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Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells.

They were found to regulate viscoelastic properties and motility of cancer cells. Due to

unique biochemical properties of keratin polymers, the knowledge of the mechanisms

controlling keratin network formation is incomplete. A combination of deterministic

and stochastic modeling techniques can be a valuable source of information since

they can describe known mechanisms of network evolution while reflecting the un-

certainty with respect to a variety of molecular events. We applied the concept of
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Simulating the formation of keratin filament networks by a PDMP

piecewise-deterministic Markov processes to the modeling of keratin network forma-

tion in high spatiotemporal resolution. The deterministic component describes the

diffusion-driven evolution of a pool of soluble keratin filament precursors fueling vari-

ous network formation processes. Instants of network formation events are determined

by a stochastic point process on the time axis. A probability distribution controlled

by model parameters exercises control over the frequency of different mechanisms of

network formation to be triggered. Locations of the network formation events are as-

signed dependent on the spatial distribution of the soluble pool of filament precursors.

Based on this modeling approach, simulation studies revealed that the architecture

of keratin networks mostly depends on the balance between filament elongation and

branching processes. The spatial distribution of network mesh size, which strongly

influences the mechanical characteristics of filament networks, mostly depends on lat-

eral annealing processes. This mechanism which is a specific feature of intermediate

filament networks appears to be a major and fast regulator of cell mechanics.

Keywords: Cytoskeleton, Intermediate Filaments, Network Architecture, Network

Formation, Piecewise-deterministic Markov Process

1 Introduction

The filament scaffold of the cytoskeleton determines the shape and biophysical properties of eu-

karyotic cells and, therefore, participates in the regulation of pivotal biological functions such as

cell migration (Ballestrem et al., 2000). It consists of three biopolymer systems (actin filaments,

microtubules, intermediate filaments - IF). Each filament system is characterized by specific bio-

chemical and biophysical features (Wagner et al., 2007) which in combination with the architecture

of the network determine the mechanical properties of the particular filament system (Heussinger

and Frey, 2007). Although some steps of the assembly process for individual IF are now under-

stood (Herrmann et al., 2007), the mechanisms governing the formation of networks still remain

to be investigated (Oshima, 2007). IF assembly does not depend on ATP or GTP but is mo-
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Simulating the formation of keratin filament networks by a PDMP

dulated by posttranslational modifications of IF proteins, i.e. phosphorylation or glycosylation,

which influence the solubility of IF oligomers (Coulombe and Omary, 2002). IF are non-polarized

polymers and the addition of subunits and even filaments can occur at various locations along a

preformed filament (Herrmann and Aebi, 2000; Windoffer et al. 2004). This extends the set of

possibilities for IF network formation and remodeling in comparison to actin filaments and micro-

tubules. In contrast to the other filament systems, there are only very few IF binding proteins

known to regulate the network architecture. Models simulating actin filament or microtubular

network formation are based on anisotropic growth patterns due to the polarity of these polymers.

Thus, these models are not ideal to study the structural dynamics of IF networks.

IF monomers represent a heterogenous group of proteins with a tissue specific expression (Herr-

mann et al., 2007). Keratins are the IF proteins expressed in epithelial cells. Keratin filament

networks were shown to be important for cellular mechanics (Coulombe and Wong, 2004; Magin

et al., 2007). Their global architecture is regulated by phosphorylation and defines the viscoelas-

tic properties of carcinoma cells at large deformations, thereby overriding the impact of the actin

network (Beil et al., 2003). A model-based analysis revealed distinct changes of keratin network

architecture in response to a modulation of keratin solubility by kinases in carcinoma cells (Beil

et al., 2005 and 2006). Due to the non-linear relationship between the mesh size of polymer net-

works and the elastic shear modulus (Morse, 1998), even small alterations of cytoskeletal network

architecture can significantly change the elasticity of the network and, hence, the mechanical char-

acteristics of cellular compartments (Fleischer et al., 2007). Thus, the analysis of the regulation

of keratin network architecture is essential for an understanding of cell mechanics which eventually

might help to interfere with cancer cell migration. However, the currently available information on

intracellular keratin networks is insufficient to understand the spatiotemporal regulation of their

architecture. Although mathematical models simulating intracellular processes must frequently

apply hypothetical conditions or deal with uncertainties, they can nevertheless provide important

insights (Mogilner et al., 2006). A previous model of IF network synthesis focused on the intracel-

lular distribution of filaments as modulated by external forces and did not regard particular spatial

interactions between filaments, e.g. branching (Portet et al. 2003). Thus, we developed a new

model which combines deterministic elements with stochastic processes to model distinct network

formation events.

The basic subunit of keratin filaments is a heterodimer of a type I and type II keratin (Moll et
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Simulating the formation of keratin filament networks by a PDMP

al., 2008). Filaments are synthesized through formation of tetra- and larger oligomers which are

still soluble and are, thus, subject to diffusion. These oligomers are eventually assembled into

unit-length filaments which are the building blocks of longer filaments and networks (Kirmse et

al., 2007). Thus, the build-up of keratin networks can be regarded at different scales as it is the

case for many cellular processes (Mogilner et al., 2006). Our model is focussed on the level of

structurally interacting filaments which is relevant for cell mechanics (Heussinger and Frey, 2007)

and can be monitored by electron microscopy (Beil et al., 2005). At this level, however, the num-

ber of observable events is by at least a magnitude smaller than that at the level of biochemical

events during oligomer synthesis and distribution. These events cannot be modeled as a bulk re-

action within the limited space of cells. Thus, our approach models network growth as a sequence

of discrete points in time, when macromolecular building blocks from a pool of soluble keratin

oligomers are added to the network. These times are determined by a (continuous time) stochastic

point process, whose inter-occurrence times are chosen as for the stochastic simulation algorithm

for chemical reaction systems, which has been introduced by Gillespie (Gillespie 1977). At the

times of network growth certain network formation events, whose exact molecular mechanisms

and, hence, regulation are still unknown (Oshima 2007), are triggered according to a probability

distribution which is controlled by model parameters. A variation of these parameters allows for

studying the effect of particular network formation mechanisms on structural properties of the

network. In addition, our model has to monitor the system at the scale of precursor molecules,

i.e. diffusion of soluble oligomers, which can either be described as a set of random walks of

individual molecules or as a bulk process by a partial differential equation (PDE). In this study,

we assume that the number of soluble keratin subunits is always large enough to be modeled by

a deterministic approach. By using this approach a wide range of subunit concentrations can be

investigated through simulations. The spatial distribution of soluble oligomers as governed by dif-

fusion eventually determines the specific locations of network formation events, thus, functionally

interconnecting the two scales of the model.

