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Abstract

Studying the spread of a pathogen in a managed metapopulation such

as cattle herds in a geographical region often requires to take into ac-

count both the within- and between-herd transmission dynamics. This

can lead to high-dimensional metapopulation systems resulting from the coupling

of several within-herd transmission models. To tackle this problem, we aim in this
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paper at reducing the dimension of a tractable but realistic dynamical system re-

producing the within-herd spread. The context chosen to illustrate our purpose is

Bovine Viral Diarrhoea Virus (BVDV) transmission in a cattle herd structured in

two age classes and several epidemiological states, including two infectious states

(transiently and persistently infected). Different time scales, corresponding to the

epidemiological and demographic processes, are identified which allow to build a

reduced model. Singular perturbation technique is used to prove that, under some

non-restrictive conditions on parameter values, the behaviour of the original system

is quite accurately approximated by that of the reduced system. Simulations are

also performed to corroborate the approximation quality. Our study illustrates the

methodological interest of using singular perturbations to reduce model complex-

ity. It also rigorously proves the biologically intuitive assumption that transiently

infected individuals can be neglected in a homogeneous population, when capturing

the global dynamics of BVDV spread.

Key words: perturbation methods, time scales, model reduction, dynamical

system, BVDV
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1 Introduction

Theoretical studies on population dynamics most often involve relatively

complex models, due to the intrinsic complexity of the phenomena that are

captured (biological, demographic, etc.), to their interactions, and to the state

dimension. Such is the case when studying the spread of a pathogen at a

regional scale in a managed metapopulation such as cattle herds, which of-

ten requires to take into account the within-herd transmission dynamics, as

well as the between-herd dynamics within the region of interest. Manage-

ment induces an heterogeneous contact structure which needs to be taken

into account for moderately propagating pathogens. This can lead to high-

dimensional metapopulation systems resulting from the coupling of several

similar local within-herd transmission models. An appropriate approach to

tackle this problem is to reduce the dimension of an epidemiological model

designed to study the spread of a disease in a managed herd.

A possible solution for reducing the complexity consists in taking advantage of

the presence of several time scales in the system. Indeed, events can intrinsi-

cally occur at different velocities which allows, under stability assumptions

on the fast dynamics (see Khalil (1996) and appendix B), to neglect

rapid events and therefore to build a lower-dimensional model, that can be

handled analytically and that is governed by the dynamics of the slow events.

Several mathematical methods allowing such system reduction, as aggregation

of variables and singular perturbation, have been developed. These methods

were used in biological fields, mainly in ecology (Lenbury, 1996; Lett et al.,

2003), but also in epidemic modelling (González-Guzmán and Naulin, 1994;

Song et al., 2002). From the methodological point of view, the aggregation
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of variables, perfect or approximate (Iwasa et al., 1987, 1989) are by far the

most frequently used. The method, revised in Auger and Bravo de la Parra

(2000), was first applied in the frame of ordinary differential equations (Auger

and Roussarie, 1994; Auger and Poggiale, 1998) and then derived for partial

differential equations (Auger and Roussarie, 1994; Bravo de la Parra et al.,

2000), discrete dynamical systems (Bravo de la Parra et al., 1995; Sanz and

Bravo de la Parra, 1999) or for stochastic frameworks (Sanz et al., 2003; Sanz

and Bravo de la Parra, 2007). Several papers, studying dynamics of structured

population models, have used the singular perturbation method (Arino et al.,

1999; Song et al., 2002).

In this paper, we are interested in reducing the order of an epidemiological

model designed to study the spread of a disease in a managed herd. We aim

at using the dimensionally reduced form of the model for further studies in a

metapopulation context. A reduced-order model is easier to manipulate and

control and can therefore be coupled with other similar local models for study-

ing the propagation at the between-herd scale. In order to achieve a trade-off

between complexity and tractability, we chose to adapt a generic epidemio-

logical model to a concrete situation: Bovine Viral Diarrhoea Virus (BVDV)

epizootic dynamics within a managed herd through a simplified but realistic

model.

BVDV virus is a pestivirus which does not survive in the environ-

ment. Hence, horizontal transmission mainly occurs by direct con-

tacts with infected animals. It leads to transiently infected animals

excreting low amounts of virus during a couple of weeks (Baker,

1987) before becoming immune. No clear and specific clinical signs

are usually observed. However, if infection occurs during early or

4
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mid-pregnancy, it frequently generates embryonic and foetal deaths.

For cows infected during mid-pregnancy that do not abort, vertical

transmission is highly probable. These cows give birth to Persis-

tently Infected (PI) calves (Hartley and Richards, 1988; Fray et al.,

2000). PI animals excrete the virus during their whole life in a

greater amount than transiently infected animals (Baker, 1987). PI

dams always give birth to PI calves. PI animals have a higher lethal-

ity, with a half-life of one year (Houe, 1993). Consequently, the dis-

ease induces high economic losses, which is why several European

countries are implementing control plans (Lindberg et al., 2006).

To model BVDV within-herd spread, a classical non structured SIR

models (Susceptible / Infected / Recovered) is not adequate. Both

vertical and horizontal transmissions should be considered as they

lead to very different consequences. Transiently infected and PI

animals cannot be regrouped in a single infectious status because

their infectiousness and infection duration are drastically different.

Hence, this herd structure should be considered when modelling

BVDV spread. To date, several models have been developed to rep-

resent the spread of BVDV in a cattle herd; a review can be found

in Viet et al. (2007). They generally aim at studying the effect of

control measures and assessing efficiency. These models are usually

complex models which integrate detailed herd dynamics and include

most of current biological knowledge on BVDV transmission. Most

often, this complexity renders their rigorous mathematical analysis

impossible. Moreover, the metapopulation model generated by cou-

pling several such models to study the between-herd transmission

5
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at a regional scale could be difficult to simulate. The model that we

propose here, whilst simpler than such complex high-dimensional

models, still preserves the main characteristics of BVDV spread. It

takes into account the heterogeneities in transmission that require

the introduction of different disease statuses. It represents a com-

promise between realistic complexity and mathematical tractability.

The paper is organised as follows: in section 2, we first present the BVDV

model, then we analyse its structural properties. Exploiting the different time

scales in the system corresponding to different biological processes, reduced-

order models are built using the singular perturbation approach (Khalil, 1996);

we then check the accuracy of these time scale approximations by using ap-

propriate theorems (section 3). In order to illustrate our analytical results,

simulations are presented using realistic parameter values (section 4). Finally

we discuss the methodology and the biological interpretation of our findings

(section 5).

