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Introduction

Protein synthesis promoter sequences play an important role in the function regulation of several important mycobacterial pathogens [START_REF] Levine | Transcription regulation and animal diversity[END_REF][START_REF] Wyrick | Deciphering gene expression regulatory networks[END_REF]. In this sense, the prediction of the mycobacterial promoter sequences (Mps) could be interesting for the future discovery of new anti-mycobacterial drugs targets or in the study of proteins metabolism. Mycobacteria have a low transcription rate and a low RNA content per unit DNA. Thus, the transcription and translation signals in Mycobactaria may be different from those in other bacteria such as Esccherichia coli. The large variations among the characterized mycobacterial promoters suggest that the consensus sequences are not representative of these promoters. Consequently, a number of conflicting opinions regarding the presence and characteristics of consensus promoter sequences in the Mycobacteria have been presented in the literature [START_REF] Mulder | Mycobacterial promoters[END_REF]. Therefore, understanding the factors that are responsible for the low level of transcription and the possible mechanisms of regulation of gene expression in Mycobacteria, involve the examination of the mycobacterial promoter structure and the promoter transcription machinery, including chemical information about the involved RNA molecules [START_REF] Arnvig | The mechanism of upstream activation in the rrnB operon of Mycobacterium smegmatis is different from the Escherichia coli paradigm[END_REF][START_REF] Harshey | Rate of ribonucleic acid chain growth in Mycobacterium tuberculosis H37Rv[END_REF]. Efforts have been made to develop statistical algorithms for the sequence analysis and motif prediction by searching for homologous regions or by 1989). Wide variations existing within individual promoter sequences are primarily responsible for the unsatisfactory results yielded by the promoter-site-searching algorithms that in essence perform statistical analysis [START_REF] Mulligan | Analysis of the occurrence of promoter-sites in DNA[END_REF][START_REF] Mulligan | Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity[END_REF]. Therefore, it can be inferred that the recognition of mycobacterial promoter sequences require a powerful technique that is capable of unravelling those hidden patterns in the promoter regions, which are difficult to identify directly by sequence alignment.

The Bioinformatics methods based on sequence alignment may fail in general for cases of low sequence homology between the databases query and the template sequences.