The specific approach to combine two scale-dependent methods linking temporal dynamics with

a spatial component for simulating keratin network formation appoints this model to the class of

piecewise-deterministic Markov processes (PDMP - Davis, 1984).

This paper will first present the modeling concept followed by the description of the implemented

algorithms for network simulations and analysis. These simulations were performed to investigate
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Simulating the formation of keratin filament networks by a PDMP

the impact of specific structure-defining events on network architecture, notably on the formation

and distribution of meshes and connectivity, and to analyze the interplay between these events

and diffusion. The results will show that the system is reaction-limited. Branching is found to

be pivotal for modulating the mesh size and thereby the elasticity of keratin networks (Morse,

1998) and for generating structural inhomogeneities within networks, i.e. microgel patterns. This

latter process was recently observed in carcinoma cells (Beil et al., 2005) and might be responsi-

ble for fine-tuning the mechanical properties of subcellular compartments as required during cell

migration through a physically inhomogeneous environment.

2 Model

A detailed analysis of network architecture requires high spatial resolution of the simulation results.

Thus, the model has been designed for small observation windows. In our previous studies, we

investigated two-dimensional electron microscopy images of keratin networks taken from periph-

eral cytoplasmatic compartments (Beil et al., 2005 and 2006) which is pivotal for keratin network

dynamics (Windoffer et al., 2004). These compartments are very thin and contain mostly a single

layer of keratin filaments. Thus, network formation in this study is simulated on a planar square

observation window W = [0, l]2 ⊂ IR2 for some l > 0. To avoid any bias caused by specific con-

figurations of preexisting filament systems, our model is designed to study the de novo formation

of a keratin network within this observation window. The initial concentration of soluble oligomers

was estimated from the total length of the filament system observed in electron microscopy images

of carcinoma cells (Beil et al., 2005 and 2006).

The model is based on a Markovian sequence of random network formation times, which are

determined as by the Gillespie algorithm. Whereas, the classical Gillespie algorithm assumes a

spatially homogeneous reaction system, the model in this study focusses on the spatial distribution

of events, since it is crucial for network morphology. Therefore, the model complements the global

reaction kinetics given by the Gillespie algorithm by a mechanism controlling the spatial distri-

bution of locations for network growth. Since network formation is fueled by the pool of soluble

filament precursors, locations for filament assembly are picked based on the spatial distribution

of soluble precursors. The latter is modeled as a concentration field, which, in order to determine

growth locations, is interpreted as a probability field. Apart from local consumption due to fila-
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Simulating the formation of keratin filament networks by a PDMP

ment assembly, the distribution of soluble precursor molecules is governed by a diffusion process

proceeding between network formation events and described by a deterministic partial differential

equation (PDE).

2.1 Soluble and filamentous keratin pool

Assembly of IF proceeds from a pool of soluble keratin tetramers. Since IF are highly insoluble

in physiological buffers (Kirmse et al., 2007) we assume that no disassembly occurs. Filaments

are the result of a longitudinal annealing process involving a variety of oligomeric subunits, which

are formed through various stages of lateral annealing. Phosphorylation of monomers is a crucial

mechanism regulating the transfer of keratin oligomers between the soluble and the filamentous

pool. Whereas in a dephosphorylated state, keratins tend to assemble to filamentous structures

(Strnad et al., 2002), phosphorylation induces dissolution of keratin filaments (Strnad et al.,

2002; Omary et al., 2006). In the dephosophorylated configuration, keratin dimers exhibit a

strong tendency to form tetramers of ∼ 45nm length (Geisler et al., 1998). During filament

assembly, lateral aggregation of eight tetramers results in a filament subunit referred to as a unit-

length filament (ULF) which has a length of about 60nm (Herrmann et al., 1999). However, it is

not yet fully understood which of the various oligomeric subunits contribute most substantially to

the annealing process of filament formation in vivo (Herrmann et al., 2002; Herrmann and Aebi,

2004). We assume that the transition from the soluble pool to the filamentous compartment is

initiated by dephosphorylation events starting with a pool of fully solubilized keratin oligomers.

The resulting keratin filaments are represented by a track of connected line segments. Since each

of the line segments models a filament building block consisting of 8 tetramers, the segment

length is chosen as 45nm. This length is approximately gained when a 60nm long ULF is added

to a filament end, taking into account that longitudinal annealing involves an overlap of the

ULFs participating. The intracellular distribution of soluble keratins is assumed to be governed

by diffusion (Portet et al., 2003). The soluble pool is regarded as a concentration field on the

observation window W . Keratin molecules transfer from the soluble into the filamentous pool

during the course of network formation. Besides soluble pool consumption by network growth, the

model assumes time evolution of the soluble pool to be controlled by a diffusion process, which
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Simulating the formation of keratin filament networks by a PDMP

is described by the following partial differential equation (PDE):

∂

∂t
C(t, x) = D

(
∂2

∂x2
1

C(t, x) +
∂2

∂x2
2

C(t, x)

)
,

where C(t, x) denotes the soluble pool concentration at time t > 0 and at the location x =

(x1, x2) in the interior int W of the observation window; the diffusion constant D > 0 determines

the velocity of the diffusion process. Keratin molecules may leave as well as enter the observation

window. Assuming a homogeneous soluble keratin concentration outside the observation window,

this is reflected by imposing periodic boundary conditions for the diffusion PDE. These bound-

ary conditions force keratin molecules which are leaving the observation window at a particular

boundary location to reenter on the opposite side. Mathematically, by imposing periodic boundary

conditions the solutions of the above PDE are required to satisfy

C(t, (r, 0)) = C(t, (r, l)) and C(t, (0, s)) = C(t, (l, s)) for all r, s ∈ [0, l].

