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Abstract 
Studies on tree biomechanical design usually focus on stem stiffness, resistance to breakage or 

uprooting, and elastic stability. Here we consider another biomechanical constraint related to the 

interaction between growth and gravity. Because stems are slender structures and are never 

perfectly symmetric, the increase in tree mass always causes bending movements. Given the 

current mechanical design of trees, integration of these movements over time would ultimately 

lead to a weeping habit unless some gravitropic correction occurs. This correction is achieved 

by asymmetric internal forces induced during the maturation of new wood.  

The long-term stability of a growing stem therefore depends on how the gravitropic correction 

that is generated by diameter growth balances the disturbance due to increasing self weight. 

General mechanical formulations based on beam theory are proposed to model these 

phenomena. The rates of disturbance and correction associated with a growth increment are 

deduced and expressed as a function of elementary traits of stem morphology, cross-section 

anatomy and wood properties. Evaluation of these traits using previously published data shows 

that the balance between the correction and the disturbance strongly depends on the efficiency 

of the gravitropic correction, which depends on the asymmetry of wood maturation strain, 

eccentric growth, and gradients in wood stiffness. By combining disturbance and correction 

rates, the gravitropic performance indicates the dynamics of stem bending during growth. It 

depends on stem biomechanical traits and dimensions. By analyzing dimensional effects, we 

show that the necessity for gravitropic correction might constrain stem allometric growth in the 

long-term. This constraint is compared to the requirement for elastic stability, showing that 

gravitropic performance limits the increase in height of tilted stem and branches. The 

performance of this function may thus limit the slenderness and lean of stems, and therefore the 

ability of the tree to capture light in a heterogeneous environment. 
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mechanical design, gravitropism, bending stresses, allometry, reaction wood 
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1. Introduction 
Plant stems are slender mechanical structures; their erect habit is mainly constrained by bending 

movements in response to wind and gravity. Quantitative mechanical design analysis of these 

bending movements and forces usually focuses on instantaneous mechanical disturbance and 

safety, using stiffness, breakage or buckling analyses (McMahon and Kronauer, 1976; West et 

al., 1989; Niklas, 1994a; Niklas 1994b; King et al., 2006; Rowe et al., 2006; Jaouen et al., 

2007). 

However, gravitropism is a widely studied  physiological process (Salisbury, 1993), which plays 

a key mechanical role in explaining how plant stems can maintain an erect habit, by generating 

internal forces that counteract the above-mentioned external disturbance by wind or gravity. The 

control of aerial organ orientation with respect to gravity is necessary to allow the self-standing 

habit of terrestrial plants, especially in extremely slender, long-lived gigantic structures such as 

trees (Moulia et al., 2006). 

Two different “motors” enable such internal bending forces and resulting axis curvatures: 

hydrostatic pressure and differential growth in primary tissues, and wood maturation in lignified 

axes. During the cellular maturation process, at the end of the differentiation of new layers of 

wood from cambial activity, pre-stresses, which are similar to thermal stresses in engineering 

materials and are named ‘growth stresses’ or ‘maturation stresses’, are generated for the 

following reasons: i) peripheral wood has a tendency to shrink along the wood grain during 

secondary wall formation in fibers and ii) as it is glued to a central core of pre-existing wood, it 

cannot shrink, so it is stretched and put into tension stress (Archer, 1986; Fournier et al., 2006). 

Asymmetric maturation stresses are usually observed around the stem circumference and cause 

the axis to bend during growth, because the more stretched side pulls the opposite side. The 

upper side of leaning stems is usually more stretched than the opposite side, so that the bending 

movement induced by internal forces counteracts the effect of gravity. This is the basic 

mechanism of the gravitropic reaction in trees (Wilson and Archer, 1977). As the production of 

asymmetric strains and stresses is associated with the differentiation of a wood with particular 

anatomical and chemical features called “reaction wood”, this phenomenon has been widely 

described by wood anatomists (Scurfield, 1973). 

Reaction wood is a basal lignophyte growth response and not a derived feature of recent seed 

plants nor a peculiarity of a few taxonomic entities. It has been described in the most ancestral 

trees (Scheckler, 2002). Indeed, without this control process, the increasing mass of growing 

trees would make the stem bend more and more, and gravity would be a terrific ecological 

constraint: with the currently observed mechanical designs (slenderness ratio, mass distributions 

and wood stiffness), trees would adopt a weeping habit because of the interaction between 

growth and gravity (Fournier et al., 1994a; Fournier et al., 2006). Thus, long-term mechanical 

safety is not only a question of stiffness, breakage or buckling, but also involves a balance 
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between the slow and long-term mechanical disturbance due to self weight, and the gravitropic 

correction process related to reaction wood production.  

However, due to the lack of practical tools to quantify these processes, their natural variability 

and their ecological relevance, ecological studies dealing with plant mechanical design have 

basically focused on the above-mentioned instantaneous mechanical constraints and traits 

(Poorter et al., 2006; Sterck et al., 2006; Jaouen et al., 2007; Swenson and Enquist, 2007), with 

no reference to major biomechanical processes studied by physiologists such as tropisms or 

thigmomorphogenesis (Jaffe, 1980; Moulia et al., 2006). A simple model of gravitropic bending 

movements has been published, but is restricted to a circular cross-section and concentric 

growth (Fournier et al., 1994a). When applying this model to an ecophysiological analysis of 

gravitropic movements of young poplars (Coutand et al., 2007), we noticed that this version is 

too limited to properly describe some real world situations. More elaborate versions of this 

model based on finite element methods have been used in growth simulations of entire trees 
(Fourcaud et al., 2003; Fourcaud and Lac, 2003; Ancelin et al., 2004). These numerical models 

are suitable for simulation purposes, but cannot be used as a routine tool for analyzing data from 

large-scale population studies.  

In this context, the aim of this paper was to develop a general biomechanical model relating the 

bending movements (i.e. changes in curvature) of woody stems to a finite number of measurable 

traits describing the stem dimensions, growth allocation and wood properties. Wood properties 

are density, stiffness and maturation strains and their distribution within the section. Diameter 

growth defines the increase in cross-section inertia, possibly eccentric, while weight and height 

growth define the bending loads. We derived simple formulas from the general model that are 

relevant to large-scale studies. Finally, as mentioned in Fournier et al. (2006), it is of great 

importance in biomechanical ecological studies to compare the constraint (how the increase in 

self weight disturbs the orientation), to the correcting process (how wood maturation restores 

the orientation). The question is similar in ecophysiology when comparing the stimuli (the lean 

or bending strains induced by gravity and perceived at local or integrated levels) and the 

responses (strains and curvatures induced by reaction wood formation) (Coutand et al., 2007). 