The lack of function annotation (defined biological function) of the sequences used as template for function prediction constitutes another weakness of alignment approaches [START_REF] Dobson | Predicting enzyme class from protein structure without alignments[END_REF][START_REF] Dobson | Home intravenous antibiotic therapy and allergic drug reactions: is there a case for routine supply of anaphylaxis kits?[END_REF]Dobson et al., 2005). In addition, Chou demonstrated that the 3-dimensional structures developed based on homology modelling are very sensitive to the sequence alignment of the query protein with the structure-known protein [START_REF] Chou | Review: Structural bioinformatics and its impact to biomedical science[END_REF]. A group of researchers shows the growing importance of machine learning methods for predicting protein functional class independently of sequence similarity [START_REF] Han | Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity[END_REF]. These methods often use as the input the 1D sequence numerical parameters, specifically defined to seek sequencefunction relationships. For instance, the so-called pseudo amino acid composition approach (Chou, 2001a;[START_REF] Chou | Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes[END_REF] based on 1D sequence coupling numbers has been widely used to predict sub-cellular localization, enzyme family class, structural class, as well as other attributes of proteins based on their sequence similarity [START_REF] Caballero | Amino Acid Sequence Autocorrelation vectors and ensembles of Bayesian-Regularized Genetic Neural Networks for prediction of conformational stability of human lysozyme mutants[END_REF][START_REF] Chou | Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization[END_REF][START_REF] Du | Multiple field three dimensional quantitative structure-activity relationship (MF-3D-QSAR)[END_REF] Liao and Wang, 2004b;Liao and Wang, 2004c;Liao and Ding, 2005;Liao et al., 2005;[START_REF] Liao | Coronavirus phylogeny based on 2D graphical representation of DNA sequence[END_REF][START_REF] Liu | Some notes on 2-D graphical representation of DNA sequence[END_REF][START_REF] Nandy | Recent investigations into global characteristics of long DNA sequences[END_REF][START_REF] Nandy | Two-dimensional graphical representation of DNA sequences and intron-exon discrimination in intron-rich sequences[END_REF][START_REF] Nandy | Simple numerical descriptor for quantifying effect of toxic substances on DNA sequences[END_REF]Randic and Vracko, 2000;[START_REF] Randic | On a four-dimensional representation of DNA primary sequences[END_REF][START_REF] Randic | Highly compact 2D graphical representation of DNA sequences[END_REF]Randic et al., 2000;[START_REF] Song | A new 2-D graphical representation of DNA sequences and their numerical characterization[END_REF][START_REF] Woodcock | Detection of secondary structure elements in proteins by hydrophobic cluster analysis[END_REF][START_REF] Zupan | Algorithm for coding DNA sequences into "spectrumlike" and "zigzag" representations[END_REF] have been adapted to describe the protein sequences. On the other hand, many authors have introduced 2D or higher dimension representations of sequences prior to the calculation of numerical parameters. This constitutes an important step in order to uncover useful higher-order information not encoded by 1D sequence parameters [START_REF] Randic | 2-D graphical representation of proteins based on virtual genetic code[END_REF]. One example of the 2D representations is the graphs used for proteins and DNA sequences. For example, the spectral-like and zigzag representations have been used suggesting an algorithm for encoding long strings of building blocks (like four DNA bases, twenty natural amino acids, or all 64 possible base triplets) [START_REF] Aguero-Chapin | Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L[END_REF]. The use of the graphic approaches to study biological systems can provide useful insights, as indicated by many previous studies on a series of important biological topics, such as enzyme-catalyzed reactions [START_REF] Andraos | Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs[END_REF][START_REF] Chou | Two new schematic rules for rate laws of enzyme-catalyzed reactions[END_REF][START_REF] Chou | Graphical rules in steady and non-steady enzyme kinetics[END_REF][START_REF] Chou | Graphical rules for enzyme-catalyzed rate laws[END_REF][START_REF] Chou | Graphical rules for non-steady state enzyme kinetics[END_REF][START_REF] Chou | Graph theory of enzyme kinetics: 1. Steady-state reaction system[END_REF][START_REF] Cornish-Bowden | Fundamentals of Enzyme Kinetics[END_REF][START_REF] King | A schematic method of deriving the rate laws for enzyme-catalyzed reactions[END_REF][START_REF] Kuzmic | Mixtures of tight-binding enzyme inhibitors. Kinetic analysis by a recursive rate equation[END_REF][START_REF] Myers | Microcomputer tools for steady-state enzyme kinetics[END_REF][START_REF] Zhou | An extension of Chou's graphical rules for deriving enzyme kinetic equations to system involving parallel reaction pathways[END_REF], protein folding kinetics [START_REF] Chou | Review: Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems[END_REF], inhibition kinetics of processive nucleic acid polymerases and nucleases (Althaus et al., 1993a;Althaus et al., 1993b;Althaus et al., 1993c;[START_REF] Chou | Review: Steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases[END_REF], analysis of codon usage [START_REF] Chou | Diagrammatization of codon usage in 339 HIV proteins and its biological implication[END_REF][START_REF] Zhang | Graphic analysis of codon usage strategy in 1490 human proteins[END_REF][START_REF] Zhang | Analysis of codon usage in 1562 E. Coli protein coding sequences[END_REF], analysis of DNA sequence [START_REF] Qi | New 3D graphical representation of DNA sequence based on dual nucleotides[END_REF]. Moreover, graphical methods have been introduced for QSAR study (Gonzalez-Diaz et al., 2006c;Gonzalez-Diaz et al., 2007b;[START_REF] Prado-Prado | Unified QSAR approach to antimicrobials. Part 3: First multi-tasking QSAR model for Input-Coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds[END_REF] as well as utilized to deal with complicated network systems [START_REF] Diao | The community structure of human cellular signaling network[END_REF]Gonzalez-Diaz et al., 2007a;Gonzalez-Díaz et al., 2008). Recently, the "cellular A c c e p t e d m a n u s c r i p t 5 automaton image" [START_REF] Wolfram | Cellular automation as models of complexity[END_REF][START_REF] Wolfram | A New Kind of Science[END_REF] has also been applied to study hepatitis B viral infections (Xiao et al., 2006a), HBV virus gene missense mutation (Xiao et al., 2005b), and visual analysis of SARS-CoV [START_REF] Gao | A novel fingerprint map for detecting SARS-CoV[END_REF][START_REF] Wang | A new nucleotide-composition based fingerprint of SARS-CoV with visualization analysis[END_REF], as well as representing complicated biological sequences (Xiao et al., 2005a) and helping to identify protein attributes [START_REF] Xiao | Digital coding of amino acids based on hydrophobic index[END_REF]Xiao et al., 2006b).