2 Epidemiological model

We present in this section a model describing BVDV dynamics in a

cattle herd located in a region where the disease in endemic. Hence,

neighbouring herds contribute to the herd contamination. Purchases

however are considered to be safe, as we assume that tests are per-

formed for each animal introduced in the herd.

The mathematical model is first presented. This model exhibits dif-

ferent time scales between the demographic and epidemiological
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processes which are then outlined. Finally, we investigate the model

equilibria.

2.1 Model description

The herd is structured in two age classes: Class 1, formed by ju-

veniles (0–3 years), which are animals before breeding; and Class 2

formed by adults (> 3 years of age). This population structure is mo-

tivated by herd management, outflows, reproduction and entries in the herd

depending on age.

In age class i, animals are classified into mutually exclusive BVDV health sta-

tuses (Fig. 1): susceptible (Si), transiently-infected (Ti), persistently-infected

(Pi), recovered (i.e. immune; Ri). Recovered adults in age class 2 are actually

divided into two statuses (M2 and R2), because an infection during pregnancy

can lead to embryonic or foetal death or also to the birth of a PI calf. Hence,

status M2 has been added to enable representing such specific consequences

that may occur in the year following the infection. Adults in status R2 are

recovered adults that have calved at least once since infection or animals that

have been infected as juveniles (coming from R1).

Since two infectious statuses are considered (transiently-infected, status T ,

and persistently-infected, status P ), two specific infection rates (βT and βP

respectively), independent of age are defined (Table 1). The force of infection in

the herd – which drives the transition from the susceptible to the transiently-

infected status – is assumed to be density-dependent. Animals from both age

classes are assumed to be equally in contact (homogeneous mixing in the

7
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S2

S1 T1 R1 P1

P2R2M2T2

b (1−ρ)bMb b

bP
ρbMτ τ

η

ττ

∆S

µ2 µ2 µ2 µ2

∆R

µP,2

µP,1µ1µ1µ1

F(T,P)

F(T,P) γ

γ

Fig. 1. Flow diagram of the epidemiological model representing BVDV health sta-

tuses per age classes and transitions between these states; in age class i, Si: suscep-

tible, Ti: transiently-infected, Pi: persistently-infected, Ri: recovered, M2: recovered

but still pregnant since infection. Parameters are defined in Table 1 and the model

equations are given by (1).

herd) and to have the same susceptibility to the disease. Hence, the force

of infection will include βT T and βP P terms, with T the total number of

transiently-infected animals (T1 +T2) and P the total number of persistently-

infected animals (P1 + P2). We assume a constant additional infection rate βv

due to neighbouring contacts with infected animals of other herds. Thus, the

force of infection is defined by F (T, P ) = βT T + βP P + βv.

After a transient infection, animals are assumed to recover with a recovery

rate γ, independent of age. Recovered juveniles go to status R1. Recovered

adults first go to status M2, and then to status R2 with rate η (Table 1).

We assume that the infection has a strong impact on reproduction. Among

adults in status M2, some have been infected during pregnancy and thus can

8



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

Table 1

Definition of the parameters used in the model.

Parameters Interpretation Dimension*

b Natural birth rate t−1

bP Birth rate for PI infected individuals t−1

bM Birth rate for individuals infected during pregnancy t−1

µ1, µ2 Age-dependent mortality rate for non PI individu-

als

t−1

µP1, µP2 Age-dependent mortality rate for PI individuals t−1

τ Maturating rate t−1

∆S, ∆R Purchases of susceptible or resistant mature indi-

viduals

N/t

βT Infection rate due to transiently infected individu-

als

(N.t)−1

βP Infection rate due to PI infected individuals (N.t)−1

βv External infection rate t−1

γ Recovery rate t−1

ρ Vertical transmission ratio –

η “M2 → R2” transfer rate t−1

*t=time, N=numbers
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abort. Hence, the birth rate in status M2 (bM ) is assumed to be reduced

compared to the natural birth rate applied to other statuses (bS = bT =

bR = b). A specific birth rate is also considered for persistently-infected adults

(status P2; rate bP ) to account for a potential impact of the disease on the

reproduction of PI animals. A systematic vertical transmission is considered

for pregnant PI adults (status P2). A partial vertical transmission is considered

for pregnant adults in status M2, with rate ρ; the remaining calves are born

in status S1. Juveniles in all health statuses become adults with a maturating

rate τ .

Outflows in such a managed population consist in natural mortality, culling

and selling. The resulting global so-called mortality rate depends on age (µ1

and µ2 for juveniles and adults, respectively). These rates apply to all health

statuses except status P . For status P , a disease-related mortality occurs in

addition to these global mortality rates. Hence, a specific age-dependent mor-

tality rate is defined (µP1 and µP2 for PI juveniles and PI adults, respectively).

Finally, adult animals can be purchased and introduced in the herd. Such

inflows are assumed to be perfectly secure, considering automatic detection

and rejection of animals able to spread the infection in the herd. As a result,

no entry of infected animals (statuses T2 or P2) or of immune dams carrying a

PI foetus (status M2) is allowed. Hence, inflows only occur in statuses S2 and

R2, with constant entry flows ∆S and ∆R, respectively.

10



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

This leads to the following system of nine differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ1 = b(S2 + T2 + R2) + (1 − ρ)bMM2 − (τ + µ1)S1 − F (T, P )S1,

Ṡ2 = ∆S + τS1 − µ2S2 − F (T, P )S2,

Ṫ1 = −(τ + µ1)T1 − γT1 + F (T, P )S1,

Ṫ2 = τT1 − µ2T2 − γT2 + F (T, P )S2,

Ṗ1 = bP P2 + ρbMM2 − (τ + µP1)P1,

Ṗ2 = τP1 − µP2P2,

Ṙ1 = −(τ + µ1)R1 + γT1,

Ṁ2 = γT2 − (η + µ2)M2,

Ṙ2 = ∆R + τR1 + ηM2 − µ2R2,

where: T = T1 + T2, P = P1 + P2, F (T, P ) = βT T + βP P + βv.

(1)

All parameters in this system are positive, as they represent positive

quantities with biological meaning, and are summarised in Table 1.

We denote by W = (S1, S2, T1, T2, P1, P2, R1, M2, R2) the state vector

and by W(0) the initial condition. As these state variables repre-

sent population sizes, we set W(0) � 0. The structure of the model

then ensures that the state variables remain non negative in the

course of time. Indeed, for system 1 the field is non negative along

the boundaries of the non negative orthant. To prove this, let us

consider that at time t, the ith element of the state vector wi(t) = 0

and the other elements wj �=i � 0 (i, j ∈ {1, . . . , 9}). Straightforward

computation shows that its derivative wi, given by (1), is then also

non negative. This ensures that wi cannot become negative. So the

non negative orthant is positively invariant.