Therefore, we compared a model of the disturbance induced by gravity to a model of the 

correcting gravitropic process. An example is given of how these parameters can be practically 

estimated. A sensitivity study was performed to quantify the potential effect of morphological 

traits and wood properties on both processes. By analyzing and comparing these models, we 

infer theoretical predictions about the mechanical design of the tree and the conditions for long-

term biomechanical stability. 
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2. A general model for the biomechanics of growing woody stems 
 

2.1 Modeling the tree stem as a cantilever beam 
Tree stems are usually very slender structures and therefore beam theory is an appropriate 

framework for studying their mechanical behavior. This general model is valid for any cross-

sectional shape and stem taper. The configuration of the stem is defined by the position of any 

point along its central line, from which can be derived the local orientation angles and the field 

of curvature. The curvature is defined at each point as the change in local orientation of the stem 

per unit length. The basic assumption of the beam theory is that the stem deforms so that any 

plane cross-section remains plane after deformation, and this is generally verified in a slender 

structure. The deformations are then sufficiently described at the level of any cross-section by 

the strain perpendicular to the section at a reference point in the section and, more importantly, 

the gradients of strains within the section3. These gradients are equal to the variations in 

curvature, and can be integrated along the stem to obtain variations in orientation and 

displacements at any point. 

In this study, we assumed that the anchorage is rigid enough to prevent any change in 

orientation at the emergence point of the stem so that tree movements are only due to the 

deformations along the stem. The deformations at the level of a given cross-section depend on 

the loads applied to it by the part of the tree located on the side of the free end, hereafter 

referred to as the distal part. 

 

2.2 External loads and deformations due to self weight 
Loads are described at the level of a section by the resulting force acting perpendicular to the 

section NZ and the bending moments BX and BY around the axes of the section’s plane (Figure 1). 

Let OS be the center of the cross-section at a given position along the stem, expressed in a global 

reference system (XT,YT,ZT) associated with the base of the tree, where ZT is the vertical 

direction  and XT and YT are two cardinal directions. Local axes of the section are defined by 

Euler’s angles θS and φS (see Figure 1). Let OSGS=(xG,yG,zG) be the vector joining the center of 

the section to the center of mass of the distal tree part, expressed in the global reference system. 

The loads applied on the section by the weight SW
�

of the distal part are given as: 

 SS
weight
Z WN φcos⋅−=  

 ( )SGSGSS
weight
X yxWB θθφ cossincos ⋅−⋅⋅⋅=  

 ( )SGSGS
weight
Y yxWB θθ sincos ⋅+⋅⋅=      (1) 

                                                 
3 For simplicity, no degrees of freedom in torsion or shear are considered here. Although stem shear and torsion may 
have important consequences on the mechanical behavior e.g. in response to wind, they are considered to be second 
order effects regarding the self-weight and the gravitropic reaction.  
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Deformations of the stem in response to gravity generally involve small local strains in the 

wood, so that it behaves elastically (i.e. the strain is reversible) and linearly (i.e. the stress in the 

material is proportional to the strain). The modulus of elasticity (MOE) of wood, E, defines its 

stiffness, i.e. the amount of stress σ generated by a given strain ε: 

 εσ ⋅= E          (2) 

Here we only consider strains perpendicular to the section, so that the MOE implicitly refers to 

the MOE measured in the direction of the stem axis. This is generally equal to the modulus of 

elasticity parallel to the wood grain (but may be different in the case of spiral grain). More 

generally, wood is a visco-elastic material (i.e. it has time-dependent behavior), but the elastic 

approximation is acceptable if the MOE is measured at the proper time-scale (Alméras et al., 

2002). From the basic assumption of the beam theory, the strain perpendicular to section ε is 

given at any point (x,y) within a section as: 

 YXZ CxCyyx ⋅−⋅+= εε ),(        (3) 

where εZ is the axial strain at the reference point, and CX and CY are the curvatures around the XS 

and YS axes.  

The internal loads due to the elastic stress generated within the section are computed as: 

 �� ⋅⋅=
S

elas
Z dydxyxN ),(σ  

 �� ⋅⋅⋅=
S

elas
X dydxyxyB ),(σ        (4) 

 �� ⋅⋅⋅−=
S

elas
Y dydxyxxB ),(σ  

Combining equations (2, 3) and (4), the elastic load in response to a deformation (εZ, CX, CY) is: 

 100100 KCKCKN YXZ
elas
Z ⋅−⋅+⋅= ε  

 110201 KCKCKB YXZ
elas
X ⋅−⋅+⋅= ε       (5) 

 201110 KCKCKB YXZ
elas
Y ⋅+⋅−⋅−= ε  

The structural stiffness terms �� ⋅⋅⋅⋅=
S

ji
ij dydxyxEyxK ),(  (where indices i and j here express 

the power of x and y in the integral) depend on the shape and the size of the section, and on the 

distribution of the modulus of elasticity. 

The static equilibrium is achieved if the internal elastic loads balance the external loads, i.e.: 

 weight
Z

elas
Z NN =   weight

X
elas
X BB =   weight

Y
elas
Y BB =    (6) 

Using equations (1), (5) and (6), the deformations ( weight
Y

weight
X

weight
Z CC ,,ε ) at the level of a stem’s 

section in response to weight load ( weight
Y

weight
X

weight
Z BBN ,, ) can be computed. 
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2.3 Internal loads and deformations due to wood maturation 
Wood maturation induces internal inelastic stresses, due to impeded dimensional changes in the 

wood. The biochemical processes occurring during the maturation of a piece of wood would 

induce a relative change in length α if it was isolated, but this maturation strain is impeded by 

the surrounding material, so that some stress results. Note that the sign of the induced strain and 

the generated stress is opposite (an impeded contraction α<0 generates a tensile stress σ>0). 

The maturation induces a significant stress increment only in the recently produced wood 

because the maturation process is already completed in the inner part of the stem. The loads 

resulting from maturation stress are: 

 �� ⋅⋅⋅=
S

matur
Z dydxyxEyxN ),(),(α  

 �� ⋅⋅⋅⋅=
S

matur
X dydxyxEyxyB ),(),(α      (7) 

 �� ⋅⋅⋅⋅−=
S

matur
Y dydxyxEyxxB ),(),(α  

The stem deforms elastically in response to these loads, and the static equilibrium is achieved if 

the internal elastic loads balance the maturation loads, i.e.: 

 matur
Z

elas
Z NN =   matur

X
elas
X BB =   matur

Y
elas
Y BB =    (8) 

Using equations (5), (7) and (8), the deformations at the level of a stem’s section 

( matur
Y

matur
X

matur
Z CC ,,ε ) in response to maturation load ( matur

Y
matur
X

matur
Z BBN ,, ) can be computed. 

 

2.4 Effect of weight and maturation loads in a growing stem 
One particular feature of tree biomechanics is that self weight and wood maturation modify the 

mechanical state of the stem during its formation. As a consequence, standard engineering 

formulae cannot be used directly because the mechanical state resulting from the simultaneous 

action of growth and loading is not the same as when a structure is first built, and then loaded 

(Fournier et al., 1994a). A given piece of wood contributes to support only from the time it is 

created, and does not support the preexisting loads. This results in specific distributions of stress 

within the stem section (Kubler, 1987; Fournier et al., 1991a; Fournier et al., 1991b; Fourcaud 

et al., 2003; Ancelin et al., 2004), with important implications for their biomechanical behavior.  

To properly compute the mechanical state of a growing structure, an incremental approach is 

necessary. The elementary load increments ( YXZ dBdBdN ,, ) during an elementary time step dt 

can be computed, and the resulting elementary deformation increments ( YXZ dCdCd ,,ε ) can be 

deduced using equation (5), assuming the stiffness terms Kij are constant during the time step. 
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As both the effect of self weight and the effect of maturation are related to growth, it is 

convenient to express the deformation increments as a function of secondary growth, i.e. during 

the time of an increment dS in section area. Note however that this formulation is not relevant if 

variations in load occur without secondary growth. For trees, this can happen for example 

during particular seasonal events (e.g. bud-burst, fruit fall or leaf shedding; Alméras et al., 

2004), or if one focuses on the effect of visco-elastic relaxation (Alméras et al., 2002) or the 

timing of wood maturation (Coutand et al., 2007).  

