and inlet / outlet pipes. Thus, to obtain
shear stresses of the order of Pascals (as in the experiments referenced in the
introduction), volume fluxes of the order of 10−5 – 10−6 m3 s−1 need to be
used. This is somewhat higher than the anticipated value Q− ∼ 10−7 m3 s−1

in Table 1.

However, in any particular experiment, the desirable volume flux will depend
on the requirements of the cells and on the exact properties of the bioreactor
system being used. It may also be constrained by the availability of pumping
equipment and the pressures required to force fluid through the system. We
therefore leave the results in general terms, rather than trying to make definite
predictions that may not apply in other situations. Another factor to consider
is the effect of the flow rate upon nutrient and waste transport. This issue is
addressed in the following section.
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Table 3
Typical values of the experimental parameters related to the nutrient problem.

Parameter Symbol Typical Value

Time scale for fluid circulation tc 3.4 × 100 s

Time scale for cell growth t1/2 2 × 105 s

Time scale for culturing tg 6 × 105 – 3 × 106 s

Initial number of cells per unit volume n0 1 × 1012 cells m−3

All values based on the experimental setup of Cartmell and Michael, apart from tc
which is calculated using (65). For other properties, see table 1.

7 Nutrient and waste transport

One of the most important requirements for both survival and proliferation
of the cells is the supply of nutrients and the removal of waste products. In
the case of nutrients the supply must be sufficient to meet the demands of
the proliferating cells, while in the case of waste products we need to ensure
they are removed sufficiently rapidly to prevent any build-up that would be
harmful. For example a build-up of lactic acid could cause a harmful change
in pH (see Appendix A.3).

We use simple scaling arguments here to determine whether or not nutrient de-
pletion or waste product accumulation are significant effects over the relevant
time scales in the culturing process. Key conclusions can be drawn without
the need to solve the full system of equations explicitly.

Suppose that the cells are initially seeded on to the scaffold with a density n0

per unit volume 4 and then proliferate over the culturing period. We assume
a constant doubling time of t1/2, so that the number of cells per unit volume
at time t after the start of culturing is

n = n0 exp

(
t ln 2

t1/2

)
. (60)

The maximum cell density nmax is achieved when t = tg at the end of the
culturing period. Typical values of n0, t1/2 and tg, given in Table 3, indicate
that the cells may double in number around 7 times over the culturing period
tg, leading to nmax ≈ 1.3 × 1014 m−3.

The concentration ci of an individual nutrient or waste product i in the fluid

4 Note that this is number of cells per unit total volume of bioreactor chamber, not
the number per unit volume of pore space.
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occupying the pore space of the scaffold is governed by an advection–diffusion
equation

∂ci
∂t

+ u ·∇ci = κi∇2ci , (61)

where κi is the diffusivity of species i (assumed to be constant over the range
of concentrations considered) and u(x) is the velocity of the fluid. Boundary
conditions arise from the concentration in the culture medium at the inlets,
and a flux condition describing uptake or production at the cell surfaces.

A simple averaged model describes each concentration field as a local average
ci (taken over the pore spaces), and includes the uptake or production by the
cells as a source term. Following e.g. Cogan and Keener (2004), we write

φ
∂ci
∂t

+ v ·∇ci = nσi +Di∇2ci , (62)

where v is the Darcy velocity, Di = φκ̃i/τ
2 is the effective diffusivity, and σi

is the rate of production (negative in the case of uptake) of the species. The
local diffusivity κ̃i is a modified version of the molecular diffusivity κi taking
into account the effects of Taylor dispersion. We denote the concentration of
species i at the inlet by c∗i , and the concentration at which it becomes harmful
to the cells as c†i. Values of these parameters for three key species can be found
in Tables 3 and 4.

The validity of constructing such an average depends on how much the local
concentrations ci deviate from the local mean ci on the scale of the pores. This
in turn is controlled by the ratio of advective to diffusive effects on that scale,
a quantity known as the pore Péclet number

Pepi =
δ2�

aκi
. (63)

Since Pepi = O(1) for the situation we are considering here, the use of the
averaged-concentration model (62) is acceptable. In addition, the effects of
Taylor dispersion will be small, 5 so we have κ̃i ≈ κi.

To non-dimensionalize (62), we first introduce a dimensionless concentration

5 The correction in κ̃ due to Taylor dispersion scales as the square of the pore Péclet
number with a numerically small pre-factor. Since Pepi = O(1), it is appropriate to
neglect this correction.
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Table 4
Typical properties relating to two nutrients and a waste product that are relevant
to the cells.