It can be shown that the above PDE with periodic boundary conditions has a unique solution

for all of the bounded initial conditions C(0, x) = f(x), x ∈ int W , arising in the context of

our model. Moreover, the solution of the initial value problem is mass-preserving, i.e., the total

amount of soluble keratin remains constant in time. Numerical solutions may be obtained by

means of standard techniques such as finite difference schemes.

The initial state of the soluble pool is modeled as a constant tetramer concentration field on the

observation window W . The total amount of soluble keratin at t = 0 is given by
∫
W

C(0, x)dx =

cl2.

For the configuration of the soluble and the filamentous pool at time t ≥ 0 we introduce the

notations X
(1)
t and X

(2)
t , respectively. These random variables specify the state Xt = (X

(1)
t ,X

(2)
t )

of the model at time t ≥ 0.
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Simulating the formation of keratin filament networks by a PDMP

2.2 Process of network formation

2.2.1 Mechanisms of network formation

A first mechanism of network formation is filament nucleation, meaning the aggregation and

annealing of small granule-like keratin particles, followed by an elongation process forming a new

filament (Fig. 1A). Windoffer et al. (2004) report the observation of nucleation phenomena by

means of fluorescence microscopy.

In our model, we assume the elongation of keratin filaments to be caused by longitudinal annealing

of filament building blocks at the filament ends (Fig. 1B). Filament elongation has been studied

in vitro by Herrmann and Aebi (2000) and Kirmse et al. (2007).

For the formation of the inter-filament connections, i.e. the nodes of the network, the model

allows for simulating different mechanisms. Firstly, we consider the possibility of lateral annealing

of soluble keratin along the existing filaments. Thus, it is assumed that network building blocks

such as keratin tetramers are able to attach laterally along filamentous structures, thereby initiating

a new network branch at the lateral annealing site (Fig. 1C). The corresponding vertex in the

network graph is of degree 3, which means that three network segments emerge from this node,

thus forming a Y-junction.

A second mechanism generating Y-junctions in the network is end-on integration of filament tips

into the network, also referred to as merging (Fig. 1D). Merging has been observed in vivo by

Windoffer et al. (2004). In electron microscopy images of keratin networks a certain fraction of

the inter-filament connections are of degree 4. Therefore, once the growth trajectories of two

filaments intersect, our model decides with a fixed merging probability q whether merging occurs

and a node of degree 3 is formed or a node of degree 4 is generated. In the sequel the latter

event will be referred to as crossing (Fig. 1E). The parameter q was chosen in a way that the

relative frequencies of vertex degrees in the final network graphs were close to the values from our

experimental data (Beil et al., 2005 and 2006).

2.2.2 Time evolution of the network formation process

The approach chosen to model the time evolution of the network is adapted to the high spatial

resolution of the simulations. At high resolution, filament building blocks such as keratin tetramers
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Simulating the formation of keratin filament networks by a PDMP

and ULFs are rather large elongated objects. Network formation occurs whenever those elongated

building blocks attach to the filament network. Times of network formation are described as

a stochastic point process {τk, k = 1, 2, . . .} on the positive real line. The random variables

τk describe random times of network formation events, i.e., at these points in time filament

building blocks transfer from the soluble pool into the filamentous pool by annealing. Keratin

annealing is represented by the instantaneous addition of a new line segment to the segment

system characterizing the network at the corresponding network formation time. Simultaneously,

the soluble pool concentration is locally reduced by the amount consumed by network growth.

Apart from these instantaneous local reductions of the soluble pool, the concentration fields of

soluble keratin are regarded as permanently subjected to diffusion. Technically speaking, during

the time intervals (τk−1, τk), k = 1, 2, . . ., defining τ0 = 0, the diffusion PDE is applied to the

initial concentration field X
(1)
τk−1 . For k ≥ 2, the latter describes the soluble pool distribution

right after the last network formation event, i.e., soluble pool consumption has already been

incorporated. For k ≥ 1, the distribution of the k-th network formation time τk is determined

by the distribution of the inter-occurrence times τ1 − τ0, . . . , τk − τk−1. For the random variable

τk− τk−1 we assume a conditionally exponential distribution, given the state of the concentration

field at time τk−1 is X
(1)
τk−1 = C, i.e.,

IP(τk − τk−1 ≤ t | X(1)
τk−1

= C) = 1− exp(−tλ(C)) for all t > 0.

This definition follows both, the Gillespie algorithm and the definition of a PDMP. By the prop-

erties of the exponential distribution, the state-dependent parameter λ(C) > 0 describes the

momentarily expected number of network formation events per unit time, given that the soluble

pool is in state C = {C(x), x ∈ W} (note that in contrast to C(t, x) we only consider a par-

ticular spatial concentration field without time evolution). Since network formation is dominated

by the elongation of a relatively small number of filament ends within the soluble keratin pool,

we assume the reaction kinetics to be close to first order. Taking into account that 8 keratin

tetramers are consumed for the formation of a single new filament segment, the following choice

of λ(C) ensures that the reaction follows a first order kinetics (Gillespie, 1977 and 1992):

λ(C) =
k

8
C,
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Simulating the formation of keratin filament networks by a PDMP

where the reaction constant k governs the velocity of the reaction and C =
∫
W

C(x)dx denotes

the total amount of keratin in the concentration field C.