During an elementary growth step, the rate of stem deformation results from the superposition 

of the effect of increasing weight and maturation. These two contributions can be computed 

independently from equations (1), (5) and (7), and summed: 

 dSddSddSd matur
Z

weight
Z

total
Z /// εεε +=  

 dSdCdSdCdSdC matur
X

weight
X

total
X /// +=      (9) 

 dSdCdSdCdSdC matur
Y

weight
Y

total
Y /// +=  
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3. Parametric models for analytical studies and practical applications 

 

3.1 Simplifications: circular cross-section and bilateral symmetry 
In order to derive practical formulae, we express growth as a function of changes in diameter 

dD rather than the change in cross-section area dS, assuming that the cross-section is circular. 

For a number of cases (cross-section ovalisation, fluted stem or buttresses), this assumption is 

not adequate, and specific formulations should be derived by keeping the cross-section area as a 

reference for secondary growth. Conversion between these alternative formulations is easy, for a 

circular section: 2// DdDdS π= . 

Computation of the deformations in the general case requires inversion of the linear equation 

system (5). However, if the reference point of the section OS is taken at the neutral line, then the 

stiffness terms K01, K10 and K11 vanish, so that the problem is much simplified. Stem movements 

result mainly from changes in curvature, and we will further assume bilateral symmetry of the 

problem, so that we are concerned only with the change in curvature in the vertical plane (i.e. 

around YS). This assumption is generally sufficient to model the effect of weight and the 

gravitropic reaction, except if trees with complex geometry are considered, or when studying 

lateral tropisms, e.g. due to the interaction between gravitropism and phototropism (Matsuzaki 

et al., 2006). Assuming the reference point of the section OS coincides with the neutral line, the 

rate of change in curvature with growth can be computed as: 

 ( ) 20/// KdDdBdDdC YY =          (10) 

The flexural stiffness K20 depends on the section’s geometry and the distribution of material 

properties within it. It can be written: IEK ⋅=20      (11) 

where �� ⋅⋅=
S

dydxxI 2  is the second moment of area of the section relative to Y depending 

only on its geometry, and E is the homogenized MOE, which can be deduced from the 

distribution of the MOE within the section (or directly measured with a bending test). For a 

circular cross-section, the second moment of area relative to the geometric center is 

64/4DI ⋅= π , so that: 

 ( ) ( )64//// 4DEdDdBdDdC YY ⋅⋅= π      (12) 

Therefore the resolution of the problem for a particular case reduces to the calculation of the 

bending moment increment dBY generated during a diameter increment dD. Bending moments 

are related to different possible sources of asymmetry. The bending moment due to wood 

maturation is associated with the circumferential asymmetry of cambial activity (eccentric 

growth, heterogeneous stiffness and maturation strains). The bending moment due to self weight 
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is associated with an asymmetry in load distribution, in relation to the stem lean or crown 

eccentricity. Hereafter we present parametric models for these situations. 
 

3.2 Model of gravitropic change in curvature due to wood maturation 
Our reference situation is a circular cross-section of diameter D with bilateral symmetry 

submitted to a growth increment dD. We assume that the neutral line of the inner section is 

located at its geometric center, and that its homogenized modulus of elasticity is E. As the new 

growth ring is assumed to be heterogeneous and eccentric (Figure 2), a long-term reaction 

would imply a shift in neutral line position, but this situation will be discussed later (see section 

4.2). We assume that the stem leans in the XS+ direction, so that the reaction is expected to 

create a bending moment dBY
matur<0 and a change in curvature dCY

matur<0 (up-righting 

movement). Figure 2 illustrates the case of an angiosperm in which the left side of the section is 

the upper side of the leaning stem, where eccentric growth and tension wood production occur. 

For a gymnosperm, eccentricity and reaction wood would be located on the right side of the 

section (lower side of the leaning stem). 

The distribution of maturation strains within the new growth ring is defined as a cosine function 

of the circumferential position θ : 

 θααθα cos2/)( ⋅Δ+ =        (13) 

where ( ) 2/)()0( πααα +=  is the mean maturation strain and )()0( πααα −=Δ is the 

difference in maturation strain between the lower and the upper side. The maturation strain is 

strongly positive in compression wood of gymnosperms, strongly negative in tension wood of 

angiosperms, and slightly negative in normal wood of all species. Therefore, in a stem tilted in 

the XS+ direction and reacting counter-wise, we generally have Δα>0 and αα >Δ . 

The distribution of the modulus of elasticity is given by a similar law: 

 θθ cos2/)( ⋅Δ+ = EEE        (14) 

where ( ) 2/)()0( πEEE +=  is the mean MOE and )()0( πEEE −=Δ is the difference in MOE 

between reaction wood and opposite wood. As E is strictly positive, its relative variations can 

always be described by a parameter )2/( EEkE Δ=  strictly contained between −1 and 1, and 

generally much lower than 1 in magnitude. Tension wood is generally stiffer than normal wood 

(Alméras et al., 2005), and compression wood is generally less stiff (Timell, 1986), so that 

generally ΔE<0 and kE<0. The distribution of the MOE can thus be written: 

 ( )θθ cos1)( ⋅+⋅ = EkEE        (15) 

Notice that as )(θα and )(θE are periodic functions of θ, and as bilateral symmetry has been 

assumed, the cosine models (13) and (14) remain very general, if they are the first terms of a 

Fourier analysis of the exact variation )(θα and )(θE . Taking into account the higher order 
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cosine terms (cos(nθ), n>1) of the Fourier analysis does not change the moment calculated in 

equation (17). For practical reasons, the functions )(θα and )(θE are usually experimentally 

characterized from a few (2 to 8) measurements (Fournier and Chanson, 1992; Alméras et al., 

2005). 

The eccentricity of the growth ring is characterized by a parameter kO=dXO/dR, where dXO is the 

change in position of center of the section relative to a fixed reference (e.g. the pith) and 

( ) 2/)()0( πdRdRdR + =  is the mean change in radius.  

Thus, kO can also be expressed as ( ) ( ))()0(/)()0( ππ dRdRdRdRkO +−= , and is contained 

between −1 and 1, being generally negative for an angiosperm (eccentricity on the left side on 

Figure 2) and positive for a gymnosperm (eccentricity on the right side on Figure 2). 