11



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

2.2 Time scales

The transient infection and recovery processes occur at a time scale that is

faster than the demography. In other words, the corresponding epidemiological

parameters are greater than the demographic parameters. We hence introduce

a scaling parameter ε such that:

βT =
β ′

T

ε
, βP =

β ′
P

ε
, γ =

γ′

ε
, with 0 < ε � 1. (2)

Considering some typical population size Nm, we assume that Nmβ ′
T , Nmβ ′

P

are parameters of the same order of magnitude as the remaining model pa-

rameters. The contamination by neighbouring herds or the local environment

is assumed to be relatively small compared to the contamination generated by

within-herd contacts with infected animals. Hence, βv is smaller than the other

epidemiological parameters and its order of magnitude is less than or equal to

the order of magnitude of the demographic parameters. We finally assume

that γ′ has at least the same order of magnitude as the demographic

parameter. In this case, system 1 is a two time scale system.

It is also reasonable to assume that individuals spend significantly

more time in the susceptible state than in the transiently infected

state, at least in moderately infected herds. It means that the recov-

ery process runs faster than the infection process, in other words,

that γ′ has a greater order of magnitude than Nmβ ′
T , Nmβ ′

P , and the

remaining model parameters. In that case, we introduce a second

scaling parameter ε′ such that:

γ =
γ′′

ε′
, with 0 < ε′ < ε � 1. (3)

12
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We hence obtain a three time scale system.

All these assumptions on the order of magnitude of the parameters

need to be verified on their numerical values to ensure relevant time

scale separation in numerical simulations. This is done in section 4.

2.3 Equilibria

Epidemiological models usually exhibit at least two equilibria, the trivial equi-

librium, which corresponds to an extinct population, and a disease-free equi-

librium. There may also be an endemic steady point. As described below, our

system has only one endemic staedy state, provided that all parameters are

positive.

In system (1), because of constant inflows corresponding to animal purchases,

the population cannot become extinct and zero is not an equilibrium. Without

these animal inflows (i.e. ∆S = ∆R = 0) though, zero would be an equilibrium.

Moreover, due to the external contamination term which acts like an infection

reservoir, there is no disease-free equilibrium in system (1). In the absence of

this infection source (i.e. βV = 0), there would be such an equilibrium given

by

W 0 = (S0
1 , S

0
2 , 0, 0, 0, 0, 0, 0, R

0
2),

the non zero components of this vector being:

S0
1 =

b(∆R + ∆S)

cS
, S0

2 =
bτ∆R + µ2(µ1 + τ)∆S

µ2cS
, R0

2 =
∆R

µ2
,

provided that the following parameter condition holds:

cS = (µ1 + τ)µ2 − bτ > 0. (4)

13
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This condition corresponds to the existence and the stability of the disease-free

equilibrium and ensures that the population does not explode.

For a non trivial set of parameters, we show that system (1) admits a non

negative endemic steady state given by:

W = (S1, S2, T1, T2, P1, P2, R1, M2, R2), with T + P > 0.

W is a positive solution of Ẇ = 0. After certain algebraic manipulations, we

show that solving this non linear system amounts to finding a positive root of

a third order polynomial in T1 (or T2, both variables being quasi-symmetric),

which has non analytically tractable formula. In order to circumvent this prob-

lem, we take advantage of the model time scales and use a second-order Taylor

expansion of this polynomial around ε. For “small enough” values of ε and

provided that (4) and the following condition are verified:

cP = (µP1 + τ)µP2 − bP τ > 0, (5)

we can then deduce the existence of a positive equilibrium W (see ap-

pendix A). Considering ρbMM2 as an exogenous bounded input for

the linear subsystem (P1, P2), condition (5) can be interpreted as the

stability requirement ensuring the non explosion of the permanently

infected population.

This equilibrium is proved to be exponentially stable (Khalil, 1996)

in section 3.1.

14
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3 Model order reduction

Thanks to the different time scales that occur in system (1,2) and described

in section 2.2, we can apply the singular perturbation theory to approximate

this system by a lower-dimensional system. Theorems supporting our following

analysis are given in appendix B.

3.1 Two time scales

With the following change of variables:

A1 = S1 + T1 + R1, A2 = S2 + T2 + M2.

system (1,2) can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ1 = b(A2 − M2 + R2) + (1 − ρ)bMM2 − (τ + µ1)A1,

Ȧ2 = ∆S + τ(A1 − R1) − µ2A2 − ηM2,

Ṗ1 = bP2 + ρbMM2 − (τ + µP1)P1,

Ṗ2 = τP1 − µP2P2,

Ṙ2 = ∆R + τR1 + ηM2 − µ2R2,

εṪ1 = −ε(τ + µ1)T1 − γ′T1 + εF (T, P, ε)(A1 − T1 − R1),

εṪ2 = ετT1 − εµ2T2 − γ′T2 + εF (T, P, ε)(A2 − T2 − M2),

εṘ1 = −ε(τ + µ1)R1 + γ′T1,

εṀ2 = γ′T2 − ε(η + µ2)M2,

where: T = T1 + T2, P = P1 + P2, εF (T, P, ε) = β ′
T T + β ′

P P + εβv.

(6)
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Setting X = (A1, A2, P1, P2, R2) and Z = (T1, T2, R1, M2), this system takes

the form of an autonomous singular perturbation model:

Ẋ = f(X, Z, ε), (7a)

εŻ = g(X, Z, ε). (7b)

Here X and Z are respectively called the slow and the fast variables.

The fast system (7b) has a unique non negative quasi steady state when ε = 0:

Z∗ = (T ∗
1 , T ∗

2 , R∗
1, M

∗
2 ) = h(X) = (0, 0, A1, A2). (8)

By substituting this quasi steady state in the slow system (7a), we obtain the

following linear reduced system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ1 = (1 − ρ)bMA2 + bR2 − (τ + µ1)A1,

Ȧ2 = ∆S − (η + µ2)A2,

Ṗ1 = ρbMA2 + bP P2 − (µP1 + τ)P1,

Ṗ2 = τP1 − µP2P2,

Ṙ2 = ∆R + τA1 + ηA2 − µ2R2,

(9)

which is represented in Fig. 2.