2.2.3 Choice of the mechanism for network formation

At any time τk of network formation, which has been determined by the stochastic point process

{τk} introduced in Sec. 2.2.2, the mechanism of network formation needs to be specified. This

is done in a two-step procedure that is illustrated in Fig. 2, part 1. First of all, based on certain

conditional probabilities it is decided whether a new filament is initiated (event A1) or an existing

one elongates (event A2). This step of the random decision process will be referred to as choice

of the basic network growth type. Given that immediately before the event the soluble pool

concentration field is C and the set of filament ends of the current network configuration ξ

possibly elongating is s(ξ), the following conditional probabilities are assigned to A1 and A2:

IP(A1 | Xτk− = (C, ξ)) =
M1C

M1C + |s(ξ)|
,

IP(A2 | Xτk− = (C, ξ)) =
|s(ξ)|

M1C + |s(ξ)|
,

where |s(ξ)| denotes the finite number of elements in s(ξ). Note that by the notation τk− we

refer to left limits of the state at the time τk . The constant M1 > 0 is a model parameter

controlling the likelihood of those network formation events that are initiations of new filaments.

By the above definition, the conditional probability of A2, i.e., of a network formation event being

filament elongation, is modeled to be increasing in the number |s(ξ)| of filament ends possibly

attracting filament building blocks for longitudinal annealing. Filament initiation (event A1) in-

cludes nucleation as well as lateral annealing. Observations by Windoffer et al. (2004) suggest

that the initiation of new filaments is preceded by the formation of small keratin clusters. There-

fore, this event is assumed to require high levels of soluble keratin concentration. Consequently,

the probability of A1 is modeled to be decreasing with reduction of the amount C of soluble pool.

In case the above random experiment has classified the basic growth type as filament initiation, a

second random experiment determines whether nucleation (event B1) or lateral annealing (event

B2) occurs. Lateral annealing is more likely to occur the more potential annealing sites are availa-

ble. Therefore, the probability of lateral annealing is modeled to be increasing in the total length
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Simulating the formation of keratin filament networks by a PDMP

of the filament network. This is reflected by the following definition of the conditional probabili-

ties, given the length |ξ| of the network ξ immediately before the network formation time τk,

IP(B1 | A1,Xτk− = (C, ξ)) =
1

1 + M2|ξ|
,

IP(B2 | A1,Xτk− = (C, ξ)) =
M2|ξ|

1 + M2|ξ|
,

where the constant M2 ≥ 0 is a model parameter. Note that by means of the model parameters

M1 and M2 the frequency of the single network formation mechanisms to occur can be controlled.

In particular, it is possible to simulate scenarios without any lateral annealing by setting M2 = 0.

2.2.4 Choice of the location for network formation

Once the mechanism of network formation has been determined, a location for keratin annealing,

i.e. network building, needs to be specified (Fig. 2, part 2.). This is done according to a probability

distribution of locations, which is based on the momentary distribution of soluble pool in the

observation window. For this purpose, spatial probability fields are constructed such that potential

network formation locations which are equipped with high local soluble pool concentrations are

preferred sites of keratin annealing in comparison to those whose local concentrations are rather

low. In the following let b(z, ρ) denote the circle with radius ρ centered at z. In case of an

elongation (event A2), and given the state of the system is (C, ξ), a filament end z ∈ s(ξ) is

picked from the set s(ξ) of all filament ends according to the following conditional probability:

IP(z | A2,Xτk− = (C, ξ)) =

∫
b(z,ρ) C(x)dx∑

y∈s(ξ)

∫
b(y,ρ) C(x)dx

.

In case of a nucleation (event B1), the random location z ∈ W is modeled to be distributed

according to the conditional density

f(z | B1,Xτk− = (C, ξ)) =

∫
b(z,ρ) C(x)dx∫

W

∫
b(y,ρ) C(x)dxdy

.

The set of potential locations for lateral annealing (event B2) is the filament network ξ at the

given network formation time. Thus, for determining a random site z ∈ ξ for network formation
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given B2, we introduce the following conditional density concentrated on the segment system ξ

representing the network:

f(z | B2,Xτk− = (C, ξ)) =

∫
b(z,ρ) C(x)dx∫

ξ

∫
b(y,ρ) C(x)dxdy

.

The parameter ρ defines the circular zone influencing the local probability of keratin annealing.

Note that, following our periodic boundary approach, subsets of the circles b(y, ρ) protruding the

observation window are understood to be shifted to the opposite side of the window.

2.2.5 Filament growth and soluble pool consumption

Network growth is modeled as the instantaneous addition of small line segments to the existing

network at the network formation times.

A quantitative investigation of keratin network morphology has been performed in electron mi-

croscopy images from the cortex of human cancer cells. The filaments in these compartments

exhibited almost straight shapes (Beil et al., 2005). Bearing in mind the small persistence length

of intermediate filaments, filament growth processes cannot be expected to directly account for

this absence of curvature. However, to relate simulation results to real image data, we assumed

straight filament elongation for our simulations, i.e., whenever a filament elongates there is no

orientational deviation between the new line segment and the filament end it is appended to.

Since electron microscopy data do not suggest the existence of preferred filament directions in

keratin networks (Beil et al., 2005), the orientation of new line segments resulting from lateral

annealing and nucleation is picked randomly according to the uniform distribution on [0, 2π).

Corresponding to the periodic boundary conditions imposed on the soluble pool diffusion, for

each filament leaving the observation window a new one is generated at the opposite side of the

observation window. Orientations of the newly initiated filaments are assigned randomly. This

boundary behavior of the filaments reflects the interaction of the observed part of the network

with a homogenous environment.

End-on integration of a filament into the network (Fig. 1D) is modeled to occur with probability

q, whenever the new segment intersects parts of the already existing network.

We will now specify the consumption of soluble keratin pool resulting from keratin annealing. Be-

fore soluble pool is consumed, a new line segment �τk
has been determined as described above. In
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Simulating the formation of keratin filament networks by a PDMP

the following, the dilation �τk
⊕ b(o, r) of �τk

denotes all points in the observation window whose

distance to �τk
is no more than r. Parts of the segment dilations protruding the observation

window are shifted to the opposite side.