The thickness of the ring at any circumferential position can be closely approximated by: 

 ( )θθ cos1)( OkdRdR +⋅ =        (16) 

The bending moment around Y generated by the maturation of a growth increment can be 

computed from equation (7). The maturation strains are zero on the whole section except the 

outermost wood layer of infinitesimal thickness dR, and thus the bending moment can be 

computed as a simple integral with respect to θ: 

 ( )� ⋅⋅⋅+⋅⋅⋅⋅⋅−=
π

θθθθαθ
2

0
)cos(1)()()cos( dRkERdRdB O

matur
Y   (17) 

Substituting equations (13, 15) into (17), and integrating with respect to θ  we obtain: 

 ( ) ( )( )OEOE
matur
Y kkkkdRREdB +⋅+⋅⋅+⋅Δ⋅⋅⋅⋅−= ααπ 24/312/ 2   (18) 

Introducing equation (18) into (12), the rate of gravitropic correction, defined as the change in 

curvature induced by the maturation of an elementary diameter increment can be finally 

expressed as: 

 24
D
e

dD
dC r

matur
Y ⋅−=          (19) 

where 1/D2 is a dimensional parameter expressing the effect of the size of the section and er is a 

dimensionless parameter expressing the efficiency of the maturation process: 

 EEfer /⋅⋅Δ= α         (20) 

where Δα is the difference in maturation strain between the lower and the upper side and EE /  

is the ratio between the mean MOE of the new ring and the homogenized MOE of the inner 

section. The effect of circumferential variations in ring width and stiffness is accounted for 

through a factor f defined as: 

 ( ) αα Δ⋅++⋅⋅+= /24/31 OEOE kkkkf       (21) 

This factor does not depend on the amount of wood material or its quality, it only depends on 

their distribution around the circumference, and will be termed “form factor”. The form factor is 
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1 if the section is homogeneous and concentric, as assumed in previously published models 

(Fournier et al., 2006). 

 

3.3 Model of bending under self weight at the tree level 
We assume a bilateral symmetry of the tree, so that it is sufficiently described in a plane 

representation (Figure 3) derived from the general case (Figure 1) with θS=0 (notice that in this 

case, torsional forces induced by gravity are rigorously zero). The location of the center of mass 

GS of the distal part of the tree depends on the orientation and shape of the stem, and on the 

possible eccentricity of the crown. The position of GS relative to the center of the section OS is 

defined by its distance hG and its lean angle φG, so the total bending moment imposed by the 

weight is: 

 GGSGS
weight
Y hWxWB φsin⋅⋅=⋅=       (22) 

The rate of change of the bending moment during diameter growth therefore depends on the rate 

of change of weight, height and global orientation of the tree. To compute it, explicit 

information about these parameters and their evolution with diameter is necessary. 

Our reference situation is a stem of diameter D0 at its base and total length H, straight but 

leaning at an angle φ from vertical (here φS=φG=φ). The stem is assumed to be tapered, and 

loaded by its own weight and supported masses (branches and leaves). Following other authors 

(Greenhill, 1881; Niklas, 1994b; Jaouen et al., 2007), we describe the stem taper and the 

distribution of the total mass Mtot by allometric power functions, which generally fit well to 

experimental data (Jaouen et al., 2007) and are theoretically discussed e.g. by Niklas (1994b). 

For a section located at a distance s from the base, the diameter D(s) and the mass of the distal 

part M>(s) are given by: 

 ( )nHsDsD /1)( 0 −⋅=        (23) 

 ( )m
tot HsMsM /1)( −⋅=>        (24) 

where n and m are parameters defining the taper and mass distribution, respectively. Parameter 

n is 0 for a cylindrical stem (no taper) and 1 for a conical stem (linear taper). Parameter m is 1 

for a uniformly distributed mass, >1 if the center of mass is closer to the base, and <1 if it is 

closer to the tip. The volume of the stem V can be deduced from equation (23):  

 
)12(4

2
0

+
⋅⋅=

n
DHV π

        (25) 

We define the load ratio L of the stem as the ratio between the total mass of the tree Mtot and the 

stem volume V (Jaouen et al., 2007). If the weight of branches, leaves and bark can be ignored, 

this ratio is equal to the green density of wood. Note however that it significantly differs from 

the wood basic density (the ratio of oven dry wood mass to fresh volume) usually measured in 
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biomass studies (King et al., 2006) and sometimes abusively extended to mechanical design 

studies (Sterck and Bongers, 1998).  

Therefore, the weight of the tree above the basal section can be expressed as: 

 2
0)12(4

DH
n
LgLVgWS ⋅
+

=⋅⋅= π
      (26) 

where g=9.8 m.s-2 is the acceleration of gravity. 

The location of the center of mass hG can be computed from equation (24): 

 )1/( += mHhG         (27) 

Introducing equations (26) and (27) into (22), the total bending moment at the stem base can be 

expressed as: 

 2
0

2

)12()1(
sin

4
DH

nm
LgBweight

Y ⋅
+⋅+

⋅= φπ
     (28) 

To compute the rate of change of the bending moment, we must specify the way each parameter 

changes with diameter. We will ignore the change in global orientation of the stem during an 

elementary growth step, and assume that n, m and L are constant during growth, so that we need 

to know only the relation between height and diameter changes, defined as: 

 ( ) ( )0/// DdDHdHbH =        (29) 

Differentiating equation (28) with respect to D, we obtain: 

 ( ) 0
2

)12(1
)1(sin

2
DH

nm
bLg

dD
dB H

weight
Y ⋅

+⋅+
+⋅⋅= φπ

     (30) 

Using equation (12), the rate of gravitational disturbance, defined as the change in curvature due 

to the weight associated with an elementary diameter increment, is therefore: 

 ( ) 3
0

2

)12(1
)1(sin32

D
H

nmE
bLg

dD
dC H

weight
Y ⋅

+⋅+⋅
+⋅⋅= φ

     (31) 
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4. Biomechanical traits and plant scaling in relation to the gravity constraint 
The evolution of the shape and orientation of a stem depends on the balance between the effect 

of weight loads and the gravitropic reaction. We will first illustrate how this information can be 

obtained empirically, using experimental data from a previous study on plantation trees. 

Analyzing this real-world situation will show that the correction and disturbance generally 

closely compensate each other, so that the value of the gravitropic efficiency is a critical 

parameter determining the biomechanical equilibrium of trees. Then, coming back to the 

introduced parametric models, we will identify biomechanical traits involved in this equilibrium 

and study their sensitivity. Finally, we will study how the disturbance and the correction scale 

with tree size, and deduce a theoretical relation between biomechanical traits, tree allometry and 

long-term mechanical stability of trees. 

 

4.1 Quantification of weight loads and gravitropic reaction  
The model of bending under self weight described earlier is based on a number of assumptions. 

Some of these assumptions may be inadequate in practical cases, for example if branches are too 

long to ignore their own lever arm effect, or if the effect of crown eccentricity is studied. A 

similar analytical model accounting for these parameters could be developed for any specific 

purpose. Alternatively, a semi-empirical model can be used. If the bending moment is evaluated 

with an independent method (see below) using a set of trees of different sizes representative of 

the ontogenetic trend in the population, then the change in bending moment with diameter can 

be estimated from a statistical regression, and its rate of change obtained by derivation. Using 

stiffness data, the rate of change in curvature can be deduced. 

Practical estimations of the bending moments 
To illustrate this method, we used previously published experimental data (Fournier et al., 

1990). Nine 30-year-old poplar (Populus sp.) trees growing in a plantation in Amance, Meurthe-

et-Moselle (France) were felled. Total bending moments applied on the cross-section at breast 

height were accurately quantified by two independent methods. 

The first method was based on direct measurements of strains at the cross-section level as a 

result of removing the total weight, and then calculation of bending moment using additional 

measurements of the cross-section dimension and stiffness. Moduli of elasticity were estimated 

with a 3-point bending-test on 8 samples of sapwood per tree (green wood specimens 

20x20x360mm). As the variation between the 8 values was quite low with no systematic 

variation around the circumference, the mean value was used as a homogenized modulus of 

elasticity. 