If conditions (4-5) are verified, it allows a unique non negative steady state:

X∗ = (A∗
1, A

∗
2, P

∗
1 , P ∗

2 , R∗
2),

with: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗
1 =

(1 − ρ)bM

µ1 + τ
A∗

2 +
b

µ1 + τ
R∗

2, P ∗
1 =

∆SρbMµP2

(µ2 + η)cP

,

A∗
2 =

∆S

µ2 + η
, P ∗

2 =
∆SρbMτ

(µ2 + η)cP
,

R∗
2 =

µ1 + τ

cS

(
∆R +

∆S

µ2 + η

(
η +

(1 − ρ)bMτ

µ1 + τ

))
.
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R2 P2

P1A1 = R1

A2 = M2

b

ρbM

(1−ρ)bM bP

η

τ

τ

µ2 µP2

∆S

µ2

∆R

µ1 µP1

Fig. 2. Flow diagram of the reduced model given by equations (9), representing

infection states per age classes and transitions between these states; recovered ju-

veniles: A1 = S1 +T1 +R1 = R1, recovered adults still in pregnancy since infection:

A2 = S2 + T2 + M2 = M2, recovered adults: R2, persistently-infected juveniles and

adults R1, R2. Parameters are defined in Table 1.

After certain algebraic manipulations, we obtain the characteristic poly-

nomial of the Jacobian matrix of system (9) in X∗:

χ(λ) = −(λ+µ1+τ)
[
λ2 + (µ1 + µ2 + τ)λ + cS

] [
λ2 + (µP1 + µP2 + τ)λ + cP

]
.

Since cS and cP are positive, −χ is a product of first and second

order polynomials, with real positive coefficients. According to the

Routh–Hurwitz criterion, its roots, corresponding to the eigenvalues

of system (9), are negative. As the reduced system is linear, X∗ is

hence globally exponentially stable.

The boundary layer system verified by

y = (t1, t2, r1, r2) = Z − h(X) = (T1, T2, R1 − A1, M2 − A2)
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with dt = εdν is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d t1
dν

= −γ′t1 − (β ′
T (t1 + t2) + β ′

P P )(t1 + r1),

d t2
dν

= −γ′t2 − (β ′
T (t1 + t2) + β ′

P P )(t2 + m2),

d r1

dν
= γ′t1,

d r2

dν
= γ′t2.

(10)

From the model structure, we deduce that ti (i = 1, 2) remain non negative and

that (ti + ri) (i = 1, 2) remain non positive. Hence, integrating and bounding

d (ti+ri)
dν

, we obtain:

|(ti(ν) + ri(ν))| � |(ti(0) + ri(0))| e−βP Pν . (11)

The last two equations of system (10) lead to:

d vi

dν
= eγ′ν

(
d ri

dν
+ γ′ri

)
= γ′eγ′ν(ti + ri), with vi = eγ′νri.

Integrating and bounding this equation using (11), we obtain:

ri(ν) = ri(0)e−γ′ν + γ′e−γ′ν
∫ ν

0
eγ′ξ(ti + ri)dξ,

|ri(ν)| � |ri(0)|e−γ′ν + |ti(0) + ri(0)| γ′

γ′ − β ′
PP

(
e−β′

P Pν − e−γ′ν
)
.

So the zero equilibrium of the boundary layer system (10) is globally expo-

nentially stable.

Moreover f , g, h, the Jacobian of the reduced model (9) and ∂g(X, Z, 0)/∂Z

are smooth functions. Hence, by applying theorems 1 and 2 given in ap-

pendix B, we conclude that when ε is “small enough”:

• (from theorem 1) the reduced model is a good approximation of the

original system (1), with Z = Z∗ = h(X) given by (8);
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• (from theorem 2) the endemic steady state of system (1), obtained when

conditions (4-5) are verified, is globally exponentially stable.

3.2 Three time scales

In order to reduce the three time scale system (1,3), we will proceed in two

steps.

(1) First, we choose the time scale of recovery as fast scale, and we pool de-

mography and infection time scales into the slow time scale, applying the

singular perturbation theory in the same way as in the previous section.

(2) In a second step, we consider the reduced system obtained in step 1 as

the new original system.

As in previous section, we need a change of variables to rewrite the original

system in the singular perturbation form. Taking as new variables

A1 = S1 + T1 + R1, A2 = S2 + T2 + M2, G1 = T1 + R1, G2 = T2 + M2.

19



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

system (1,3) becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ1 = b(A2 − M2 + R2) + (1 − ρ)bMM2 − (τ + µ1)A1,

Ȧ2 = ∆S + τ(A1 − R1) − µ2A2 − ηM2,

Ṗ1 = bP2 + ρbMM2 − (τ + µP1)P1,

Ṗ2 = τP1 − µP2P2,

Ṙ2 = ∆R + τR1 + ηM2 − µ2R2,

Ġ1 = −(τ + µ1)G1 + F (G, P, ε)(A1 − G1),

Ġ2 = τ(G1 − R1) − µ2G2 − ηM2 + εF (G, P, ε)(A2 − G2),

ε′Ṙ1 = −ε′(τ + µ1)R1 + γ′′(G1 − R1),

ε′Ṁ2 = γ′′(G2 − M2) − ε′(η + µ2)M2,

where: G = G1 + G2, P = P1 + P2,

εF (G, P, ε) = β ′
T (G − (R1 + M2)) + β ′

P P + εβv.

(12)

We obtain respectively slow and fast variables:

X = (A1, A2, P1, P2, R2, G1, G2) and Z = (R1, M2).

The fast system of (12) has a unique non negative quasi steady state when

ε′ = 0:

Z̃ = (R̃1, M̃2) = h(X) = (G1, G2). (13)
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Substituting this quasi steady state in the slow system, we obtain the following

semi-reduced system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ1 = b(A2 + R2) + ((1 − ρ)bM − b)G2 − (τ + µ1)A1,

Ȧ2 = ∆S + τ(A1 − G1) − µ2A2 − ηG2,

Ṗ1 = bP2 + ρbMG2 − (τ + µP1)P1,

Ṗ2 = τP1 − µP2P2,

Ṙ2 = ∆R + τG1 + ηG2 − µ2R2,

Ġ1 = −(τ + µ1)G1 +

(
β ′

P

ε
P + βv

)
(A1 − G1),

Ġ2 = −(µ2 + η)G2 +

(
β ′

P

ε
P + βv

)
(A2 − G2).

(14)

If conditions (4-5) are verified, and for ε sufficiently small, semi-reduced sys-

tem (14) has a unique non negative steady state X̃ (see appendix A for details).