In (González-Díaz et al., 2003;González-Díaz et al., 2006a;González-Díaz et al., 2005c;González-Díaz, 2007d). The ξ k , π k and θ k values of several types of graphs/networks have been the base for different QSAR studies of DNA/RNA and protein sequences (Du et al., 2007a;Du et al., 2007b;[START_REF] Garcia-Garcia | New agents active against Mycobacterium avium complex selected by molecular topology: a virtual screening method[END_REF]Marrero-Ponce et al., 2004a;Marrero-Ponce et al., 2005b;Marrero-Ponce et al., 2004b;[START_REF] Meneses-Marcel | A linear discrimination analysis based virtual screening of trichomonacidal lead-like compounds: outcomes of in silico studies supported by experimental results[END_REF][START_REF] Santana | A QSAR model for in silico screening of MAO-A inhibitors. Prediction, synthesis, and biological assay of novel coumarins[END_REF]. The second group of TIs is derived from the Star-Graph representations [START_REF] Harary | Graph Theory[END_REF]. We subsequently developed a classifier to connect Mps information (represented by the ξ k , π k , θ k and star-graph TIs values) with the prediction of Cgs as Mps. The Linear Discriminant Analysis (LDA) was selected as a simple but powerful technique (González-Díaz et al., 2006b;González-Díaz, 2003a).

Materials and methods

A c c e p t e d

m a n u s c r i p t 6

Pseudo-folding Lattice Network

The first Markov Model (MM), also called MARCH-INSIDE, was used to codify the information of 135 Mps (González-Díaz et al., 2005a;González-Díaz et al., 2006a;González-Díaz et al., 2007d) and 511 random Cgs (see Table S.1 in the supplementary material). Our methodology considers as states of the Markov Chain (MC) any atom, nucleotide or amino acid depending on the class of molecule to be described (González-Díaz et al., 2005e;González-Díaz, 2003b). Therefore, MM deals with the calculation of the probabilities ( k p ij ) where the charge distribution of nucleotide moves from any nucleotide in the vicinity i at time t 0 to another nucleotide j along the protein backbone in discrete time periods until a stationary state is achieved [START_REF] Yuan | Prediction of protein subcellular locations using Markov chain models[END_REF]. As can be seen from the discussion above, we selected LN ξ k, LN π k and LN θ k based on the utility of nonstochastic (González-Díaz and Uriarte, 2005;González-Díaz et al., 2005d;[START_REF] Ramos De Armas | Stochastic-based descriptors studying peptides biological properties: modeling the bitter tasting threshold of dipeptides[END_REF] and stochastic parameters (Randic and Vracko, 2000). Many researchers have demonstrated the possibility of predicting RNA from sequences [START_REF] Aguero-Chapin | Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L[END_REF] and we used 2D graphs to encode information about Mps sequences [START_REF] Estrada | On the topological sub-structural molecular design (TOSS-MODE) in QSPR/QSAR and drug design research[END_REF][START_REF] Estrada | Characterization of the folding degree of proteins[END_REF][START_REF] Estrada | What are the limits of applicability for graph theoretic descriptors in QSPR/QSAR? Modeling dipole moments of aromatic compounds with TOPS-MODE descriptors[END_REF]González-Díaz et al., 2005b;Gonzalez and Moldes del Carmen Teran, 2004;[START_REF] Vilar | In silico studies toward the discovery of new anti-HIV nucleoside compounds through the use of TOPS-MODE and 2D/3D connectivity indices. 2. Purine derivatives[END_REF][START_REF] Vilar | Probabilistic neural network model for the in silico evaluation of anti-HIV activity and mechanism of action[END_REF]. This RNA 2D graphical representation is similar to those previously reported for DNA [START_REF] Jacchieri | Mining combinatorial data in protein sequences and structures[END_REF][START_REF] Nandy | Recent investigations into global characteristics of long DNA sequences[END_REF][START_REF] Nandy | Two-dimensional graphical representation of DNA sequences and intron-exon discrimination in intron-rich sequences[END_REF] using four different nucleotides. The construction of the 2D lattice graph corresponding to the Mps of the gene Alpha in Mycobacterum bovis (BCG) is shown in Table 1 andFigure Table 1 comes about here

Figure 1 comes about here

In the next step, we assigned to each graph a stochastic matrix 1 Π. The elements of 1 Π are the probabilities 1 p ij of reaching a node n i with the charge Q i moving through a walk of length of k = 1 from another node n j with charge Q j [START_REF] Aguero-Chapin | Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L[END_REF]:

∑ ∑ = = ⋅ = ⋅ = n l m l il j n l m l j il j j ij d Q d Q p ϕ α ϕ α 0 0 (1) ∑ ∑ = = = = n l m l j n l m l j j j j d Q d Q p ϕ ϕ 0 0 (2)
where α ij equals to 1 if the nodes n i and n j are adjacent in the graph or equal to 0 otherwise; Q j is equal to the sum of the electrostatic charges of all nucleotide placed at this node. Note that the number of nodes (n) in the graph is equal to the number of rows and columns in 1 Π but may be equal or even smaller than the number of DNA bases in the sequence. It then becomes straightforward calculating different types of invariant parameters for 1 Π in order to numerically characterize the DNA sequence. In this work we calculated the following invariants: 

∑ = = n j i ij k k LN p π (3) j n j i j k k LN p ϕ ξ ∑ = ⋅ = (4) 

Star-Graph topological indices

Each DNA sequence is a real network where the nucleotides are the vertices/nodes, connected in a specific sequence by the phosphodiester bonds. SG is an abstract representation of the real network having a dummy non-nucleotide centre and a number of "rays" equal with the nucleotide types. In the case of DNA, we can consider two codifications: the nucleotide code (as in the case of the amino acid protein sequences)

and the DNA codons (the final incomplete codons are ignored). In the first codification, there are only four branches ("rays") of the star corresponding to the four types of nucleotides: adenosine (a), thymidine (t), cytidine (c) and guanosine (g). Using the codons, the DNA sequences are virtually translated into amino acid sequences that generate 21 branches, 20 standard amino acids and an extra X non-amino acid corresponding to the STOP DNA codons [START_REF] Griffiths | Introduction to Genetic Analysis[END_REF]. Even if the promoters are not naturally translated in proteins, the second codification is useful for a comparison with the protein SG calculations. The same DNA/protein can be represented by different forms which are associated to distinct distance matrices [START_REF] Randic | On representation of proteins by starlike graphs[END_REF]. Standard star-graphs were constructed for each DNA promoter: each For a visual comparison of the lattice and star-graph representations, the same promoter sequence from Table 1 was used to generate a standard SG based on codons that are virtually translated to amino acids (see Table 2 and Figure 2). The trace of the n connectivity matrices ( SG π n ):

SG π n (e) = ∑ i (M n ) ii (7)
where n = 0 -power limit, SG M = SG connectivity matrix (i*i dimension); ii = i th diagonal element;

Harary number (H):

H (e) = ∑ i<j (m ij /d ij ) (8)
where d ij are the elements of the distance matrix and m ij are the elements of the M connectivity matrix;

Wiener index (W):

W (e) = ∑ i<j d ij (9)
Gutman topological index (S 6 ):

S 6 (e) = ∑ ij deg i * deg j / d ij (10) 
where deg i are the elements of the degree matrix;

Schultz topological index (non-trivial part) (S):

S (e) = ∑ i<j (deg i + deg j ) * d (11)
Balaban distance connectivity index (J):

J (e) = (edges -nodes + 2) * ∑ i<j m ij * sqrt(∑ k d ik *∑ k d kj ) (12) 
where nodes+1 = AA numbers/node number in the Star Graph + origin, ∑ k d ik is the node distance degree;

Kier-Hall connectivity indices ( n X): The embedded and non-embedded SG TIs will be used to construct a DNA promoter classification model using the LDA statistical methods.

0 X (e) = ∑ i 1 / sqrt(deg i ) (13) 2 X (e) =∑ i<j<k m ij *m jk / sqrt(deg i *deg j *deg k ) ( 14 

Linear Discriminant Analysis

LDA [START_REF] Chou | Prediction of protein structural classes[END_REF]. The jackknife test has been increasingly used by investigators to examine the accuracy of various predictors [START_REF] Chen | Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo amino acid composition[END_REF]Chou and Shen, 2007a;[START_REF] Chou | Cell-PLoc: A package of web-servers for predicting subcellular localization of proteins in various organisms[END_REF][START_REF] Diao | The community structure of human cellular signaling network[END_REF][START_REF] Ding | Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network[END_REF][START_REF] Lin | The modified Mahalanobis Discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition[END_REF][START_REF] Xiao | Digital coding of amino acids based on hydrophobic index[END_REF]. In the actual work, the independent data test is used by splitting the data at random in a training series (train, 75%) used for model construction and a prediction one (val, 25%) for model validation (the CV column is filled by repeating 3 train and 1 val). All of the variables included in the models were standardized in order to bring them onto the same scale. Subsequently, standardized linear discriminant equations that allow comparison of their coefficients were obtained [START_REF] Chiti | Rationalization of the effects of mutations on peptide and protein aggregation rates[END_REF][START_REF] Pawar | Prediction of "aggregation-prone" and "aggregation-susceptible" regions in proteins associated with neurodegenerative diseases[END_REF].