The second method used the weight  of the trunk (divided into 2.5m long logs), and the crown, 

as well as geometrical measurements (lean angle of the stem at breast height and radius of the 
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crown in 8 directions) to estimate the location of the center of mass of the tree and the related 

bending moment (Fournier et al., 1990). From the comparison of the two methods Fournier et 

al. (1990) concluded that although inaccurate on twisted trees, the second method was adequate 

for the 7 vertical or tilted trees. Basic data and bending moments computed with this method are 

shown in Table 1. 

Computation of the rates of disturbance and correction 
The bending moment due to the weight and diameter of the tree are statistically related and fit a 

power function (Figure 4). Assuming that the trend in the population reflects ontogenetic 

changes in individuals, the rate of change of the bending moment can be taken as the derivative 

of the relation obtained from regression: 96.371037.1/ DdDdBweight
Y ⋅⋅= . The rate of gravitational 

disturbance can be obtained for each tree using equation (12) and individual diameter and 

stiffness data. 

Maturation strains α along the grain were measured using the two grooves method, i.e. strain is 

provoked by isolating peripheral wood (Fournier et al., 1994b; Yoshida and Okuyama, 2002). 

Strains were measured with glued strain gauges (Techdis PR10, length 10mm) and an 

extensometry bridge, at four positions around the circumference for each tree. As expected from 

mechanical theories of reaction wood and as already observed (Fournier et al., 1994b; Alméras 

et al., 2005), one side with higher tensile strain values was usually found so that the variation in 

α could be fitted with the angular variation according to equation (13), allowing the asymmetry 

of maturation strains Δα to be estimated (Table 1). The circumferential variations in the 

modulus of elasticity were found to be low, and radial variations and eccentricity were not 

quantified and will be ignored here (their effect will be studied in the next section). Thus the 

gravitropic efficiency is simply estimated as αΔ=re , and the rate of change in curvature due to 

wood maturation can be estimated from equation (19). 

Analyzing the biomechanical equilibrium of a tree population 
The computed rates of correction and disturbance (Table 1) show that both rates are variable 

within the population, and have the same order of magnitude. For trees with a weak reaction 

(low Δα), the rate of correction is lower than the rate of disturbance, and thus wood maturation 

cannot completely compensate for the effect of weight. These trees are predicted to bend more 

and more if they do not react more intensively. For trees with a marked reaction (high Δα), the 

effect of maturation is larger than that of weight, and these trees are probably in an active up-

righting process. Overall, the studied sample of trees is close to the biomechanical equilibrium 

(mean rate of disturbance dDdCweight
Y /  = 0.040, SD=0.005, mean rate of correction dDdCmatur

Y /  = 

−0.044, SD=0.021). The correction process has the largest variability so that its efficiency, er, 
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appears as a critical parameter to determine individual long-term biomechanical behavior. The 

next section focuses on the sources of variation of this parameter. 

 

4.2 Quantitative analysis of the gravitropic efficiency 
The efficiency of the gravitropic reaction er depends at first order on the circumferential 

distribution of the maturation strain α, and is influenced by other factors such as stiffness 

gradients and growth eccentricity. In the case of a sinusoidal variation of α, we found that er is 

proportional to the difference Δα between the maximal and the minimal maturation strains in 

the wood ring. Other assumptions about the distribution of α (e.g. discontinuous distribution as 

in Alméras et al. (2004), see appendix) do not qualitatively change the results, but induce an 

additional correction factor. For example, when half of the ring has maximal α and the other 

half has minimal α, then the distribution is optimal and the efficiency is 1.27 times that obtained 

with a sinusoidal variation. 

Effects of the asymmetry in wood properties and ring thickness 
The effects of stiffness asymmetry and eccentric growth were studied using experimental data 

from a previous study (Alméras et al., 2005). The mean values of parameters measured in 

sections of leaning stems of 11 angiosperm and 4 gymnosperm trees from various species are 

shown in Table 2. The gravitropic efficiency is the product of parameter Δα and the form factor 

f, computed from equation (21). This form factor is shown in Figure 5, for average maturation 

strain parameters α  and Δα, and different levels of kE and kO. For angiosperms, the form factor 

ranges between 1 and 2.22, showing that the within-ring asymmetry in stiffness and thickness 

can significantly enhance the effect of maturation strains. In the case of gymnosperms the form 

factor is no more than 1.26, suggesting that the mechanism is in some way less efficient than 

that used by angiosperms.  

Both mechanisms are based on the same basic principle, i.e. the asymmetric production of pre-

stressed reaction wood: compression wood located on the lower side of the stem for 

gymnosperms, and tension wood located on the upper side for angiosperms. In both cases, 

eccentric growth induces a larger ring thickness on the reaction wood side, increasing the 

efficiency (Figure 5). The mechanisms are basically analogous, since pushing on the lower side 

and pulling on the upper side have an equivalent effect on the stem. However, there are at least 

two features for which they are not equivalent. First, stiffness asymmetry kE increases the 

efficiency for angiosperms because tension wood is generally stiffer than opposite wood, but 

decreases it for gymnosperms because compression wood is generally less stiff (Figure 5). 

Compression wood is therefore intrinsically less efficient because of its lower stiffness. The 

second difference is related to the action of opposite wood, which is generally in a state of 

tension for both angiosperms and gymnosperms.  For angiosperms, this slight tension on the 
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lower side partly balances the action of tension wood, and therefore tends to reduce the 

efficiency. For gymnosperms however, this slight tension on the upper side actively generates 

the upward bending moment, contributing to the efficiency of the mechanism. When 

eccentricity occurs, the area of the opposite side is reduced. This reduction has a positive effect 

for angiosperms, but a negative effect for gymnosperms. This explains why, for comparable 

levels of Δα, the effect of kO on the form factor is lower for gymnosperms than for angiosperms 

(Figure 5). 

In the long term, the circumferential heterogeneity of wood stiffness would induce a shift in the 

neutral line towards the stiffest side. The position of the neutral line within a heterogeneous 

section is equal to the ratio K10/K00 (see section 2.4 for the definition of these terms). In a section 

that continuously reacts with asymmetric growth characterized by kE ad kO, it can be shown that 

the position of the neutral line of the section relative to its geometric center is 

( ) ( )( ) 3/2/2 Rkkkkk OEOEO ⋅−++ . The neutral line generally shifts towards tension wood for 

angiosperms, and towards opposite wood for gymnosperms. This long-term effect tends to 

decrease the efficiency for angiosperms (because it reduces the lever arm of tension wood) and 

to increase it for gymnosperms (by increasing the lever arm of compression wood). However, 

numerical applications of a model exhaustively taking this effect into account show that the 

shift in neutral line is generally far less than 10% of the radius, and induces only minor changes 

in the form factor and the gravitropic efficiency. 

Effects of the radial variations in stiffness 

The effect of radial variations in wood stiffness is contained in the term EE /  in equation (20), 

where E  is the MOE of the outermost wood ring, and E  is the homogenized MOE of the 

whole section. This factor is 1 if the section is homogeneous, but differs in at least two common 

situations: for small stems in which the pith, which is much less stiff, has an important radial 

extension, and for trees in which there is an important radial gradient in stiffness. 