X̃ = (Ã1, Ã2, P̃1, P̃2, R̃2, G̃1, G̃2).

Let us consider system (14) as our new original system, which is already in

singular perturbation form with X = (A1, A2, P1, P2, R2) and Z = (G1, G2)

as fast and slow variables. The fast system of (14) has a unique non negative

quasi steady state when ε = 0 given by

Z∗ = (G∗
1, G

∗
2) = h(X) = (A1, A2).

Substituting this quasi steady state in the slow part of system (14), we obtain

system (9) as reduced system. We saw in section 3.1 that the steady state of (9)

is exponentially stable. Setting y = (y1,y2) = Z−h(X) = (G1−A1, G2−A2)
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and dt = εdν, we write the boundary layer system as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dy1

dν
= −β ′

P Py1,

dy2

dν
= −β ′

P Py2.

(15)

As system (15) is linear with negative eigenvalues, it is exponentiallly

stable, uniformly in (t,X). By applying theorem 1, we conclude that, for

ε “small enough”, the reduced system (9) is a good approximation of semi-

reduced system (14). In addition, with the appropriate shift of the origin,

hypotheses of theorem 2 are also verified. So we obtain the exponential stability

of X̃ for the semi-reduced system (14).

Let us now consider system (12) and its approximation given by semi-reduced

system (14). The corresponding boundary layer system verified by:

y = (y1, y2) = Z − h(X) = (R1 − G1, M2 − G2)

with dt = ε′dν is: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
d y1

dν
= −γ′′y1,

d y2

dν
= −γ′′y2.

(16)

As (16) is linear and independent of (t, X), the origin is trivially exponen-

tially stable uniformly in (t, X). Hence, theorem 1 allows to conclude that,

for ε′ “small enough”, the reduced model (14) is a good approximation of the

complete system (1,3).

Finally, as in previous section, we conclude that, for well chosen ε and ε′, the

reduced model (9) is a good approximation of the complete system (1,3).
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4 Simulations

Simulations were performed using the Scilab 2 standard ODE inte-

gration procedure. We used realistic parameters values which are

summarised in Table 2. Most parameter values were taken from the

literature. When such referenced values were not available, we con-

sidered reasonable assumptions as follows: we assume that infection

has no effect on the fertility of PI animals, so we set bP = b; βv was

adjusted in order to obtain prevalences in the herd consistent with

observations in BVDV endemic regions. Numerical values provided

in published studies are not always errorless since biological data

are often incomplete or scarce and sometimes missing. From this

point of view, we have in our model two kinds of parameters: (i)

well known parameters, namely demographic parameters (b, τ , µ1

and µ2) and parameters related to purchases (∆S and ∆R), which

are typical for cattle herds; (ii) parameters which are less well char-

acterised, such as transmission parameters and those modelling the

disease epidemiology (βT , βP , ρ, γ, η) or its direct impact on animal

health (µP1 and µP2). For the second group of parameters, sensible

values corresponding to average patterns (when several different val-

ues were available in the literature) were derived from Ezanno et al.

(2007), where these values are supported by a sensitivity analysis.

Since time is measured in years in our simulations, the parameter

units were set accordingly.

2 Scilab, a free scientific software for numerical computation: http://www.scilab.

org
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Table 2

Realistic parameter values used for the numerical simulations (unit); parameter

definitions are given in Table 1.

Demography b, bP bM
1 µ1 µ2 µP1

2 µP2
2 τ η

(year−1) 0.6 0.5 0.7 0.25 1.4 1 0.3 1

Purchases ∆S
3 ∆R

3

(number.year−1) 4 4

Epidemiology βT
4 βP

5 βv γ 5 ρ 6

6 × 10−2 1 4 × 10−2 24 0.4

(number.year)−1 (year−1) (no dimension)

1 in Hartley and Richards (1988); Fray et al. (2000).

2 in Baker (1987); Houe (1993).

3 in Ezanno et al. (2006).

4 in Baker (1987); Brownlie et al. (1987); Houe (1999).

5 in Baker (1987); Houe (1999).

6 in Mc Clurkin et al. (1984); Fray et al. (2000)

For these parameter values, existence conditions (4,5) are fulfilled so there is

an endemic steady state. Numerical computation of this equilibrium state for
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the complete system leads to the following values:

S1 = 25.5, S2 = 7, P1 = 1, P2 = 0.3, R2 = 96,

T1 = 1.5, T2 = 0.5, R1 = 35, M2 = 8.5,

(A1 = 62, A2 = 16, G1 = 36.5, G2 = 9).

(17)

All simulations are performed using the following initial state expressed in

numbers:

W(0) = (65, 110, 1, 0, 0, 0, 0, 0, 0). (18)

4.1 Two time scale simulations

4.1.1 Academic example

In this section, we aim at investigating the time scale separation properties of

system (6), or equivalently of system (1,2). All parameters values are taken

from Table 2 except for the infection and recovery rates, βP =
β′

P

ε
, βT =

β′
T

ε
,

γ = γ′
ε
. They are chosen such that NT β ′

T , NP β ′
P , and γ′ have the same order

of magnitude as the remaining parameters, where NT and NP are typical pop-

ulation sizes for the transiently and persistently infected animals respectively.

Equilibrium state (17) gives an indication about these typical sizes. β ′
P = 0.5,

β ′
T = 0.1, and γ′ = 1 are adequate values.

In order to illustrate the effect of time scale separation, we simulate and com-

pare reduced system (9) with complete system (6) using different values of ε

(ε ∈ {1, 1/3, 1/10, 1/100}). To compare those systems, subscript r is used for

the variables corresponding to the reduced system plus the quasi steady state;
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for example Wr = (Xr, Z
∗), where Xr is the solution of (9) and Z∗ is given

by (8). Let us also note W ∗ = (X∗, Z∗). In the simulations, centred variables

are represented. They are obtained by shifting the original variables of their

equilibrium values, i.e. W − W (ε) for the complete model and Wr − W ∗ for

the reduced model.

Fig. 3 represents the total population size obtained over a 80-year period. We

note a static error between the complete and reduced systems in Fig. 3(a),

which decreases as ε diminishes: from 16 individuals for ε = 1 to less than

2 individuals for ε = 1/100. This error is due to the ε-dependency of the

complete system steady state W (ε). The equilibrium of the reduced model

W ∗ corresponds to ε = 0. To bypass this static error effect we look at the

centred variables in Fig. 3(b), which all tend towards zero. However, we notice

that the transient dynamics approximation is then deteriorated.