Nutrient c∗i c†
i κi σi tdi

or product (molm−3) (molm−3) (m2 s−1) (mol cell−1 s−1) (s)

Glucose 5.6 0 7 × 10−10 −8 × 10−17 4.3 × 102

Oxygen (O2) 1.0 0 3 × 10−9 −4.2 × 10−17 1.5 × 102

Lactic acid 0 0.4 1 × 10−9 1.4 × 10−16 1.8 × 101

The initial concentration c∗i in the culture medium as it enters the bioreactor, the
concentration c†

i that would be detrimental to the cells, the diffusivity κi and the rate
of production σi (negative in the case of uptake). Glucose concentration from culture
medium product data (Invitrogen, 2008), and initial oxygen concentration based on
solubility in water at 37◦C and 1 atm (Tromans, 1998). Approximate diffusivities for
dilute solutions at 25–30◦C from Lide (2007), with the exception of lactic acid from
Ribeiro et al. (2005). Typical uptake and production rates inferred from Komarova
et al. (2000). The estimate for c†

i for lactic acid is discussed in Appendix A.3.
Depletion/accumulation times tdi calculated using (66), assuming n = nmax = 1.3×
1014 and φ = 0.8.

Ci, defined so that

Ci =
ci − c∗i
c†i − c∗i

. (64)

Then Ci = 0 at the inlet, and Ci = 1 corresponds to the concentration level
that is detrimental to the cells (either a lack of a nutrient, or a harmful level
of waste product). There are a number of key time scales in the problem,
including the fluid circulation time (pore space volume scale divided by total
flux)

tc = φa3/Q− , (65)

the accumulation or depletion time (concentration change divided by produc-
tion rate)

tdi =
φ(c†i − c∗i )

σin
, (66)

and the growth time tg for the cells. (See Tables 3 and 4.)

We non-dimensionalize lengths and velocities as in �3, and times based on the
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circulation time tc, and write

v =
Q−
a2

V , t = tcT . (67)

Substituting into (62), we obtain the governing equation for Ci:

∂Ci

∂T
+ (V ·∇)Ci =

1

γi
+

1

Pe i
∇2Ci (68)

where

Pe i =
Q−
aDi

(69)

is the bulk Péclet number, and

γi =
tdi

tc
=

(c†i − c∗i )Q−
σina3

(70)

is an inverse Damköhler number. This representation shows that the transport
problems for the nutrients and waste products are mathematically equivalent.

The bulk Péclet number Pe i gives the ratio of advective to diffusive effects over
the scale of the whole bioreactor. With values in Tables 3 and 4, we have that
Pei ∼ 103 	 1, so the concentration field is governed primarily by advection,
with diffusion having little effect.

The inverse Damköhler number γi gives the ratio of the time td that it would
take the cells to use up all the nutrient present at the initial concentration or
to produce enough waste to reach harmful levels, to the time tc that it takes
the culture medium to circulate once through the bioreactor. For the case of
nutrients this is also equal to the ratio of the input to cell usage rate. For
waste products it is the ratio of the maximum removal rate (limited by the
mass flux and the critical concentration level) to the rate of production by the
cells. In terms of the non-dimensional time scale T , γi is the time scale for
the nutrient or waste product to reach harmful levels in the absence of bulk
transport in or out of the reactor. We also introduce Γ = tg/tc; the ratio of
the culturing time of the cells to the circulation time of the culture medium.

For the species listed in Table 4, and n = nmax, we find that γi = 126, 44, 5.3
for glucose, oxygen and lactic acid respectively. Therefore, towards the end of
the culturing period harmful levels (particularly of lactic acid) can be reached
within a few circulation times. So if the same parcel of culture medium un-
dergoes more than a few cycles through the reactor chamber, harmful levels
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will be reached. It is therefore important that the culture medium is not con-
tinuously cycled in this manner; there must be some combination of a large
external reservoir to dilute the changes in concentration that occur within the
reactor and periodic replacement of the whole medium.

Since γi � Γ ∼ 106, harmful levels can also be reached over the course of the
culturing in any stagnant or low-velocity regions where the culture medium
remains for many circulation times. The physical bioreactor design should be
optimised to reduce such regions and/or the overall flow rate increased to wash
them out more quickly.

Of course, we have only considered three particular species in the these cal-
culations. Some of the nutrients in the culture medium are present in much
lower concentrations than glucose. The rôle of some of the proteins present in
the culture medium is not well understood and so it is difficult to model their
depletion.

Nevertheless, the framework provided in this section allows the key parameters
Pebi, Pe i, and γi to be calculated given additional data for any new species of
interest. From these the relative importance of advection and diffusion can be
estimated, as can the importance of depletion / accumulation over the course
of the culturing.

8 Discussion and Conclusions

In this paper, we have shown how simple mathematical modelling can be used
as an alternative to experimental ‘trial and error’ or full CFD computations
to investigate the flow and transport properties of a bioreactor system. While
some of the specific results may indeed be useful in themselves, this paper
is intended more to illustrate the general principle of the modelling, and to
investigate the efficacy of including porous fibres as a new design feature. We
have also identified several important dimensionless parameters that should
be considered when designing bioreactor systems of this type.