Lets us assume that the pith extends into a fraction ρp of the wood radius, that the wood stiffness 

is uniformly equal to E  and that the pith stiffness is equal to EE ppith ⋅= γ (with usually 

pγ <<1). Using the theory of composite beams, it can be shown that the homogenized flexural 

MOE is ( ) 441 ppithp EEE ρρ ⋅+−⋅= , so that the stiffness ratio factor is: 

 ( )( )411/1/ ppEE ργ −+=       (35) 

Assuming a realistic order of magnitude of γp=0.01, the correction is plotted on Figure 6. The 

effect becomes significant if the pith extends into more that 30% of the wood radius, and can 

become much more important for very young shoots or hollow stems, increasing the efficiency 

e.g. to 3-fold if the pith extends into 90% of the wood radius. 
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In larger stems, wood stiffness changes progressively with the age of the cambium because a 

basic characteristic of trees is that juvenile wood is often less stiff (Zobel and Sprague, 1998; 

Woodcock and Shier, 2002). Let us assume that there is a linear gradient in wood stiffness from 

the center to the periphery. Let rE be the ratio between the stiffness of the wood at the tree 

periphery ERE =)(  and that near the pith ErE E ⋅=)0( . It can be easily shown that the 

stiffness ratio is: 

 )41/(5/ EE rrEE +=         (36) 

This effect is plotted in Figure 7. It does not exceed a few percent for reasonable values of rE. 

 

4.3 Consequences of biomechanical traits on the long-term stability of tilted stems 
In the previous section, we showed that traits related to the cross-sectional anatomy of a stem 

can have a significant influence on the efficiency of its gravitropic process. In this section, we 

will use these traits, combined with other morphological traits, to determine a condition for the 

long-term stability of growing stems. This condition will be compared to the requirements for 

elastic stability (Greenhill, 1881; McMahon and Kronauer, 1976). 

Biomechanical traits determining the gravitropic performance 
Changes in curvature due to the weight and maturation depend in the first order on the amount 

of growth dD. In order to demonstrate how biomechanical traits combine independently of the 

growth rate, we define the gravitropic performance Pg as the ratio between the rate of correction 

dDdCmatur
Y /  and the rate of disturbance dDdCweight

Y / . The gravitropic performance indicates the 

dynamics of bending at the cross-section level: if it is >1 growth creates an upward curving 

process, if it is <1 growth creates a downward bending, and if it is =1 the stem section is at 

biomechanical equilibrium, i.e. the curvature does not change when the stem grows. At the stem 

base where an explicit expression of dDdCweight
Y /  has been developed (equation 31), Pg is 

deduced from equations (19) and (31): 

 
( ) ( )

2)1(
121

sin
11

8
1

H
D

b
nm

L
fE

gdC
dCP

H
weight
Y

matur
Y

g ⋅
+

+⋅+⋅⋅⋅⋅Δ⋅⋅=−=
φ

α   (37) 

Pg is larger if the wood produced is stiff (large E ), with large asymmetry of maturation strains 

( αΔ ), a good form factor (large f, achieved by eccentric growth and a consistent asymmetry in 

wood stiffness), and if the stem has a low load ratio (L), a low tilt angle (φ), a low center of 

mass (large m), a large tapering coefficient (n), a small ratio of relative height growth to relative 

diameter growth (bH), a large diameter (D) and a small height (H).  

With the definitions of m, n, L, D, H and bH borrowed from other authors (see section 3.3.), 

equation (37) is only suitable at the stem base. However, it is easy to adapt to any cross-section 
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by taking D, H, L and φ of a virtual truncated tree. The performance Pg(s) at any level s can 

therefore be related to the performance Pg at the stem base:  

 �
�
�

�
�
� +−�

�
�

�
�
� −⋅⋅⋅

Δ
Δ⋅⋅=

−

H

mn

gg b
H
s

H
s

sf
sfs

E
sEPsP 1/1
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3

φ
φ

α
α

 (38) 

Conditions for steady growth of tilted stems 
Let us first assume that Pg is uniformly equal to its basal value, given by equation (37). For a 

tilted stem to remain straight and tilted, it must keep Pg=1 during growth. Usually, this can be 

achieved just by adjusting the level of gravitropic reaction, i.e. the values of Δα, f and E . If the 

tilt angle φ is large, it may also be necessary to adjust morphological parameters (L, m, n, bH). 

Biomechanical parameters can exhibit adaptive or ontogenetic variations, but are contained 

within relatively narrow ranges of value linked to the developmental constraints of their species 

(Jaouen et al., 2007), so that their maximal value can be regarded as constant during growth. On 

the contrary, stem dimensions (D and H) increase dramatically during growth. Therefore, if a 

stem has to remain straight and tilted, the term D/H2 must remain constant, i.e. to satisfy an 

allometry such that H is proportional to D1/2 (bH=1/2). Moreover, if a stem obeys this allometric 

rule, one can deduce from equation (37) that the maximal angle at which it can lie sustainably 

depends on the biomechanical parameters, and is given by Pg=1:  

 
( ) ( )

2max 12
121sin

HLg
DnmfE

⋅⋅
⋅+⋅+⋅⋅Δ⋅= αφ     (39) 

If the tilt angle becomes larger than φmax because of a mechanical accident or an insufficient 

reaction, then the stem forms an unstable biomechanical configuration (Pg<1). Indeed, to induce 

an up-righting movement, the stem must produce new wood, but the weight increment 

associated with this wood would induce an additional downward bending larger than the 

attempted correction. Moreover, this downward bending would increase φ, which would further 

reduce Pg, condemning the stem to bend more and more. A stem may recover from such a 

situation by appropriate timing and location of the reaction along the stem. The performance is 

generally not uniform along the stem, so that the early up-righting of the parts with the highest 

performance may lower φ and therefore also improve Pg in other parts, allowing a global up-

righting movement even if the maximal angle has been locally overshot. Tilted stems actually 

show such complex reaction patterns (Coutand et al., 2007). Equation (38) suggests that Pg(s) is 

not necessarily uniform along the stem. If variations in Δα, f, E and φ are ignored, then a 

uniform performance is achieved if )/1/()/1( 3
H

mn bHsHs +−− − is also uniform. This is equal 

to 13)/1( −−− mnHs if  bH=0 (no height growth), and close to mnHs −− 3)/1(  if bH is large. Pg is 

uniform if the exponent (3n−m or 3n−m−1) is zero. If the exponent is <0, then Pg increases 

along the stem, so that the greatest constraint is at the stem base. Data on taper n and mass 
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distribution m of saplings from various tree species (Jaouen et al., 2007) show that 3n−m is 

close to zero (ranging between −0.14 and 0.56), so that Pg does not vary much along the stem. 

More accurate studies of observed functions Δα(s), f(s), E (s) and sinφ(s) would be necessary to 

precisely understand the relationship between the variations in Pg along the stem and the 

kinematics of the up-righting movement (Coutand et al., 2007). Nevertheless, the low value of 

3n−m shows that in the first order, equation (39) and the allometric relation H~D1/2 are 

necessary conditions to maintain the stem straight and tilted in the long term. 