Fig. 4 represents the centred infected population size, consisting of all tran-

siently and persistently infected individuals, over a 4-year period. At the be-

ginning of the simulations, a transient error appears between the complete and

reduced systems, because of the neglected fast dynamics. It lasts longer for

higher values of ε: up to 3 years for ε = 1, but less than 6 months for ε = 1/10

and barely noticeable for ε = 1/100. From these simulations, we deduce that

with ε = 1/10, we obtain a decent approximation of the complete system by

the reduced system in the transient phase.

Consequently, to approximate the original system (1), we use a “shifted” re-

duced system to compensate for the static error; “shifted” variables correspond

to centred variables with an additional ε-dependent offset corresponding to

the equilibrium of the original system: Wr −W ∗ + W (ε). With ε values lower
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0 10 20 30 40 50 60 70 80
165

170

175

180

185

190

reduced time (years)ε=1
ε=1/3

ε=1/10
ε=1/100

Total population size

N*

N(0.01)

N(0.1)

N(1/3)

N(1)

(a) Non centred

0 10 20 30 40 50 60 70 80
−25

−20

−15

−10

−5

0

5

reduced time (years)ε=1
ε=1/3

ε=1/10
ε=1/100

Centred total population size

(b) Centred

Fig. 3. Total population size as a function of time for the complete system (6) for

ε ∈ {1, 1/3, 1/10, 1/100} and the reduced system (9). The centred graphs correspond

to the total population size N = A1 + A2 + P1 + P2 + R2 shifted of its equilibrium

value, i.e. N − N(ε) for the complete system and Nr − N∗ for the reduced system.

β′
P = 0.5, β′

T = 0.1, and γ′ = 1; the remaining parameters are given in Table 2.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
−40

−20

0

20

40

60

80

100

120

140

reduced time (years)ε=1
ε=1/3

ε=1/10
ε=1/100

Centred infected population size

Fig. 4. Centred infected population size as a function of time for the complete

system (6) for ε ∈ {1, 1/3, 1/10, 1/100} and the reduced system (9). The graphs

correspond to the infected population size I = T1 + T2 + P1 + P2 shifted of its

equilibrium value, i.e. I − I(ε) for the complete system and Ir − I∗ for the reduced

system. β′
P = 0.5, β′

T = 0.1, and γ′ = 1; the remaining parameters are given in

Table 2.

than 1/10, we hence obtain a satisfying trade-off between the asymptotic and

transient dynamics for the approximation.

4.1.2 Biological example

We use here the set of biologically relevant values given in Table 2. According

to the academic example shown above, with a time scale separation

corresponding to ε � 1/10, the reduced model is a decent approxi-

mation of the complete system. We therefore set ε = 1/10 and check

if the assumptions on the order of magnitude of the parameters are

fulfilled (see section 2.2).
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From the endemic equilibrium values shown in (17), NP � 1 and

NT � 2 are typical population sizes for the persistently and tran-

siently infected animals respectively. Hence β ′
T NT , β ′

PNP and γ′ should

at least have the same order of magnitude as the remaining param-

eters.

With ε = 1/10, we obtain the following values for the infection and recovery

rates: β ′
T = 6 × 10−3, β ′

P = 0.1, and γ′ = 2.4. γ′ is higher than the remaining

parameter, NP β ′
P is a little lower, NT β ′

T is much lower. This means that the

time scale separation between demography and infection is poor, whereas it

is relevant between recovery and the other phenomena involved in the model.

This result is shown on Fig. 5, when comparing the original and shifted reduced

systems over a 20-year long period. The approximation is rather good on

the long run for the infected population, but not as satisfying for the other

variables.

4.2 Three time scale simulations

In this section, we present numerical simulations for system (12), or equiva-

lently system (1,3). We still use the realistic parameter values in Table 2 and

the initial condition (18) to perform these simulations. In order to separate

the infection and recovery time scales, still assuming that ε = 1/10, we need

to set ε′ < ε such that the recovery rate γ′′ has the same order of magnitude

as the remaining parameters; ε′ = 1/24 leads to γ′′ = 1, which is a suitable

value, since 0 < 1/24 < 1/10.

We use the previous notations for the reduced system and similarly denote
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60

N

10

5

time (years)

Total (N), recovered (R), and infected (I) population sizes

original system
shifted semi−reduced system
shifted reduced system

R

I

0 2 4 6 8 10 12 14 16 18 20
0

80

100

120

140

160

180

Fig. 5. Total (N = S1 + S2 + T1 + T2 + P1 + P2 + R1 + M2 + R2), recovered

(R = R1 + M2 + R2), and infected (I = T1 + T2 + P1 + P2) population sizes as

functions of time for: [solid lines] original system (1,3), W (ε, ε′) being its steady

state; [dotted lines] shifted semi-reduced system Ws − W̃ (ε) + W (ε, ε′), where Ws

and W̃ (ε) are respectively the solution and steady state of (14) plus quasi steady

state (13); [dashed lines] shifted reduced system Wr −W ∗+W (ε, ε′), where Wr and

W ∗ are similarly defined for (9) plus (8). Parameter values are given in Table 2, W

in (17), ε = 1/10, ε′ = 1/24.

with subscript s the variables corresponding to the semi-reduced system plus

the quasi steady state; for example Ws = (Xs, Z̃(ε)), where Xs is the solution

of (14) and Z̃(ε) is given by (13). Let us also note W̃ = (X̃, Z̃).

In Fig. 5, we compare the original system (1) with the shifted semi-reduced

and reduced systems over a 20-year long period. As previously, the (semi)-

reduced variables are shifted to compensate for the static error. With two or

three time scales, the reduced systems are similar, so we use the same shift for

the reduced variables: Wr −W ∗ +W (ε, ε′). The shifted semi-reduced variables
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are similarly defined: Ws − W̃ (ε) + W (ε, ε′). W (ε, ε′) is the steady state of

complete system (12); its numerical value is given in (17).

As expected, the semi-reduced system is a valid approximation of the complete

system, in the transient phase and in the long time dynamics. As mentioned

previously, the reduced system is not a satisfying approximation. However, it

seems to fit the original system better than the semi-reduced system for the

infected population. This is actually an artifact due to the representation of

the aggregated infected population. If split up into transiently and persistently

infected populations, as shown in Fig. 6, the semi-reduced system is a better

approximation, especially for the persistently infected population. The tran-

sient infection dynamics is fast in both reduced systems, hence the transient

error.