While the modelling of the flow in the scaffold by Darcy’s law lacks the preci-
sion and detail of full numerical calculations that take into account the detailed
pore geometry (e.g. Porter et al., 2005; Boschetti et al., 2006), it provides good
estimates of the global flow field, shear stresses, and nutrient transport within
the scaffold. The advantages of this approach are the Darcy model’s simplicity,
the ease and rapidity of obtaining results for many different scenarios, and the
fact that by averaging the scaffold geometry, we do not require the detailed
pore geometry, information that is expensive to obtain and, moreover, changes
from one scaffold to another.
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In terms of the shear stresses and nutrient transport within the bioreactor, we
have shown how these may be estimated from the properties of the system un-
der consideration. In particular, the theoretical approach can be used to guide
the design of future systems. Using our framework, experimentalists can es-
timate in advance the range of flow rates required to achieve a desired shear
stress distribution and ensure sufficient nutrient and waste product transport.
They can also determine how often the culture medium may need to be re-
plenished during the culturing.

Returning to the particular cases studied here, the results shown in Figs. 6–11
for configurations A and B suggest that adding fibres perpendicular to the
main flow from the inlet and outlet pipes will probably not result in a beneficial
change to the flow distribution. While there is an increase in the flow rates
on the downstream side of the fibres, there is a corresponding decrease on the
upstream side. However, perhaps oscillating the inlet/outlet or fibre flows may
be able to counteract this. Nevertheless, the presence of the fibres can do little
to increase flow rates in the stagnant corner regions, which are arguably the
areas in need of most help.

The final configuration C fares much better. Using the fibre as the only source
of fluid, and having a distributed outlet, ensures a more uniformly distributed
flow. However, since the radial flux (radial velocity times 2πr) is constant,
higher velocities, and hence shear rates, are experienced near the axis. De-
pending on the precise sensitivity of the cells to the applied shear stress, this
may or may not be problematic.

With regard to the fibres themselves, we have identified a key dimensionless
parameter α, defined in (40), which is a function of the material properties
and dimensions of the fibre. As discussed in �4.5, the value of α describes the
relative ease of flow through the fibre walls compared with flow through the
hollow fibre core. An outflow through the walls that is uniform along the length
of the fibre is obtained if and only if α � 1. Since we are interested in obtaining
a uniform distribution of flow, this is the only regime we have considered in
detail here. Knowledge of the pressures required to force a particular flow-rate
through a particular fibre should prove useful in guiding the choice of fibre
properties and pump setup.
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A Miscellaneous calculations and estimates

A.1 Permeability and tortuosity of the scaffold

The permeabilities and tortuosities of the scaffolds to be used in the system
that motivated this study have not been determined experimentally, so we
must rely on other data and results to estimate these parameters.

First we observe that the permeability k can be written as

k = � δ2 , (A.1)

where δ is the typical pore diameter, and � is a dimensionless parameter
that is a scale-independent function of the scaffold geometry. A theoretical
calculation assuming the porous medium comprises randomly orientated equal
circular pipes of diameter δ (see Bear, 1988, �5.10) gives

� =
φ

96
, (A.2)

where φ is the porosity of the medium.

For similarly structured highly porous media, it is reasonable to believe � ∝ φ.
Haddock et al. (1999) have determined various properties of similar (though
slightly less porous) hydroxyapatite scaffolds. Using their results (taking δ to
be their quoted trabecular separation) we obtain

� ≈ φ

160
. (A.3)

Pleasingly, this is the same order of magnitude as the theoretical estimate. We
shall therefore use this value of � to estimate our permeability k. Using the
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values of φ and δ from Table 1, we obtain

k =
φ δ2

160
= 2.3 × 10−9 m2 . (A.4)

For the tortuosity, various empirical and theoretical estimates all give similar
curves for tortuosity τ as a function of porosity φ (see, for example Koponen
et al., 1996; Yu and Li, 2004). For φ = 0.8, these formulæ typically predict
tortuosity values in the range 1.1–1.2. Since our results are not particularly
sensitive to the actual value, we shall simply assume a value of τ = 1.15.

