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Indirect measures of soil invertebrate body mass M based on equations relating the latter to body length (l) are becoming increasingly used due to the required painstaking laboratory work and the technical difficulties involved in obtaining some thousands of reliable weight estimates for animals that can be very small. The implicit assumption of such equations is that

, where V is body volume and δ is a constant density value. Classical Euclidean scaling implies that 3 V l M ∝ ∝ . One may thus derive M from l when the latter can provide a good estimate of V and the assumption of a constant δ is respected. In invertebrates, equations relating weight to length indicate that the power model always provides the best fit. However, authors only focused on the empirical estimation of slopes linking the body mass to the length measure variables, sometimes fitting exponential and linear models that are not theoretically grounded. This paper explicates how power laws derive from fundamental Euclidean scaling and describes the expected allometric exponents under the above assumptions. Based on the classical Euclidean scaling theory, an Equivalent Sphere is defined as a theoretical sphere with a volume equal to that of the organism whose body mass must be estimated. The illustrated application to a data set on soil oribatid mites helps clarify all these issues. Lastly, a general procedure for more precise estimation of M from V and δ is suggested.

Introduction

Weighing soil invertebrates with accurate electronic microbalances involves painstaking laboratory work to obtain a very high number of measures for animals that can be very small (i.e., microarthropods < 0.5 mm 3 ). Completing accurate estimates for relatively large terrestrial invertebrates (molluscs, coleopterans) can be very time consuming, especially for community studies requiring thousands of measures. There are high quality ecological works based on indirect measures of body mass derived from equations relating the latter to body size (e.g. [START_REF] Saint-Germain | Should biomass be considered more frequently as a currency in terrestrial arthropod community analyses?[END_REF]. Thanks to earlier research, similar equations are available for other animal groups, including microarthropods such as oribatid mites (i.e., [START_REF] Berthet | L'activité des Oribatides (Acari: Orabatei) d'une chênaie[END_REF][START_REF] Lebrun | Écologie et biocénotique de quelques peuplements d'arthropodes édaphique[END_REF]) and springtails [START_REF] Petersen | Estimation of dry weight, fresh weight, and calorific content of various Collembolan species[END_REF], and many insects [START_REF] Rogers | A general weight vs. length relationship for insects[END_REF]). However, when using size equations for weight estimates, different parameters are required for different shape types (Berthet 1967;[START_REF] Lebrun | Écologie et biocénotique de quelques peuplements d'arthropodes édaphique[END_REF]. Bias may also arise from sexual dimorphisms (females bigger than males) or life cycles (gravid vs non-gravid).

Unfortunately, equations are usually built on empirical grounds: authors search for the model that best fits data on body mass (M) and length (l). In some cases models not theoretically grounded in biometrical and geometrical principles, for example linear models, were also tested and (not surprisingly) found to have a very poor fit (i.e. [START_REF] Brady | Generalised regressions provide good estimates of insect and spider biomass in the monsoonal tropics of Australia[END_REF]. The present paper undertakes a theoretical analysis of the implicit assumptions and logic that underlie past research on empirical M-l relationships. Furthermore, stemming from theory, a more general approach is proposed with an example of application to the soil oribatid mite data set compiled by [START_REF] Lebrun | Écologie et biocénotique de quelques peuplements d'arthropodes édaphique[END_REF].

A c c e p t e d m a n u s c r i p t

Theory

In agreement with reports by specialists on many invertebrate taxa (i.e. [START_REF] Petersen | Estimation of dry weight, fresh weight, and calorific content of various Collembolan species[END_REF][START_REF] Rogers | A general weight vs. length relationship for insects[END_REF][START_REF] Berg | Mass-length and mass-volume relationships of larvae of Bradysia paupera (Diptera: Sciaridae) in laboratory cultures[END_REF][START_REF] Brady | Generalised regressions provide good estimates of insect and spider biomass in the monsoonal tropics of Australia[END_REF], [START_REF] Lebrun | Écologie et biocénotique de quelques peuplements d'arthropodes édaphique[END_REF] found a very good fit when using the power model log( ) log log( ) log( )

a b M cL W M c a L b W = → = + + (eq. 1)
for relating body mass M to length measures L (total length) and W (maximum width) in oribatid mites. Interestingly, Lebrun did not seem to realise the theoretical meaning of parameters a, b and c. Instead, he implicitly used them as typical statistical parameters of model fitting routine. We here argue that the fit of such equations is excellent because

dM dV δ = (eq. 2) and 3 V l M ∝ ∝ (eq. 3)
which implies that the constant c of (eq. 1) must also include information on density δ. Let us assume that the body shape of oribatids is well approximated by an ellipsoid of dimensions L, W and H (Fig. 1). The letter H indicates body height, a rarely available parameter that is difficult to measure. Let us also define an equivalent sphere (EqSph) as the sphere with a volume equal to that of the above ellipsoid or of any other shape oribatids can assume. The oribatid volume is therefore

3 4 4 3 3 V LWH r π π = =
, where r is the radius of EqSph and L, W and H are the three axes of the ellipsoid.