Given that C is the concentration field at a network reorganization time τk−, there is a well

defined dilation �τk
⊕ b(0, r) of the new line segment �τk

containing exactly the 8 tetramers that

are assumed to form the new filament part. Technically speaking, given C there is a dilation

radius r > 0 satisfying ∫
�τ

k
⊕b(0,r)

C(x)dx = 8,

provided that C ≥ 8. Note however, that in our simulations the pathological case C < 8, i.e.,

of concentration fields not containing enough tetramers to find these dilation radii, does not

occur and was therefore neglected. We define the concentration field immediately after network

formation by

X(1)
τk

(x) =

⎧⎪⎨
⎪⎩

0 if x ∈ �τk
⊕ b(0, r),

X
(1)
τk−

(x) else.

Note that this concentration field serves as the initial condition for soluble pool diffusion after

time τk.

Since protein synthesis is neglected, and phosphorylation events are not modeled, network forma-

tion is considered to be complete when the soluble pool concentration has fallen below a critical

level that does not allow for any more substantial polymerization.

For investigations of network architecture concerning the mean number of network vertices and

edges it must be taken into account that keratin filaments have a certain width, whereas their

model representation as line segments reduces them to their longitudinal axis. For this reason,

vertices located closely to each other (< 20nm) should not be interpreted as distinct, i.e. they

have to be contracted. A recursive procedure is applied for this task, which has been established

in Beil et al. (2005).

3 Simulations and analysis of network architecture

The aim of this study was to investigate the effects of distinct network formation mechanisms as

controlled by model parameters (Tab. 1) on the morphology of keratin networks. For this purpose
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Simulating the formation of keratin filament networks by a PDMP

a simulation algorithm was implemented in Java within the GeoStoch software library (Mayer et

al., 2004).

3.1 Settings

The observation window was discretized by a grid of 500 × 500 pixels with a spatial resolution

of 5.3nm per pixel length. Given this grid, the solution of the diffusion PDE was numerically

approximated by means of a finite difference scheme.

The simulation outputs, i.e. the final states of the network, were given as binary images.

Due to the transformation of the tetramer concentration fields representing the soluble pool into

spatial probability fields at each time of network formation, simulations were computationally

demanding. Simulation times totaled around 1.5h per run on an AMD Opteron 252 processor

(2.6GHz, 8GB RAM).

For each parameter constellation considered, we conducted 30 simulation runs in order to control

for stochastic variability between different runs.

Standard settings were chosen as depicted in Tab. 2. Based on this standard scenario model

parameters were varied in order to investigate their effects on network morphology.

The reaction constant k was chosen such that the whole network formation process was finished

after around 15 minutes, which is a time span found to separate the time of maximal keratin

phosphorylation and reestablishment of the network when keratin networks are exposed to a

phosphorylation pulse (Beil et al., 2005). Network formation was considered to be finished as

soon as the mean soluble pool concentration had fallen below 150 tetramers per μm2.

3.2 Model parameters to be varied

Apart from the concentration c of the initial soluble pool, which determines the amount of building

material for the network and was estimated from the mean network length per unit area in images

of cancer cells (Beil et al., 2006), the key parameters M1 and M2, which control the likelihood of

specific network formation mechanisms, were varied. Note that M1 affects the choice of the basic

network growth type, i.e. the probability of a network formation event being a filament initiation

rather than the elongation of an existing filament. In case of a filament initiation, the parameter

M2 controls the probability of this initiation being a lateral annealing event rather than a free
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Simulating the formation of keratin filament networks by a PDMP

nucleation. Whenever one of the above parameters was varied, the others remained fixed, their

values being set to c = 6200, M1 = 0.002 and M2 = 0.22.

3.3 Statistical analysis of network characteristics

First order characteristics such as the mean number of network nodes (i.e. vertices whose degree

was at least 3), the mean number of edges and the mean number of meshes were considered.

Each of these quantities was estimated with respect to the unit area. We also considered features

of network connectivity and second order characteristics to evaluate clustering tendencies of the

network meshes.

3.3.1 Connectivity

One of the objectives of our statistical analysis was the assessment of the efficiency of a network

formation scenario in establishing inter-filament connectivity, which is a pertinent feature of net-

works that determines their mechanics (Blumenfeld, 2006; Huisman et al., 2007). To obtain a

measure for connectivity, a Euclidian minimum spanning tree (MST) was computed for each con-

nectivity component of the network graph using Prim’s algorithm (Jungnickel, 1999). An MST of

a fully connected graph is a subgraph with the same set of vertices where the latter are connected

by line segments from the original graph’s edge set in such a way that the total length of all

the edges is minimal while any vertex can still be reached from any other by following the edges.

After the minimum spanning trees had been constructed for each connectivity component, their

lengths were added and divided by the length of the entire graph. This quotient will be referred

to as the relative MST-length. It is a measure for redundancy in the network graph. Highly

connected networks exhibit a low relative MST-length since a high percentage of their edges can

be discarded without destroying the connectivity of the graph. On the other hand, in networks

with low connectivity many of the edges could only be removed at the cost of disconnecting the

network. Therefore a high percentage of the original edges is still contained in the MST and hence

the relative MST-length is relatively large.
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3.3.2 Pair-correlation function of mesh centers

Network clustering was studied by considering second order statistics of network meshes. First, a

center point was attributed to each mesh by taking the center of a circle with maximum possible

radius to be inscribed into this mesh. The in-circles were determined after truncation of all dead

ends in the network graph, since the latter do not contribute to the constitution of the meshes

and are mechanically not relevant. Mesh clustering was quantified by the analysis of clustering

effects in the point patterns of mesh centers. For this purpose we determined the empirical pair

correlation function ĝ(r), r > 0 of the mesh centers (Stoyan and Stoyan, 1994). Note that

the theoretical pair-correlation function of a homogeneous Poisson-type point pattern, which is

a model for complete spatial randomness (without clustering), is constant and equals 1. Values

of ĝ(r) greater than 1 indicate that point pairs of distance r occur rather frequently, whereas

values of ĝ(r) smaller than 1 occur if point pairs with this distance are relatively rare. Networks

exhibiting clusters of small meshes will thus show a peak of their empirical pair correlation function

at small distances r. Given a point pattern {S1, . . . , Sm}, the definition of ĝ(r) is as follows:

ĝ(r) =
1

(m/|W |)2

∑
n1 �=n2

K(‖Sn2 − Sn1‖ − r)1IW×W (Sn1 , Sn2)

2πr|W ∩ (W + (Sn2 − Sn1))|
,

where ‖x − y‖ is the distance between mesh centers x and y, W + x denotes the observation

window shifted by the vector x and |B| the area of a set B ⊂ IR2. K denotes the Epanechnikov

kernel (Stoyan and Stoyan, 1994). The bandwidth for K was chosen as 0.15/
√

λ̂, where λ̂ is

the mean number of mesh centers per unit area. The empirical pair-correlation functions for the

simulated data were obtained by distance-wise averaging of the estimators over all 30 simulation

runs that were performed for each of the scenarios.

4 Simulation results

For each parameter constellation, the results of the 30 simulation runs performed were visualized

by boxplots. Regression lines and curves were fitted to the mean values.

All sample images displayed were randomly selected among the simulation runs.
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Simulating the formation of keratin filament networks by a PDMP

4.1 Role of the initial soluble pool concentration c for network architecture

Fig. 3, 4A, and 4B show the response of the network morphology if the concentration c of soluble

keratin at the beginning of the simulation was varied in steps of 500 tetramers per μm2 over the

interval [1500, 7500].

Note that the mean number of edges, meshes and network nodes increased with c. Network

connectivity increased with the background concentration since the relative MST-length decayed

exponentially (Fig. 4B). As a consequence, the efficiency in establishing network connectivity was

almost unaffected by variations of c as soon as a critical level of 3500 tetramers per μm2 was

exceeded.

The pair-correlation function did not indicate a major effect of c on the clustering tendency of

network meshes (Fig. 9A). Note that for c < 3500 the point pattern of mesh centers did not

contain enough points for a reliable estimation of the pair-correlation function.

4.2 Role of filament initiation type for network architecture

In our model, initiation of new filaments during network formation could either occur as a nucle-

ation in free space or as lateral keratin annealing at an existing filament (Fig. 1A and 1C). The

probability of the latter was controlled by the model parameter M2. Sample images of simulations

for different values of M2 can be seen in Fig. 5.

Fig. 4C shows that increasing the probability of lateral annealing hardly changed the mean-value

characteristics of the network. Furthermore, the efficiency in establishing network connectivity

was also almost unaffected by variations of M2 (Fig. 4D).

The main effect of lateral annealing was an increased tendency of the network to form microgel

structures, i.e., clusters of small network meshes. If M2 was increased, the empirical pair correla-

tion function ĝ(r) indicated a substantial rise in likelihood of mesh center distances between 50

and 150nm (Fig. 9B). Even without any lateral annealing, i.e., in case M2 = 0, the peak of ĝ(r)

indicated a small clustering effect of the meshes. Once M2 ≥ 1.0, the effect of further increases

of M2 on mesh clustering subsided (besides Fig. 9B see also the simulation results in Fig. 5) .
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4.3 Role of basic growth type for network architecture

By construction of our model, at each network formation time the outcome of a Bernoulli experi-

ment determined the basic type of network growth, i.e., wether a new filament was initiated or an

existing one elongated. Increasing the parameter M1 resulted in a higher probability for filament

initiation in relation to the elongation probability of the existing filaments. Sample simulation

results are displayed in Fig. 6. The mean numbers of edges and network vertices were hardly

affected by variations of M1 (Fig. 4E).

However, network connectivity was harmed if by an increase of M1 the elongation tendency of

the filaments was diminished. This was indicated by the linear growth behavior of the relative

MST-length (Fig. 4F). Furthermore, the mean number of network meshes substantially decreased

with growing M1 (Fig. 4E). Thus, the ability of the filaments to form meshes was reduced if

the elongation tendency of the filaments was diminished in favor of more filament initiations.

Considering Fig. 7, which displays simulated networks for large values of M1, namely M1 = 0.016

and M1 = 0.032, the negative impact of decreased filament elongation tendencies on network

connectivity becomes ostensive, since in these cases the keratin tended to form filament clusters

rather than a homogeneous network. Notice that both the mean number of network meshes and

the relative MST-length appeared to be hardly affected if small values of M1 were considered, i.e.

M1 ∈ [0.004, 0.0055]. A substantial linear growth behavior occurred only for M1 ≥ 0.006.

Besides its effect on network connectivity, M1 also affected mesh clustering. If M1 was increased,

the empirical pair correlation function ĝ(r) indicated a substantial rise in likelihood of mesh center

distances between 50 and 150nm (Fig. 9C).

4.4 Interaction of parameters M1 and M2

As soon as a network formation event had been classified as filament initiation, it was decided

according to a state-dependent discrete distribution if the new filament was initiated by lateral

annealing or by free nucleation in the cytoplasm. Given a filament initiation event, the conditional

probability for lateral annealing was controlled by the parameter M2. As a consequence of this

modeling approach, not only an increase of the parameter M2 but also an increase of M1 resulted

in a higher mean number of lateral annealing events as soon as M2 > 0. Therefore, simulations

were performed in order to clarify the impact of lateral annealing on mesh clustering as well as
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network connectivity. More precisely, we compared the above simulations for variations of M1,

which included lateral annealing since M2 = 0.22 > 0, to the case where lateral annealing was

excluded by setting M2 = 0. Sample simulation outputs can be found in Fig. 8.

The response of network connectivity to variations of M1 occurred independently of lateral an-

nealing; if lateral annealing was excluded by setting M2 = 0, the relative MST-length behaved

similarly to the standard scenario.