A.2 Permeability of the fibre walls

An estimate for the mean radial permeability of the fibre walls can be deter-
mined from experimental data as follows. Assuming axisymmetric flow under
a purely radial pressure gradient, Darcy’s equation becomes

uw(r) =
kw(r)

μ

∂p

∂r
. (A.5)

Conservation of mass implies that the radial flux q (per unit length of fibre)
at each value of r is conserved, so

uw(r) =
q

2πr
. (A.6)

Eliminating uw between (A.5) and (A.6), we obtain

∂p

∂r
=

μq

2πrkw(r)
. (A.7)

Therefore the pressure difference ΔP between the core at r = bc and the outer
surface at r = bw is given by

ΔP =
μq

2π

bw∫
bc

1

rkw(r)
dr . (A.8)

Therefore a fibre with a uniform permeability kw has the same overall resis-
tance to radial flow as one with variable permeability kw(r) if and only if

bw∫
bc

1

rkw

dr =

bw∫
bc

1

rkw(r)
dr , (A.9)
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which is the definition for kw used in (25). Using this definition to eliminate
kw(r) from (A.8), we find that

kw =
μq

2πΔP
ln

(
bw
bc

)
. (A.10)

Preliminary experimental data from Ellis & Chaudhuri (unpublished) suggests
an order of magnitude estimate of kw ∼ 10−17 m2, but this figure is likely to
be quite sensitive to changes in the manufacturing conditions.

A.3 Harmful concentration of lactic acid

In this appendix, we describe how we estimate the concentration of lactic
acid that would be harmful to the growing cells (see Table 4). When the pH
drops the proliferation of cells is strongly inhibited. Each molecule of glucose
produces two molecules of lactic acid and so the rate of production of lactic
acid is twice the rate of glucose consumption.

The culture medium is initially at a pH of 8, and we assume that the growing
cells can tolerate a pH change of up to ±0.5, though growth rates are likely
to be affected near to the extremities of this range.

In this pH range, lactic acid is almost fully dissociated and so behaves as a
strong acid. Therefore in the absence of buffering the concentration of lactic
acid required to cause a drop from 8 to 7.5 is given by

(10−7.5 − 10−8) mol dm−3 ≈ 2 × 10−5 mol m−3 . (A.11)

This is a tiny amount relative to the rates at which lactic acid is known to
be produced by the cells, so it is therefore necessary to take the buffering into
account.

Culture media typically contain a large number of different proteins, salts, and
other nutrients, which will interact with each other in complex ways under
applied pH changes. We therefore make no attempt to model the buffering
effect, and instead appeal to experimental results. Fig. A.1 shows data from
two titrations of lactic acid into a typical culture medium. From this data, we
see that the concentration of lactic acid that results in a pH drop of 0.5 is
roughly 0.4 mol m−3. We use this for the value of c†i in �7.

34



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

6.5

7

7.5

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

pH

Concentration of Lactic Acid (mol m−3)

Fig. A.1. The results of two titrations lactic acid into a typical culture medium
to assess the level of buffering present. The culture medium comprised D-MEM
(Invitrogen, 2008) with 10% Fetal Calf Serum. Lactic acid was added drop-wise
using a pipette, and data points comprising the volume added together with the pH
of the solution were recorded. The agreement between the two titrations indicates
good reproducibility.

B Consistency of the approximations used in �4

In this appendix, we check the consistency of the various approximations used
in �4 to model the flow in the fibre. These approximations simplified the
equations in the core and wall. We check their validity by comparing the sizes
of the neglected terms to those retained.

To obtain the viscous lubrication approximation (37)–(39) in the fibre core, we
assumed that the appropriate Reynolds number is small, and that the radial
pressure variation Δpr required to drive the radial flow is small compared
with the axial pressure variation Δps. The Reynolds number is estimated by
comparing the steady inertia term with the viscous term. We find that

Rec =
ρw2

c/a

μwc/b2c
∼ ρQf

μa
=
ρQ−
μa

�

N
≈ 20�

N
� O(1) . (B.1)

While this may not be formally small, low-Reynolds-number approximations
are generally found to be acceptable even at O(1) Reynolds numbers. More-
over, in the α2 � 1 regime of primary interest here, O(1) errors in the viscous
pressure drop along the fibre will not affect the pressure difference across the
wall, and so the emitted flux will be unchanged.

The pressure variations Δpr and Δps are estimated from the viscous drag due
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to the velocity components. We therefore have

Δps

L
∼ μ

wc

b2c
∼ μQf

b4c
,

Δpr

bc
∼ μ

uc

b2c
∼ μQf

ab3c
, (B.2)

and hence

Δpr

Δps

∼ b2c
�a2

∼ ε2 . (B.3)

We have already assumed that ε� 1, so the approximation is justified.

Secondly, when forming equations (46)–(47) for the flow in the wall, we as-
sumed that the axial flow made no contribution to the continuity equation,
and so could be neglected. Knowing that the axial pressure variations in the
wall are tied to pc(s) from (30b), we can now estimate

∂ww

∂s
� kw

μ

∂2pc

∂s2
∼ Qf

a3

∂2Pc

∂ζ2
∼ α2Qf

a3
∼ Qfkw

ε4a5
. (B.4)

This must be small compared with uw/bc ∼ Qf/(ε
2a3). Hence we require

kw � ε2a2 = b2c , (B.5)

a condition that we had already noted.
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