It follows that

1/ 3 1/ 3 1/ 3 r L W H = .
From eq. 2 and Lebrun's model of eq. 1 it follows that

3 3 3 4 3 4 a b a b c c V LW r r LW π δ δ π ⎛ ⎞ = = ⇒ = ⎜ ⎟ ⎝ ⎠
eq. (4). V l LW ∝ ∝ and L and W are lengths. This result is empirically confirmed by the regression results of [START_REF] Lebrun | Écologie et biocénotique de quelques peuplements d'arthropodes édaphique[END_REF], who for example found that in three different data sets on oribatid mites with different shapes, a and b were respectively 1.50 and 1.50, 2.10 and 0.90, 1.60 and 1.40. This is simply a consequence of classical Euclidean scaling by eq. 2 and 3 and indicates that L and W allow a good estimation of the volume V. This definitely clarifies the theoretical meaning of original Lebrun's parameters: they regulate the allometric scaling between body mass and length and are not simple statistical parameters. The same would be true if it were possible to accurately estimate M from just L. In this case, the equation would become

3 3 3 4 3 4 b b c r cL r L δ π δπ = ⇒ =
eq. ( 5)

and b = 3 because 3 3

V L l ∝ ∝ . Accordingly, empirical results obtained for several taxa (e.g. spiders, beetles, flies and midges) usually obey or very nearly obey this equation [START_REF] Petersen | Estimation of dry weight, fresh weight, and calorific content of various Collembolan species[END_REF][START_REF] Rogers | A general weight vs. length relationship for insects[END_REF][START_REF] Berg | Mass-length and mass-volume relationships of larvae of Bradysia paupera (Diptera: Sciaridae) in laboratory cultures[END_REF][START_REF] Brady | Generalised regressions provide good estimates of insect and spider biomass in the monsoonal tropics of Australia[END_REF]. The interpretation is that the more L allows good estimation of V, the more it allows estimation of M. Accordingly, if b ≠ 3 then the one known dimension does not allow correct indirect estimation of volume.

Alternatively, the assumption of eq. 2 is wrong but, as clearly shown below, this is highly unlikely because of the fundamental characteristics of biological tissues.

Eq. 5 can be written as

3 3 3 3 4 3 4 c r r l c l δπ δπ ⎛ ⎞ = ⇒ = ⎜ ⎟ ⎝ ⎠ eq. ( 6 
)
with l is any linear length that combined with the parameter δ allows precise estimation of V.

The most interesting feature of this formulation is that when regressions relating M to l result in a very good fit, it is possible to appropriately estimate V from l . Note that l is not necessarily a classical standard length like total length or width. It can also be a combination If one can therefore find any l for which the volume of EqSph can be calculated assuming r = l, then the regression model allows the estimation of animal density. In practice this is very difficult. However, in theory, assuming that one can find such an l, one must then collect a large array of weights and lengths for the best estimate of δ: under the above assumptions, this is achieved using the model that provides the most accurate estimate of M based on l, and this is possible because l allows estimation of V. If one finds a very good model (R 2 > 0.98), then the estimated δ can be used to also estimate the M of other animals, provided that one has an equation for estimating V from length measures. This would eliminate the need to estimate the parameters of eq. ( 4), which seem to be affected by shape variations, as stressed in earlier works (e.g. [START_REF] Lebrun | Écologie et biocénotique de quelques peuplements d'arthropodes édaphique[END_REF]. Unfortunately, there is no principle or geometrical rule allowing the a priori identification of an l = r . The only solution is to obtain precise estimates of density δ through direct laboratory measurements. Firstly, this would help verify the reasonable assumption of eq. 2. Secondly, when a close estimate of δ is obtained, it is possible to fit models derived from eq. ( 5). If these provide an excellent fit (R 2 > 0.98), the ratio (r/l) can be precisely estimated from δ and c, the latter being the regression constant. One can then use this ratio and the experimental value of δ to estimate any M using the EqSph volume. tissues is slightly higher than that of water (1.00) because cells and tissues mainly consist of water and dissolved or suspended macromolecules and organelles. For instance, early works already indicated that the specific gravity of arthropod blood ranges from 1.012 to 1.043 (Rustum Maluf, 1969). Accordingly, the specific gravity of Chironomus larvae ranges from 1.026 to 1.045 [START_REF] Edwards | The relation of oxygen consumption to body size and to temperature in the larvae of Chironomus rjparius Meigen[END_REF]. In general, classical laboratory measurements of specific gravity performed across several phyla (from protozoa to higher invertebrates) result in values of 1.001 to 1.046 (Williams, 1900). Such narrow ranges are characteristic of living organisms, including vertebrates, notwithstanding the macroscopic differences between tissues like bone and blood (i.e. [START_REF] Morales | Studies on body composition II. Theoretical considerations regarding the major body tissue components, with suggestions for application to man[END_REF]Watanabe et al. 2006). For example, recent measures on