The impact of M1 on mesh clustering was however sensitive to the choice of M2. Fig. 9D shows

that in case M2 = 0, clustering effects were not only less pronounced but unaffected by variations

of M1, i.e., of the nucleation intensity (see also Fig. 8). Thus, in our simulations the network

formation mechanism of lateral annealing solely accounted for pronounced mesh clustering, i.e.

the formation of microgel structures.

4.5 Role of diffusion

Visualizations of concentration fields of soluble oligomers as presented in Fig. 10 illustrate that low

diffusion coefficients can lead to a localized depletion of the soluble pool. For these simulations

parameter values were selected in a way, that promoted mesh clustering and a high network

connectivity (M1 = 0.012, M2 = 0.22). Both scenarios are associated with a fast soluble

pool consumption at a local level and, thus, were expected to result in a maximum depletion

of soluble oligomers. However, depletion zones and thus diffusion limitations disappeared for a

diffusion coefficient D ≥ 8×10−4μms−1, which is still a magnitude smaller than theoretical values

calculated by Portet et al. (2003). Thus, under these conditions the system can be regarded as

reaction-limited.

The density of nodes, meshes and edges did not change if D was varied between 5 × 10−5 and

3.2 × 10−3μms−1. In contrast, clustering was influenced by very small values for D, which,

however, are more than a magnitude smaller than the values estimated by Portet et al. (2003)

(Fig. 11).
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5 Discussion

Whereas many details of the filament assembly and network formation processes for the actin and

microtubular cytoskeleton are now well understood (Raynaud-Messina and Merdes, 2007; Schaus

et al., 2007) most of the mechanisms involved in the synthesis of keratin intermediate filament

networks still remain elusive. Thus, quantitative models can be useful to identify and character-

ize mechanisms which determine the architecture of these networks. The comparison of keratin

networks simulated in this study with such from electron microscopy images of cancer cells em-

phasizes this fact (Figure 10). Models developed to investigate the formation of networks of actin

filaments or microtubules are based on the specific biochemical properties of these filament sys-

tems. Due to the polarity of filament growth and restrictions for the angle of filament branching,

such models are anisotropic in nature (Maly and Borisy, 2001; Haviv et al., 2006). A recent paper

by Fass et al. (2008) presented a Gillespie-like model to investigate actin filament fragmentation

and annealing, but did not analyze these issues in the context of network architecture. Although

actin filament dynamics are well studied it still appears to be difficult to address the issue of actin

network architecture at all necessary scales (Mogilner, 2006). Nevertheless, several aspects of our

model can be regarded as simplifications of existing models for actin networks. Apart from the

lack of filament polarity, there is no restriction for the angles of filament branching or interactions

as observed by Windoffer et al. (2004) in living cells. Consequently, keratin networks can be

isotropic and fill the cytoplasm without the need to align with the other (polarized) networks.

Intermediate filament networks can thereby fulfill their fundamental role as integrators of cells in a

mostly independent way (Lazarides, 1980). Moreover, since new building blocks can be added at

any place along existing filaments, mesh clusters can easily be produced. Thus, keratin networks

could represent a fast and energy-efficient buffer system for mechanical stress regardless of its

direction and location.

The new approach to model the spatiotemporal distribution of the molecular events of keratin net-

work assembly reflects both, the incomplete understanding of the biological mechanisms involved

and the probabilistic nature of a spatiotemporal reaction system at different scales, i.e. the scale

of soluble keratin oligomers and of filaments. Although the number of soluble keratin oligomers is

large enough to use a PDE to model diffusion, this process is also stochastic and could be modeled

as a set of random walks. However, the latter approach is computationally not feasible for higher
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concentrations. The timing of network growth events, which are infrequent compared to oligomer

movements, was modeled by a time-continuous Markov process. This method is well established

to model chemical reactions (Gillespie 1977) and favorable in situations where the number of

molecules involved is rather small for some of the reacting species and deterministic approaches

become questionable (Gillespie, 1977 and 1992; Cao et al., 2005). Gillespie’s algorithm is based

on the assumption that the distribution of the inter-occurrence times between single reactions

only depends on the state of the system immediately after the last reaction event. The design of

a piecewise-deterministic Markov process leaves this essential property unchanged. This approach

makes these models particularly efficient for computer simulation and is an essential advantage in

comparison to other stochastic processes such as general Lévy processes or stochastic differential

equations whose simulation is usually based on interpolation of discrete skeletons and thus requires

analysis of approximation errors (Asmussen and Glynn, 2007).

For investigating the formation of keratin networks, the spatial structure of the reaction system

was at least as important as global reaction kinetics, the latter being modeled as being first order,

since the dominant component of the reaction was given by the elongating filament ends. Conse-

quently, the state space of our stochastic process was chosen a hybrid of a geometric space, namely

the family of line segment systems, and a function space, modeling concentration fields of soluble

keratin oligomers in the observation window. Thus, the model differs from classical Gillespie-type

processes, whose states simply describe the numbers of molecules for all species in the systems at

a given time instead of monitoring the spatial configuration of the system. Moreover, whereas the

Gillespie algorithm leaves the state of the system unchanged between reaction events, our model

also captures the spatial evolution of the soluble pool between network formation events. The

Gillespie-type component was solely used to determine the times of network formation. Locations

of network formation were assigned based on the spatial distribution of the soluble keratin pool

fueling network growth. The time evolution of the soluble pool between network growth events,

which consume soluble oligomers, was modeled by a deterministic diffusion equation. This model

component constitutes a mean-value approach to what would have been obtained by modeling

Brownian-type movements of single molecules in the soluble pool. For the choice of network

formation locations, the concentration fields were interpreted as spatial probability fields. This

approach takes into account uncertainty about the spatial distribution of the soluble keratin pool

and reflects the stochastic nature of the underlying physical process. Investigation of the concen-
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tration fields during simulations allows for an easy assessment of diffusion limitations arising for

network formation scenarios of interest. This way, the model provides the opportunity to study

the interplay between diffusion, network growth events and the resulting network morphology, but

requires a more complex structure than simple Monte Carlo methods. Other situations where

stochastic models for chemical reaction systems have been combined with deterministic compo-

nents are discussed in Haseltine and Rawlings (2002).