Fig. 7 compares the original system with the shifted semi-reduced and reduced

systems for the juvenile and adult populations. Due to the fast recovery dy-

namics, there are almost no infected animals, especially in the adult popu-

lation. BVDV is maintained in the flock because of the very few PI animals

that are born and survive. Moreover, most adults are immunised: they were

infected either during their juvenile years or as adults and recovered fast. For

the biological parameter values given in Table 2, however, the infection dy-

namics is not really separated from the demographic dynamics. This explains

why a relatively large fraction of juveniles remain in the susceptible state after

their birth, which can also be seen in the steady state values given by (17).
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time (years)shifted semi−reduced system
shifted reduced systemoriginal system

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Transiently (T) and persistently (P) infected population sizes

T

P

Fig. 6. Transiently (T ) and persistently (P ) infected population sizes as functions

of time: [solid lines] T and P for original system (1,3); [dotted line] shifted P

for semi-reduced system (14,13); [dashed line] shifted P for reduced system (9,8);

[dash-dotted line] shifted T for the semi-reduced and reduced systems (T = T ).

Variable definitions and parameter values are the same as in Fig. 5.

5 Discussion

Time scales can be used to reduce the dimension of epidemiological models.

Singular perturbations are then valuable tools to corroborate the results of

time scale approximations. Here, this method was applied to a model of BVDV

spread in a cattle herd.

Even though singular perturbation theory is a well established tech-

nique which was already used in previous studies to reduce the

dimension of biological systems, our work presents particularly in-

teresting aspects when simultaneously considering theoretical and
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(a) Juveniles
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Age class 2: total (N), recovered (R), and infected (I) population sizes
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(b) Adults

Fig. 7. Age class specific total, recovered, and infected population sizes as functions

of time for: [solid lines] original system (1,3); [dotted lines] shifted semi-reduced

system (14,13); [dashed lines] shifted reduced system (9,8). Variable definitions and

parameter values are the same as in Fig. 5.33
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applied perspectives: (i) contrary to the large majority of similar

studies we introduce three time-scales (already used in Lenbury

(1996) but in a less disease specific framework) related to biolog-

ical processes of different speeds leading to satisfying asymptotic

approximation of the initial system, obtained without forcing val-

ues of biological parameters; (ii) the dimension of our initial model

is relatively high compared with other application-oriented studies

using singular perturbation tools (such as Song et al. (2002)) and

(iii) numerical values of parameters were chosen according to biolog-

ical relevance, allowing further use of the reduced model in realistic

context of BVDV spread in metapopulations.

We have developed a model representing BVDV spread in the herd which

captures the main characteristics of the infection and of the host population.

The population is structured into two age classes and takes into account the

two types of infectious individuals. Firstly, transiently infected animals shed

a low amount of virus during a few days (transmission rate βT ). Secondly,

persistently infected animals may be born after the infection of their dam dur-

ing mid-pregnancy, and they shed a large amount of virus for their entire life

(transmission rate βP ). Disease transmission mainly occurs via ani-

mal in the herd, but herds can also be contaminated in the field by

contact with infected neighbouring herds, especially in endemic re-

gions. Therefore, a specific transmission rate (βv) was considered to account

for a constant risk of introducing the pathogen in the herd. As these three

transmission rates, βT , βP and βv, have different orders of magnitude, and

moreover as infection processes go relatively faster than demography, several

time scales were identified and used to propose a reduced system. Our model
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of BVDV spread in a herd is still fairly simplified. Cattle herds usually have

a finer structure and animals may have less contact with animals from other

groups than from their own group (Ezanno et al., 2007). Furthermore, cattle

herds are small populations and stochastic models may be more appropri-

ate to represent the spread of a pathogen in such a population. However, the

simplified model studied here has a dynamical infection behaviour which is

consistent with the one obtained by simulating more detailed models. There-

fore, it allows us to use the time scale separation to reduce the herd model

and propose a tractable model for further work in a metapopulation context,

through the coupling of several hence reduced local models.

In theory, singular perturbation order reduction requires a clear separation

between the system time scales to obtain a valid approximation. In practical

applications, it can be tested as soon as the separation factor ε is not more

than 1
10

. In our model, a clear time scale separation is achieved for the re-

covery process. We hence rigorously proved a biological intuition: transiently

infected individuals can be neglected when capturing the global dynamics of

BVDV spread. However, time scale separation for the infection process is less

obvious, at least with our realistic parameter values which lead to very

small typical infected population sizes (1-3 infected individuals). In

more contaminated herd, the time scale separation and hence the

approximation would be better. Simulations showed that even assuming

a relatively good time scale separation between demography and infection,

there was still a bias between the complete and reduced models. This is due

to the ε-dependence of the steady state of the complete model, when the re-

duced system is computed assuming ε = 0 which makes it ε-independent.

Using a shifted reduced system compensated for this static error, but it dete-
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riorated the transient phase approximation. The singular perturbation theory

allows this drawback to be overcome by the computation of an ε-dependent

reduced model, as indicated in Khalil (1996). This should help making the

complete reduction to five states more relevant even when the infection force

is low. Our next efforts will be concentrated in this direction.

Our study has illustrated that singular perturbations are a very interesting

tool to reduce model complexity. It allows to investigate rigorously intuitive

simplifications that specialists in a field make on their systems, and to build

reduced (though approximated) models that can be used, after coupling with

other similar models, in a metapopulation framework.

A Existence of an endemic steady state

A.1 Original system

We want to prove the existence of a non negative equilibrium for the original

model (1) denoted by vector:

W = (S1, S2, T1, T2, P1, P2, R1, M2, R2),

with T1 + T2 + P1 + P2 > 0 so as to obtain an endemic steady state, for a non

trivial set of parameters.

We first do some algebra and after successive substitutions and manipulations

of different equations of system (1,2), we find that M2, P1 and P2 are expressed

as linear functions of T2, R1 as a linear function of T1 and S1, S2 and R2 depend
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linearly on both T1 and T2. More precisely, we have:

M2 =
γ′T2

ε(η + µ2)
, P1 =

ρbMµP2γ
′T2

εcP (η + µ2)
, P2 =

τρbMγ′T2

εcP (η + µ2)
,

R1 =
γ′T1

ε(τ + µ1)
, R2 =

τγ′T1

ε(τ + µ1)µ2

+
ηγ′T2

ε(η + µ2)µ2

+
∆R

µ2

,

S1 = −(1 +
s11

ε
)T1 − s12T2

ε
+ s10, S2 = −s21T1

ε
− (1 +

s22

ε
)T2 + s20,

(A.1)

where s11, s12, s10, s21, s22 and s20 are positive expressions of model parame-

ters.