Baikal seals indicate that this species has a specific gravity of 1.027 to 1.046 (Watanabe et al.

2006

). Although small variations of the third decimal digit may have important biological implications because, for instance, they affect body buoyancy, for the aim of this paper and given the lack of precise experimental measurements on oribatid mites, an average value of 1.030 ± 0.015 is assumed. Specific gravity is a dimensionless number equal to the ratio between the density of the target object and that of water at 4 °C and 1 atm, which is 0.999 ≈ 1 g/cm 3 . However, at a given environmental pressure, water density changes as function of temperature. Nevertheless, between 4°C and 30 °C water density varies from 0.999 g/cm 3 to 0.996 g/cm 3 and thus, given the adopted approximation for specific gravity, a density δ = 1.03 g/cm 3 can be assumed.

An example: models for oribatid body mass estimates

We reanalysed data reported in Appendix (1) from the original work of [START_REF] Lebrun | Écologie et biocénotique de quelques peuplements d'arthropodes édaphique[END_REF].

They consist of 44 associated measures of body length, width and weight from 36 oribatid mites species of different shape that are encountered within this ecologically important soil ( )

log log log ( , ) M c a l f L W = + =
with a = 3 and l = L+W Models 2, 3 and 4 have interesting potential applications. For instance, if model 4 had the best fit, then one could estimate the EqSph volume V by assuming δ = 1.03 g/cm 3 and calculating the ratio r/l using eq. 6, without having to take into account body shape and associated variations in a and b [START_REF] Lebrun | Écologie et biocénotique de quelques peuplements d'arthropodes édaphique[END_REF]. The model 4 assumption that l = L+W is based on the idea that oribatids usually have an ovoidal shape, the volume of which could be well approximated by a sphere with a radius intermediate between that of half the two largest body measures (total Length and maximum Width). According to this idea, one can simply include this information by summing the two linear measures (l = L+W).

Lastly, [START_REF] Lebrun | Écologie et biocénotique de quelques peuplements d'arthropodes édaphique[END_REF] stated that the model 1 parameters change if one performs separate analyses on species after grouping them into morphological categories. For example, Lebrun 1.90 ± 0.20 1.10 ± 0.17 

  and the proportionality of eq. 3, the first perhaps evident but important conclusion is that a + b = 3 because 3 a b

  l that allow a good estimation of V. This is more clearly explained below. The more l is similar to r, the more c is near to δ in the sense

  Knowledge of r/l and δ from the model estimate of c allows a priori calculation of any organism volume by estimating the volume of the EqSph with important feature of this theory is that, at first approximation, an almost optimal value of δ can be derived on physical and basic biological grounds. Oribatid mites float in a NaClsaturated water solution, which has a specific gravity ≈ 1.20: this means that the specific is below this value. This characteristic buoyancy allows wet extraction of soil animals and does not come as a surprise. Indeed, the specific gravity of all biological

  models (obtained by least squares estimates) were used to derive log M from log L and log W. In particular, competing models built on the above theory were: model 1, Lebrun's model of eq. 1; model 2, called the "L model", which assumes that l = L; model 3, called the "W model", is the same as model 2 but with l = W ; model 4, called the "Mean model", where l = f (L, W)= L + W.