Since the information about keratin network formation is scarce we restricted the set of possible

network formation mechanisms in our model to processes that can be verified in experiments. It

includes filament nucleation and elongation, lateral annealing and merging of filaments. Some

of these processes were already observed in-vitro or in-vivo (Windoffer et al., 2004; Kirmse et

al., 2007). These processes represent discrete events in space and time at the scales regarded in

our simulations. The mathematical model for the built up of the network was designed in a way

that permitted one event per time point, the latter being determined by a point process on the

positive real line. The selection of network formation mechanisms for the events was controlled

by only two parameters of the model, namely M1 and M2. In the simulation studies, we investi-

gated the impact of these two parameters and the initial background concentration c on network

morphology. Simulation outputs suggest that the background concentration may be viewed as

a scaling parameter of network mean value characteristics, which grew almost linearly. The rel-

ative MST-length decayed exponentially, thus, well connected networks were established once a

concentration of 3500 tetramers/μm2 was exceeded. Network connectivity was not influenced

by the parameter M2 controlling the frequency of lateral annealing events (Fig. 4D), whereas it

seems to be substantially dependent on the relation between filament elongation and initiation

events, which was determined by M1 (Fig. 4F). High network connectivity seems to be favored

by rapid elongation of the filaments once they have been initiated. Rapid filament elongation has

also been observed in vivo by Windoffer et al. (2004) and may thus be a key factor for the high

degree of connectivity found in image data of keratin networks. This process, however, might be

restricted by the diffusion-limited supply with soluble keratin oligomers. However, the diffusion

coefficient for soluble oligomers has to be very small to create a system which is diffusion-limited.

Even in the absence of experimental data for intracellular keratin diffusion coefficients, theoretical

values estimated by Portet et al.(2003) are much greater than the threshold for the switch from a

reaction- to a diffusion-limited system. Thus, it is fair to assume that keratin network synthesis is
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reaction-limited. However, experimental studies investigating the intracellular diffusion of keratin

oligomers are required to verify this hypothesis.

Our simulation experiments revealed lateral annealing to be a mechanism that controls the forma-

tion of mesh clusters. Clustering tendencies of network meshes can also be observed in electron

microscopy data of keratin networks (Beil et al., 2005). In order to explain the impact of lateral

annealing on clustering effects, series of images displaying the network at different times through-

out its formation process were generated. These show that enhancing the likelihood of lateral

annealing in comparison to free nucleation favored the formation of several spatially segregated

centers of keratin annealing activity. This was due to the fact that the frequently occurring lateral

annealing events were confined to those locations already occupied by filaments. By the end of

network formation, these annealing centers exhibited a microgel structure. On the other hand,

if the likelihood of lateral annealing was reduced in favor of free nucleation, new filaments were

initiated evenly spread out over the observation window. As a consequence, neither preferred sites

of network formation nor pronounced microgel structures emerged.

In the standard setting of parameters the pair-correlation function also indicated pronounced mesh

clustering when the parameter M1 controlling the frequency of filament initiations was increased.

This is plausible since for each filament initiation the model decided randomly if the new filament

was initiated by lateral annealing or by free nucleation in the cytoplasm. Since the standard setting

of parameters allowed for lateral annealing (M2 = 0.22), an increase of M1 resulted in a higher

mean number of lateral annealing events. Having identified lateral annealing as a mechanism con-

trolling mesh clustering, the similar effect of the parameters M1 and M2 on the pair-correlation

function (Fig. 9C and 9B) was predictable. On the other hand, simulations without lateral an-

nealing (M2 = 0) revealed that free nucleation events did not affect the pair-correlation function

(Fig. 9D). Thus, in the simulations mesh clustering was purely a contribution of lateral annealing.

The architecture of the keratin cytoskeleton plays a pivotal role for cell migration by regulating cell

viscoelasticity (Beil et al., 2003). The classical models for determining mechanical properties of

biopolymer networks relate the mean mesh size to the elastic shear modulus (MacKintosh et al.,

1995). Structural homogeneity and isotropy constitutes prerequisites for this approach (Storm et

al., 2005). Since these conditions do not appear to be applicable to intracellular keratin filament

networks, our model is not restricted to produce this type of networks. Consequently, we did

not focus our descriptive analysis on mean mesh sizes but on complex structural features such



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Simulating the formation of keratin filament networks by a PDMP

as connectivity and clustering processes. By modulating connectivity cells may control the trans-

duction of forces and information (Blumenfeld, 2006). Clustering processes within the non-polar

network, as regulated by branching, provide cells with the opportunity to adapt to local demands

without changing the total amount of keratin proteins. Finite element modeling may be applied

to establish a relationship between these features and network mechanics by determining global

as well as local mechanical properties of simulated networks (Heussinger and Frey, 2006). This

way, molecular events which govern the biophysical features of the cytoskeleton can be identified

in simulation experiments.
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l length of the observation window

D diffusion constant

k reaction constant for keratin annealing

ρ radius of the circle whose soluble pool determines
the probability of local keratin annealing

q probability for end-on integration

c background concentration in keratin tetramers per
μm2

M1 controls the probability of filament initiation in
comparison to filament elongation

M2 controls the probability of lateral annealing in com-
parison to free filament nucleation

Table 1: Model parameters

l length of the observation window 2.65μm (500 pixels)

D diffusion constant 0.0005μm2s−1

k reaction constant for keratin annealing 0.004/(tetramer · s)

ρ radius of the circle whose soluble pool determines
the probability of local keratin annealing

25nm

q probability for end-on integration 0.8

Table 2: Standard settings for the simulations
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