In the case of LN, the general QSAR formula is the following: , S e , J e , 0 X e , 2-5 X e , 1 XR e ), f k e / f k , g k e / g k and e k e / e k are the TIs coefficients and e 0 is the independent term. Accuracy, specificity, sensitivity, F, Wilk's (λ) statistic (λ = 0 perfect discrimination, being 0 < λ < 1) were examined in order to assess the discriminatory power of the model.

Results and discussion

Many different parameters can be used to encode RNA sequence information and further assign or predict the function or physical properties (González-Díaz and Uriarte, 2005). The present approach involves the calculation of different sequence parameters, which can be applied to different types of molecular graphs [START_REF] Aguero-Chapin | Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L[END_REF], including DNA, RNA and proteins [START_REF] Di Francesco | FORESST: fold recognition from secondary structure predictions of proteins[END_REF]González-Díaz et al., an important tool for analyzing biological sequence data. In particular, MM has been used for protein folding recognition (Chou, 2001b) and for prediction of protein signal sequences (Chou and Shen, 2007b;[START_REF] Van Waterbeemd | Chemometric methods in molecular design[END_REF]. This work compared two 

Results for DNA LN indices

In the first study of the DNA LN representations, the best QSAR equation that classifies a novel sequence as Mps or not is the following (Table 3): 3.

Table 3 comes about here

Analyzing the above equations, it is important to highlight that, the combination of a negative contribution of LN ξ 1 and a positive contribution of LN ξ 5 in Eq. 21 points to a pseudo-folding rule for the biological activity. A validation procedure was subsequently performed in order to assess the model predictability. This validation was carried out with an external series of Mps and randomized control sequences (Cgs). The present model showed accuracy of 90.87%, which is similar in comparison to results obtained by other researchers on using the LDA method in QSAR studies (González-Díaz et al., 2007b). These results are also consistent with many others we have recently reviewed in-depth and published in the form of review article where we used different networklike indices in small-sized, nucleic acid, and protein QSAR (González-Díaz et al., 2007b;González-Díaz et al., 2005d;González-Díaz et al., 2007d;Marrero-Ponce et al., 2005a;Marrero-Ponce et al., 2005b;[START_REF] Van Waterbeemd | Chemometric methods in molecular design[END_REF].

Results for DNA SG indices

The second study used the SG-QSAR models in order to evaluate the same mycobacterial DNA promoter property (see Table 3). The grouping of the embedded and non-embedded TIs was done similar to the lattice models: the traces ( SG π k e / SG π k ), the Shannon entropies ( SG θ k e / SG θ k ), the rest of embedded and non-embedded TIs (H, W, S 6 , S, J, 0 X, 2-5 X, 1 XR, H e , W e , S 6 e , S e , J e , 0 X e , 2-5 X e , 1 XR e ) and all SG TIs (pool).

The Forward Stepwise selection variable method, conjugated with the nE & E TIs of the virtually translated DNA sequences, provides better results for the codon grouping of , W), the QSAR model cannot be considered due to the low sensitivity for the CV set (66.67%). Thus, the results based on the traces (spectral moments) are similar in the case of LN and SG representations, maintaining the SG π 5 e / LN π 5 in the equations.

Comparison with RNA 2S and other indices

In previous works, we published QSAR models to predict Mps using RNA electrostaticdriven 2S folding representations. These models were based on the 2S θ k (González-Díaz et al., 2007c), 2S π k (González-Díaz et al., 2005a) and 2S ξ k (González-Díaz et al., 2006a) values for the 1 Π(2S) matrix associated to RNA 2S folding representations. In Table 3 we illustrate that the best values of accuracy, sensitivity and specificity of 97.60%, 93.30% and 100% were found for 2S θ 0 . This TI is present in the QSAR equations for . This RNA 2S was obtained with the online DINAMelt server [START_REF] Markham | DINAMelt web server for nucleic acid melting prediction[END_REF]. The SG TIs that show to not be important for the DNA/RNA models (H, W, S, J) can successfully describe protein QSAR models (Munteanu et al., 2008b). This work pointed out the conclusion that the models based on SG, LN and also 2S, which are linear and have few variables, compares very favourably in terms of complexity with other models previously reported by Kalate et al. -these authors used a non-linear artificial neural network and a large parameter space [START_REF] Kalate | Artificial neural networks for prediction of mycobacterial promoter sequences[END_REF]. Table 1. LN construction rules for the Mps of the gene Alpha in Mycobacterum bovis (BCG). (González-Díaz et al., 2007c), c: (González-Díaz et al., 2005a) and d: (González-Díaz et al., 2006a). 