Biomechanical constraints related to elastic and gravitropic stability 
Greenhill (1881) showed that to keep a constant safety factor against the risk of elastic buckling, 

the allometric growth of a vertical stem should be such that H~D2/3. The relationship between 

critical buckling height Hcrit, stem basal diameter and biomechanical parameters (adapted from 

Jaouen et al., 2007) is: 

  ( ) ( ) 3/2

3/122

64
2412 D

Lg
nmcnEH crit ⋅��

�

�
��
�

�
⋅⋅

+−⋅⋅+⋅=      (40) 

where c is a function of n and m (see Jaouen et al., 2007). The critical buckling height computed 

from measured biomechanical parameters (Jaouen et al., 2007) is plotted on Figure 8 as a 

function of stem basal diameter, and compared to the relation deduced from equation (39), for 

various tilt angles φ. 

The results show that maximal stem height may be constrained either by its gravitropic 

performance or by its elastic stability, depending on its diameter and tilt angle. A stem growing 

at a given angle is limited by elastic stability until a certain diameter, after which gravitropism 

becomes more limiting. The two constraints theoretically represent mutually exclusive 

situations: elastic buckling is defined only for a vertical stem, whereas gravitropic control is 

relevant only for a tilted stem. A real stem is never perfectly vertical, so that bending 

movements always occur and some gravitropic control is needed. If the stem is close enough to 

vertical (φ is small so that Pg is large), this control can be easily achieved and only elastic 

stability limits stem allometry. For a larger tilt angle however, the requirements for gravitropic 

control quickly become more constraining than elastic stability.  

The extent to which allometric growth is limited by either of these biomechanical constraints 

strongly depends on the value of the biomechanical parameters. For example a mean stem 

(Figure 8-a) of 20 cm is limited by gravitropism if its angle exceeds 15°, and its maximal height 

is 30 m. For one particular species (Figure 8-b), a stem of the same diameter would be limited 

by gravitropism at an angle of 10°, with a maximal height of 20 m. This shows that 

biomechanical parameters determine constraints on dimensions and orientation. 
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4.4 Conclusions 
We have developed an analytical model of the stem curvature variations due to long-term 

biomechanical actions during growth. The model uses a differential formulation of the beam 

theory, adapted to growing structures, to calculate the bending moments and curvatures induced 

by the increase in tree weight (due to growth) and the asymmetric maturation stress (usually 

associated with reaction wood formation). From general equations, explicit formulas for further 

ecological or ecophysiological studies are proposed that assume realistic simplifications but take 

into consideration anisotropic radial growth (pith eccentricity) and gradients of wood stiffness 

within the cross-section. By applying the model to previously published data we have checked 

that gravitational and maturation curvatures are of the same order of magnitude in the real word. 

We found that the gravitational disturbance is indeed a long-term constraint that must be 

corrected by the gravitropic reaction to ensure steady growth. The model allows the role played 

by the different components (size described by diameter and height, allometric relations 

between mass, height and diameter, wood quality and variations within the cross-section) to be 

studied. The maturation strain asymmetry is clearly the main motor of the reaction, so that the 

strong assumptions of simple models used in previous studies (Fournier et al., 1994a; Coutand 

et al., 2007) are justified a posteriori. However, other aspects of growth asymmetry (in ring 

thickness and wood stiffness), contribute significantly to improve the curving process. These 

interactions are more significant in angiosperms than in conifers, mainly because of the lower 

stiffness of the compression wood. Thus, a definition of gravitropic performance Pg has been 

proposed as the ratio of maturation to gravitational curvatures. The larger this indicator, the 

more effectively can the tree control its angle. Pg is given explicitly as a function of stem 

morphological parameters and wood biomechanical parameters. At the critical steady limit 

Pg=1, the tree maintains its angle when it grows. This limit Pg=1 can be associated with a 

critical lean, expressing the angle above which a stem of given dimensions can no longer remain 

stable or move closer to vertical, i.e. the limit below which the stem can sustainably control its 

posture (Moulia et al., 2006). By examining the effects of size on this limit, an allometric 

relation between height and diameter has been proposed, which ensures that at each stage of 

height growth, diameter growth will be able to maintain the stem below the critical lean. 

Comparisons between this long-term stability allometry (H~D1/2) and the elastic stability 

(H~D2/3) show that the requirements for gravitropic control can be more constraining than 

elastic stability for tilted trunks or branches. This theoretical work gives new insights into the 

functional significance of tree design and wood quality, adding new concepts and operational 

analytical formulas to the biomechanical ecological toolbox, which up to now has been focused 

on safety against buckling, wind throw or wind break. In reality, tree stems are never perfectly 

vertical, and this situation is biomechanically unstable the effect of additional weight must be 

corrected. Thus the maximum size at which the stem can sustain this tilted situation depends on 
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the gravitropic performance. We believe that this constraint may be of major biological 

significance: it limits the ability of stems to move away from verticality, even when lean is a 

great advantage for maximizing light capture, as is the case for branches, and also for main 

stems in response to competition with neighbors or heterogeneity of the environment, for 

instance on slopes (Ishii and Higashi, 1997) or forest edges. 
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Appendix: Alternative model at the section’s level 
The model presented at the section level assumed a continuous sinusoidal variation in the wood 

properties around the circumference. This model fits more or less empirical observations, but in 

many cases, the transition between reaction wood and normal wood is rather sharp, so that a 

discontinuous distribution of wood properties may be more adequate. We developed an 

alternative formulation that takes into account the effect of within-ring reaction wood 

distribution. Let us assume that the ring is made of two materials: one located on the upper side 

of the stem (left side of the section), with an angular extension β, and the other on the lower side 

of the stem (right side of the section) extending at 2π−β (Figure 9). The properties are assumed 

to be homogeneous in each sector and equal to απ, Eπ on the upper side, and α0, E0 on the lower 

side. 

The bending moment due to the maturation of a new ring is deduced from equation (7): 
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The change in curvature due to the maturation of the new ring can be put in the same form as 

equation (19), with a different value of the form factor: 
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If the reaction wood extends across half of the circumference (β=π), f reduces to: 
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Definition and units of symbols (in order of occurrence) 

 

TTT ZYX ,,  Global reference system associated with the tree [m] 

SO   Center of the cross-section 

SSS ZYX ,,  Local reference system associated with the section [m] 

SS θφ ,   Lean and azimuth angle of the normal to the section [rad] 

SG   Center of mass of the part of the tree distal to the section 

SW   Weight of the part of the tree distal to the section [N] 

YXZ BBN ,,  Loads: normal force parallel to ZS and bending moment around XS and YS 

YXZ CC ,,ε   Deformations: strain at the center, and changes in curvature around XS and YS  

σ   Stress [N.m-2] 

ε   Strain 

α   Induced maturation strain 

A   Cross-section area [m2] 

D   Cross-section diameter [m] 

ijK   Structural stiffness terms of the cross-section �� ⋅⋅⋅⋅=
S

ji
ij dydxyxEyxK ),(  

I   Moment of inertia of the cross-section [m4] 

E   Homogenized modulus of elasticity of the section [N.m-2] 

θ   Circumferential position in the section [rad] 