( 1971 )

 1971 identified three main categories: Achipteriforms, which have a more or less elongate oval shape (this includes superfamilies like Pelopoidea, Oribatelloidea and Ceratozetoidea), Caraboidiforms, which have a squared silhouette (e.g. the genera Carabodes and Tectocepheus) and Nothroiforms, with a squared to almost triangular shape (e.g. Camisia and Nothrus). Other morphological types may include Phthiracariform (spheroidal to ovoidal) or Hypochthoniiform, which may be approximated by a combination of different (squared ≈ 3 obviously relates r to M, whereas a linear model with slope ≈ δ relates M to EqSph V.Part of the residual variations are likely due to the fact that δ was assumed and not experimentally measured. It probably also varies slightly (of the order of 10 -3 ) across species, populations and individuals. Nevertheless, the collected data allow reliable estimates and are therefore promising for future application, especially if one considers the very small size of these animals. Ecological studies which aim to obtain precise population biomass and energy estimates would of course require accurate length measures of the populations inhabiting the study area, because generic measures from literature are subject to very high local variability (known since[START_REF] Lebrun | Écologie et biocénotique de quelques peuplements d'arthropodes édaphique[END_REF]. Furthermore, error propagation occurs when estimates are derived from functions combining estimated variables and their errors. Lastly, the formulated theory has been particularly successful in the case of oribatids and its extension to other taxa, especially to those for which weight and length data are already available, deserves further attention.
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Appendix 1). The following two models were thus also considered among the competing ones: The model-building strategy was based on the idea that not all possible models but only those with precise theoretical foundations must be considered during statistical analysis (Burnham and Anderson, 2002;[START_REF] Johnson | Model selection in ecology and evolution[END_REF]. This approach is rather different from that adopted in past similar studies, where authors just empirically searched for the best fitting model and accordingly tested several different types of regressions, including very improbable ones that assume M l ∝ . In keeping with the logic of this paper, model assessment and selection was thus based on Akaike's theoretic approach and information criterion corrected for sample size (AIC c : Burnham and Anderson, 2002;[START_REF] Johnson | Model selection in ecology and evolution[END_REF]. One of the advantages of this strategy with respect to more traditional ones (e.g. hypothesis testing based on likelihood ratios) is that the competing models analysed in the present paper are not nested. In these cases, AIC is one of the best model-assessment tools [START_REF] Johnson | Model selection in ecology and evolution[END_REF]. Models were ranked according to Akaike's criterion and the minimum AIC c (below AIC min ) was used as the reference for calculating the AIC difference (Δ i ) and model weights (w i ). Models within 2 AIC units of the AIC min were considered competitive and more plausible than the others, and their weights were considered a measure of their robustness (Burnham and Anderson 2002). Linear models were performed using R 

Results and concluding remarks

All models resulted in an excellent fit with very high adjusted R 2 , but ranking based on Akaike's criterion (Tab. 1) clearly showed that model 4 was the best model with a weight > 0.80 and Δ AIC c with respect to the second-best model > 3, indicating that all other competing models are weak to very weak with respect to the best one (Burnham and Anderson 2002). Although Lebrun's interaction hypothesis represented by model 6 apparently resulted in the best fit because it had the highest R 2 , it was highly penalised by Akaike's information criterion because of the very high number of parameters, which make it nonparsimonious relative to its predictive power (Burnham and Anderson 2002). This shows that one can simply estimate the EqSph volume without taking into account shape variations: they do play a role, but in the framework of the presented theory their role seems irrelevant.

The estimated a parameter is always consistent with theoretical expectations (Table 2): the only significant exception is the poor fit of model 3, which indicates that W alone does not provide a reliable estimate of V and thus of M. In general, the two worst models are those that consider only one measure; it therefore seems fundamentally important to have at least two linear measures to jointly represent body size and allow a reliable estimate of body volume.

For the best model the constant log c = -17.17 ± 0.46. For δ = 1.03 10 -6 μg/μm 3 , (r/l) = 0.201 (the same units of Appendix 1 were used in these calculations). Therefore, future estimates of the body mass M of an oribatid can be based on the volume of the EqSph with r = 0.201(L+W). For example, one can take L = 571 μm and W = 249 μm from the first entry of Appendix (1). This results in an r = 165 μm, an oribatid volume V = EqSph V= 4/3πr 3 = 1.88 10 7 μm 3 and body mass M = 19.4 μg. The observed M = 18.1 μg. One can also estimate r for each datum and plot M as function of r or, equivalently, of its EqSph V (Fig. 2). A power law