  information with a consensus sequence (O'Neill and Chiafari,

  1. Each nucleotide in the sequence is placed in a Cartesian 2D space starting with the first monomer at the (0, 0) coordinates. The coordinates of the successive nucleotide are calculated with the following rules: a) Increase by +1 the abscissa axis coordinate for thymine (rightwards-step) or: by -1 the abscissa axis coordinate for cytosine (leftwards-step) or: c) Increase by +1 the ordinate axis coordinate for adenine (upwards-step) or: d) Decrease by -1 the ordinate axis coordinate for guanine (downwards-step).

  whereLN π k are the Markov spectral moments and indicate that we sum all the values in the main diagonal of the matrices LN π k = Tr( k Π) = Tr[( 1 Π) k ] (Tr is the trace operator), LN ξ k are the mean values of electrostatic potentials and LN θ k are the Markov entropies (González-Díaz et al., 2007a). All calculations of the LN ξ k, LN π k and LN θ k values for the DNA sequences of both groups (Mps and Cgs) were carried out with our in-house software MARCH-INSIDE, version 2.0 ® (González-Díaz et al., 2007a), including sequence representation.

  holds the position in the original sequence and the branches are labelled by the standard letters of the nucleotides (a, t, c and g). If the initial connectivity in the DNA sequence is included, the graph is embedded. In order to qualitatively evaluate the graphs, it is necessary to transform the graphical representation into correspondent connectivity matrix, distance matrix and degree matrix. In the case of the embedded graph, the matrices of the connectivity in the sequence and in the star graph are combined. These matrices and the normalized ones are the base for the calculation of the topological indices.

Figure 2

 2 Figure 2 comes about here

  ) 3 X (e) =∑ i<j<k<m m ij *m jk *m km / sqrt(deg i *deg j *deg k *deg m ) (15) 4 X (e) =∑ i<j<k<m<o m ij *m jk *m km *m mo / sqrt(deg i *deg j *deg k *deg m *deg o ) e) =∑ i<j<k<m<o<q m ij *m jk *m km *m mo *m oq / sqrt(deg i *deg j *deg k *deg m *deg o *deg q ) (17) Randic connectivity index ( 1 XR): 1 XR (e) =∑ i<j m ij / sqrt(deg i * deg j ) (18)

  -score is the continue score value for the DNA mycobacterial promoter classification corresponding to the lattice representation, LN π k are Markov spectral moments (traces), LN θ k are the Markov entropies, LN ξ k the mean stochastic electrostatic potential, b k , c k , d k are the coefficients of the previous indices and a 0 is the independent term. A similar formula is defining the SG QSAR model in Eq. 20.

  -score is the continue score value for the DNA mycobacterial promoter classification corresponding to the SG representation, SG π k e / SG π k and SG θ k e / SG θ k are embedded/non-embedded traces (Markov spectral moments) and the Shannon entropies, TI k e / TI k are the other 22 standard SG embedded and non-embedded TIs (H, W, S 6 , S, J, 0 X, 2-5 X, 1 XR, H e , W e , S 6 e

  has been applied successfully to Genomics and Proteomics and represents

  models based on different TIs including π k and θ k values of the stochastic matrices 1 Π(LN) and 1 Π(SG) ( SG M) associated with LN and SG, LN ξ k parameters of 1 Π(LN) as well as classic TIs for 1 Π(SG). These parameters describe the distribution of the nucleotides of the DNA sequence in the above graphs/networks. This calculation was carried out for two groups of DNA sequences, one made up of Mps and the other formed by Cgs. In addition, previous results of the RNA secondary structure (2S) QSAR are compared.

  of this equation were Wilk's statistic (λ=0.95) and error level (p-level<0.001). This discriminant function misclassified only 36 cases out of 511 Cgs used, reaching a high level of accuracy of 90.87%. More specifically, the model classified correctly 112/135 (82.9%) of Mps and 475/511 (92.9%) of the control group. Conversely, the remains four descriptors LN ξ 0, LN ξ 2, LN ξ 3 and LN ξ 4 do not have a significant relationship with the Mps characteristic. The use of only six molecular descriptors to model a data set of 585 sequences prevents us by large from chance correlation. In physical terms, the above results confirm other studies about the relationship between the electrostatic potential of the DNA molecule and its biological , in this case not all the electrostatic interactions affect the activity in the same way. Finally, long-term electrostatic interaction potentials ( LN ξ 0, LN ξ 2, LN ξ 3 and LN ξ 4 ) do not correlate with the Mps activity. The detailed results of the forward stepwise analysis are given in Table

  with accuracy, sensitivity and specificity greater than 70% for the SG π k e / SG π k and for the pool (