)(θα   Maturation strain in the new ring at circumferential position θ 

α   Mean maturation strain in the new ring ( ) 2/)()0( πααα +=  

αΔ   Contrast of maturation strain in the new ring )()0( πααα −=Δ  

)(θE   Modulus of elasticity in the new ring at circumferential position θ  

E   Mean modulus of elasticity in the new ring ( ) 2/)()0( πEEE +=  

EΔ   Difference in modulus of elasticity in the new ring )()0( πEEE −=Δ  

Ek   Relative asymmetry of modulus of elasticity )2/( EEkE Δ=  

Ok   Parameter of eccentricity kO=dXO/dR 

re   Efficiency of the gravitropic mechanism 
E
Efer ⋅⋅Δ= α  

f    Form factor related to the distribution of material properties within the section 

β   Parameter defining the tangential extension of reaction wood  [rad] 
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pρ    Ratio of pith radius to wood radius in the section 

pithE   Modulus of elasticity of the pith [N.m-2] 

pγ   Ratio between the moduli of elasticity of the pith and wood 

Er    Ratio between the stiffness of the wood at the tree periphery and near the pith 

Gh   Distance between the center of the section and the distal center of mass [m] 

Gφ   Lean angle of the distal center of mass relative to the section [rad] 

OGx   Projected horizontal distance between the section and the distal center of mass 

0D   Diameter at the stem base [m] 

H   Total length of the stem [m] 

φ    Lean angle of the stem [rad] 

totM    Total mass of the tree [kg] 

)(sD    Stem diameter at a distance s from the base [m] 

)(sM >   Mass of the tree located above a distance s from the stem base [kg] 

n    Exponent defining the tapering of the stem 

m   Exponent defining the distribution of mass along the stem 

V   Stem volume [m3] 

L   Load factor of the stem VML tot /=  [kg.m-3] 

g   Acceleration of gravity g=9.8 m.s-2. 

Hb   Ratio of relative height growth to relative diameter growth 
0/

/
DdD
HdHbH =  

gP   Gravitropic performance 
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Tables and figure’s legends 
 
Figure 1. Schematic representation of a tree submitted to its own weight, and the resulting loads at the 

level of a given cross-section S. OS is the section’s center, 
SW
�

 is the weight of the distal part (i.e. the part 

of the tree located above the section), GS is the location of the center of mass of the distal part. The local 

axes (XS,YS,ZS) of the section are obtained from the global axes (XT,YT,ZT) by a rotation of θS around Z 

followed by a rotation φS around Y. At the level of the section, loads result in a normal force NZ, and 

bending moments BX and BY (all positive in the figure). 

 
Figure 2. Reference model for a heterogeneous eccentric section of diameter D submitted to a diameter 

increment dD. The stem is assumed to be leaning in the positive XS direction, so that the reaction is 

expected to generate a negative change in bending moment dBY<0, generating a change in curvature 

dCY<0 (i.e. up-righting movement). Variations in greyness indicate heterogeneity of the material 

properties within the new growth ring (see text). 

 

Figure 3. Schematic representation of the effect of self weight in a tree with bilateral symmetry. OS is the 

center of a given cross-section, SW
�

 is the weight of the distal part, GS is the location of the center of mass 

of the distal part, defined by its tilt angle φG and its distance hG with respect to OS. The projected distance 

between the section and the center of mass is xG. 

 

Figure 4. Relation between the total bending moment due to self weight (BY) and the diameter of trees 

(D) at breast height. The line is a regression by a power function: BY = 2.76*106*D4.96 (R²=0.73). 

 
Figure 5. Values of the form factor f for angiosperm and gymnosperm trees obtained from eq. (21) using 

data from Table 2. The maturation strain parameters α  and Δα are set at the mean values and different 

levels of the eccentricity parameter kO and the stiffness asymmetry parameter kE are compared (white 

bars: kE=0, grey bars: kE=mean value, black bars: kE=maximal value).  

Figure 6. Effect of the pith size on the stiffness ratio ( EE / ) influencing the gravitropic efficiency. 

Parameter ρp is the ratio between the radius of the pith and that of the wood. 

 
Figure 7. Effect of a radial gradient in wood stiffness on the stiffness ratio ( EE / ) influencing the 

gravitropic efficiency. Parameter rE is the ratio between wood stiffness near the periphery and near the 

core. 

Figure 8. Relation between maximal basal diameter and maximal height, for a vertical stem submitted to 

the risk of elastic buckling (thick red line), and for growing stems leaning at various angles. Data are 

based on mean gravitropic parameters from Table 2 (Δα=0.17%, f=1.54) and mechanical and 

morphological parameters measured in 150 saplings belonging to 15 tropical angiosperm tree species 

(Jaouen et al., 2007). (a) Using overall mean parameters: E=1.23*1010 N.m-2, m=1.62, n=0.66, c=4.72, 
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L=1340 kg.m-3. (b) Mean stem of a severely constrained species (Sextonia rubra): E=8.50*109 N.m-2, 

m=0.63, n=0.3, c=2.61, L=1438 kg.m-3. 

 

Figure 9. Alternative model of a heterogeneous eccentric section of diameter D submitted to a diameter 

increment dD. The stem is assumed to lean in the positive XS direction, so that the reaction is expected to 

generate a negative change in bending moment dBY<0, generating a change in curvature dCY<0 (i.e. up-

righting movement). The new growth ring is assumed to be made of two distinct materials, extending at 

an angle β (on the left side) and 2π−β (on the right side). 

 
Table 1. Main data used for computing the rate of disturbance and correction of poplar trees at breast 

height: trunk diameter (D), lean (φS), crown eccentricity (xC = horizontal distance between the tree and the 

center of the crown), total mass above breast height (Mtot) and resulting bending moment ( weight
YB ), mean 

modulus of elasticity in the new ring ( E ), asymmetry of maturation strains (Δα), and computed rates of 

gravitational disturbance ( dDdCweight
Y / ) and gravitropic correction ( dDdCmatur

Y / ). 

 
Table 2. Mean and maximal values of parameters influencing the gravitropic efficiency (from Alméras et 

al., 2005): mean maturation strain (α ), maturation strain asymmetry ( αΔ ), growth eccentricity (kO) and 

asymmetry of the modulus of elasticity (kE). 
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Table 1. 
 
Tree 

n° 

D 

(m) 

φS 

(°) 

xC 

(m) 

Mtot 

(kg) 

weight
YB

(N.m) 

E  

(MPa)

Δα dDdCweight
Y /

(m-2) 

dDdCmatur
Y /

(m-2) 
1 0.26 4.6 1.32 558 3470 8125 841 0.036 -0.052 

2 0.23 0.6 0.37 428 651 6345 609 0.046 -0.046 

3 0.22 4.0 0.91 348 1273 5895 417 0.050 -0.036 

4 0.24 2.0 0.16 467 300 7470 918 0.039 -0.064 

5 0.26 0.9 0.19 552 434 7720 861 0.038 -0.051 

6 0.22 2.3 0.40 336 496 7560 1022 0.039 -0.083 

7 0.23 2.9 0.70 361 1002 7360 156 0.040 -0.012 

8 0.27 3.7 0.18 693 604 7580 515 0.039 -0.029 

9 0.26 1.7 0.31 622 951 8715 410 0.034 -0.024 
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Table 2. 
 

 α (%) αΔ (%) kO kE 

Mean -0.14 0.17 -0.23 -0.09 Angiosperms 

Max -0.18 0.28 -0.45 -0.25 

Mean 0.05 0.15 0.31 -0.18 Gymnosperms 

Max 0.07 0.20 0.44 -0.26 
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