  DNA LN/SG and RNA 2S folding representations. All these observations pointed out the importance of the spectral moments, entropies and in the stochastic electrostatic potentials in the DNA/RNA QSAR models. In general, the results for RNA 2S folding representation are better, but require additional calculations for optimization of the RNA 2S. Therefore, more RNA 2S are possible for the same DNA sequence (theoretically are have not correspondent RNA) introducing an indeterminacy in the final model prediction. In the Figure3we depicts a possible 2S for the RNA sequence corresponding to the DNA sequences used in Figures1 and 2(dG is the free energy)
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 2 Figure 2. SG for the Mps of the gene Alpha in Mycobacterum bovis (BCG).

Figure 3 .

 3 Figure 3. RNA 2S for the Mps of the gene Alpha in Mycobacterum bovis (BCG).

  terms Ac, Se, and Sp mean accuracy, sensitivity and specificity, and measure the ratio of the number of total, Mps, or Cgs sequences correctly classified by the model with respect to the real classification; Vars. = no of variables in the QSAR equations; SG = star-graph; LN = lattice network; 2S = secondary structure; super index "e" represents the embedded calculations; References (Ref.) are a: this work, b:
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  forward stepwise analysis fromSTATISTICA (StatSoft.Inc., 2002) was carried out for variable selection to build up the model[START_REF] Garcia-Garcia | New agents active against Mycobacterium avium complex selected by molecular topology: a virtual screening method[END_REF][START_REF] Kutner | Standardized Multiple Regression Model, Applied Linear Statistical Models[END_REF] 

[START_REF] Chou | Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes[END_REF] Marrero-Ponce et al., 2004a; Marrero-Ponce et al., 2005b; Marrero-Ponce et al., 2004b;[START_REF] Meneses-Marcel | A linear discrimination analysis based virtual screening of trichomonacidal lead-like compounds: outcomes of in silico studies supported by experimental results[END_REF][START_REF] Santana | A QSAR model for in silico screening of MAO-A inhibitors. Prediction, synthesis, and biological assay of novel coumarins[END_REF]

. In order to decide if a DNA sequence is classified as mycobacterial promoter (Prom) or not (nProm), we added an extra dummy variable named Prom/nProm (binary values of 1/-1 for LN and 1/0 for SG) and a cross-validation variable (CV). The best cross-validation methods used are practice is the independent dataset test, the subsampling test and the jackknife test

Table 3 )

 3 . Even if the accuracy of the simple nucleotide sequences are up to 81.58% (pool), the selectivity and the specificity have values less than 70%. The best QSAR model using the SG based on the codon sequences is defined with the SG π k e / SG π k group of indices in Eq. 22 and is characterized by 74.77% accuracy, 82.96% sensitivity and 72.60% specificity.

	SG	Mps	-	score	=	9 . 1 -	+	SG × 3 . 1	π	4	-	SG × 9 . 1	π	4	e	-	SG × 2 . 1	π	5	e
																					(22)
	Despite the good values of accuracy, sensitivity and specificity (80.80%, 74.81%,
	82.39%) for the pool group of TIs ( SG θ 0 , SG θ 4	e , SG π 4	e , SG π 5	e

Table 2 .

 2 SG codifications for the virtually translated Mps of the gene Alpha in

	Mycobacterum bovis (BCG).

Table 3 .

 3 Summary of the LDA results for DNA LN and SG models vs. RNA 2S folding representations.
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Table 1 :

 1 DNA Lattice Network c 1 g 2 a 3 c 4 t 5 t 6 t 7 c 8 g 9 c 10 c 11 c 12 g 13 a 14 a 15 t 16 c 17 g 18 a 19 c 20 a 21 t 22 t 23 t 24 g 25 g 26 c 27 c 28 t 29 c 30 c 31 a 32 c 33 a 34 c 35 a 36 c 37 g 38 g 39 t 40 a 41 t 42 g 43 t 44 t 45 c 46 t 47 g 48 g 49 c 50 c 51 c 52 g 53 a 54 g 55 c 56 a 57 c 58 a 59 c 60 g 61 a 62 c 63 g 64 a 65

	n	Nucleotide	x	y
	1	c 1 a 3 t 5 g 25	0	0
	2	g 2 c 10 g 26	0	-1
	3	c 4 t 16	-1	0
	4	t 6 c 8	1	0
	5	t 7	2	0
	6	g 9	1	-1
	7	c 11 c 27 t 29	-1	-1
	8	c 12 a 14 g 18 c 28 c 30 g 48	-2	-1
	9	g 13 g 49	-2	-2
	10	a 15 c 17 a 19 t 45 t 47	-2	0
	11	c 20 a 32 t 44 c 46	-3	0
	12	a 21	-3	1
	13	t 22	-2	1
	14	t 23	-1	1
	15	t 24	0	1
	16	c 31	-3	-1
	17	c 33 g 43	-4	0
	18	a 34 t 42	-4	1
	19	c 35 a 41	-5	1
	20	a 36	-5	2
	21	c 37	-6	2
	22	g 38	-6	1
	23	g 39	-6	0
	24	t 40	-5	0
	25	c 50	-3	-2
	26	c 51	-4	-2
	27	c 52 a 54	-5	-2
	28	g 53 g 55	-5	-3
	29	c 56	-6	-3
	30	a 57	-6	-2
	31	c 58	-7	-2
	32	a 59	-7	-1
	33	c 60 a 62	-8	-1
	34	g 61	-8	-2
	35	c 63 a 65	-9	-1
	36	g 64	-9	-2

Table 2 : DNA codon Star-Graph DNA nucleotide sequence c

 2 1 g 2 a 3 c 4 t 5 t 6 t 7 c 8 g 9 c 10 c 11 c 12 g 13 a 14 a 15 t 16 c 17 g 18 a 19 c 20 a 21 t 22 t 23 t 24 g 25 g 26 c 27 c 28 t 29 c 30 c 31 a 32 c 33 a 34 c 35 a 36 c 37 g 38 g 39 t 40 a 41 t 42 g 43 t 44 t 45 c 46 t 47 g 48 g 49 c 50 c 51 c 52 g 53 a 54 g 55 c 56 a 57 c 58 a 59 c 60 g 61 a 62 c 63 DNA codons sequence cga 1 ctt 2 tcg 3 ccc 4 gaa 5 tcg 6 aca 7 ttt 8 ggc 9 ctc 10 cac 11 aca 12 cgg 13 tat 14 gtt 15 ctg 16 gcc 17 cga 18 gca 19 cac 20 gac 21 R 1 L 2 S 3 P 4 E 5 S 6 T 7 F 8 G 9 L 10 H 11 T 12 R 13 Y 14 V 15 L 16 A 17 R 18 A 19 H 20 D 21

	Virtually translated
	amino acid
	sequence

Table 3 :

 3 LN LN θ k 78.33 72.59 79.84 LN θ 0 1 0.74 230.5 0.0001 a LN π k 81.73 78.52 82.58 LN π 0 , LN π 1 , LN π 5 , 3 0.89 76.3 0.0001 a LN ξ k 90.87 82.96 92.95 LN ξ 1 , LN ξ 5 2 0.82 142.1 0.0001 a Pool 92.88 75.56 97.46 LN θ 0 , LN π 0 , LN ξ 1 , LN ξ 5 4 0.83 130.8 0.0001 a Primary structure of DNA nucleotide sequences & SG SG θ k 66.25 81.48 62.23 Primary structure of DNA codon sequences & SG SG θ k 70.43 76.30 68.88 SG θ 0 , SG θ 1 , SG θ 4

	TI	Ac (%)	Se (%)	Sp (%)	Final TIs	Vars. λ	F	p	Ref.
					SG θ 1 e , SG θ 4 e	2	0.78 69.62 0.001	a
	SG π k 71.21 85.19 67.51	SG π 0 e , SG π 2 e , SG π 5	e	3	0.76 49.54 0.001	a
	TI k 75.39 68.15 77.30	W, J e , 0 X e	3	0.73 58.19 0.001	a
	Pool 81.58 68.15 85.13	SG π 5	e , H, 1 XR e	3	0.67 79.94 0.001	a
									e	3	0.75 52.31 0.001	a
	SG π k 74.77 82.96 72.60	SG π 4 , SG π 4	e , SG π 5	e	3	0.74 56.37 0.001	a
	TI k 76.16 59.26 80.63	S, 0 X, 1 XR e	3	0.72 60.98 0.001	a
	Pool 80.80 74.81 82.39 SG θ 0 , SG θ 4	e , SG π 4	e , SG π 5	e , W	5	0.67 47.04 0.001	a
				RNA electrostatic-driven 2S folding
	2S θ k 97.60 93.30 100.00			2S θ 0		1	0.34 724.47 0.001	b
	2S π k 93.83 83.70 98.89	2S π 0 , 2S π 2	2	0.44 515.03 0.05	c
	2S ξ k 96.58 85.19 100.00	2S ξ 0 , 2S	

Primary structure of DNA nucleotide &
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