T1 (and T2, their relationship being quasi-symmetric) can be calculated as a

root of a third order polynomial QT1(x) (or QT2(x) respectively) and has non

analytically tractable formula. In order to circumvent this problem, we use a

second-order Taylor expansion of QT1(x) (and QT2(x) respectively) around ε

and obtain that T1 ∼ εαT1 (and T2 ∼ εαT2 respectively), with αT1 > 0 (and

αT2 > 0 respectively) under the assumptions cS > 0 (4) and cP > 0 (5).

Hence, with these assumptions and if ε is “small enough”, T1 and T2 are

positive and we can easily see from (A.1) that the positivity is then also verified

for P1, P2, R1, R2 and M2. Steady states S1 and S2 are also positive. Indeed,

S1 can be directly computed from the equation describing the T1 dynamic in

the complete system (1) as a combination of positive quantities. S2 is linearly

related to S1, through a positive coefficient, from the equation describing the

S2 dynamic in system (1).

Consequently, parameter conditions (4-5) and a “small enough” ε ensure that

system (1,2) has a positive endemic steady state.
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A.2 Semi-reduced system

In the same way, one can prove existence of a unique endemic steady state

(Ã1, Ã2, P̃1, P̃2, R̃2, G̃1, G̃2) for the semi-reduced model (14) under similar

assumptions. After successive substitutions and manipulations, we obtain the

following relations:

R̃2 =
τG̃1

µ2

+
ηG̃2

µ2

+
∆R

µ2

, P̃1 =
ρbMµP2G̃2

cP

, P̃2 =
τρbM G̃2

cP

,

Ã1 = −µ2((1 − ρ)bM − b)

cS
G̃2 +

∆S + ∆R

cS
,

Ã2 =
µ2τ((1 − ρ)bM − b) − ηcS

µ2cS

G̃2 − τ

µ2

G̃1 +
τ∆Sµ2 + τb∆R + µ1∆Sµ2

µ2cS

,

(A.2)

where all parameters are independent of ε.

Then, G̃1 (or G̃2) can be calculated as a root of a third order polynomial.

Using the arguments given above, we obtain the existence of a unique positive

solution (G̃1, G̃2) under the assumptions cS > 0 (4), cP > 0 (5) and for ε

“small enough”. Consequently, we obtain the positivity of (P̃1, P̃2, R̃2) from

(A.2); positivity of (Ã1, Ã2) can be proved using the equation of system (14)

at the equilibrium.

B Singular perturbation theory

Consider the standard singular perturbation model:

ẋ = f(t, x, z, ε), x ∈ R
n, x(t0) = ξ(ε), (B.1a)

εż = g(t, x, z, ε), z ∈ R
m, z(t0) = φ(ε). (B.1b)
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Call z∗ = h(t, x) the quasi steady state of equation B.1b with ε = 0, i.e. the

solution of:

0 = g(t, x, z, 0)

The reduced model is:

ẋ = f(t, x, h(t, x), 0). (B.2)

Taking y = z − h(t, x), we define the boundary-layer system as:

dy

dν
= g(t, x, y + h(t, x), 0). (B.3)

The singular perturbation theory provides the following results (Khalil, 1996).

Theorem 1 Assume that the following conditions are satisfied for all

(t, x, z − h(t, x), ε) ∈ [0,∞) × Br × Bρ × [0, ε0].

• The functions f , g and their partial derivatives with respect to (x, z, ε) are

continuous and bounded.

The function h(t, x) and the Jacobian [∂g(t, x, z, ε)/∂z] have bounded first

partial derivatives with respect to their arguments.

The Jacobian [∂f(t, x, h(t, x), 0)/∂x] has bounded first partial derivatives

with respect to x.

The initial data ξ(ε) and φ(ε) are smooth functions of ε.

• The origin of the reduced model (B.2) is exponentially stable.

• The origin of the boundary-layer system (B.3) is exponentially stable uni-

formly in (t, x).

Then, there exist positive constants µ1, µ2 and ε∗ such that for all

‖ξ(0)‖ < µ1, ‖η(0) − h(t0, ξ(0))‖ < µ2, and 0 < ε < ε∗

39



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

the singular perturbation problem (B.1) has a unique solution x(t, ε), z(t, ε)

defined for all t � t0 � 0, and

x(t, ε) − x∗(t) = O(ε)

z(t, ε) − h(t, x∗(t)) − ŷ(t/ε) = O(ε)

hold uniformly for t ∈ [t0,∞), where x∗(t) and ŷ(t) are the solutions of the

reduced (B.2) and boundary-layer problems (B.3).

Moreover, given any tb > t0, there is ε∗∗ � ε∗ such that

z(t, ε) − h(t, x∗(t)) = O(ε)

holds uniformly for t ∈ [tb,∞) whenever ε < ε∗∗.

Theorem 2 Assume that the following assumptions are satisfied for all

(t, x, ε) ∈ [0,∞) × Br × [0, ε0].

• f(t, 0, 0, ε) = g(t, 0, 0, ε) = 0.

• The equation 0 = g(t, x, z, 0) has an isolated root z = h(t, x) such that

h(t, 0) = 0.

• The functions f , g and h and their partial derivatives up to order 2 are

bounded for z − h(t, x) ∈ Bρ.

• The origin of the reduced model (B.2) is exponentially stable.

• The origin of the boundary-layer system (B.3) is exponentially stable uni-

formly in (t, x).

Then, there exists ε∗ > 0 such that for all ε < ε∗, the origin of (B.1) is

exponentially stable.

40



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

Note 1 Consider the alternative singular perturbation model:

Ẋ = F (t, X, Z, ε), X ∈ R
n, X(t0) = Ξ(ε),

εŻ = G(t, X, Z, ε), Z ∈ R
m, Z(t0) = Φ(ε),

where (X(ε), Z(ε)) is a non trivial equilibrium of this system.

Call Z∗ = H(t, X) the quasi steady state, solution of G(t, X, Z, 0) = 0. The

reduced model is:

Ẋ = f(t, X, H(t, X), 0).

Note X = X(ε) + x, Z = Z(ε) + z, and define:

f(t, x, z, ε) = F (t, X, Z, ε), ξ(ε) = Ξ(ε) − X(ε),

g(t, x, z, ε) = G(t, X, Z, ε), φ(ε) = Φ(ε) − Z(ε),

h(t, x) = H(t, X) − Z∗,

As long as X(0) = X∗ and Z(0) = Z∗ exist, with X∗ the equilibrium of

the reduced model, theorems 1 and 2 can be either applied to (f, g, h) or to

(F, G, H), using X∗ for the reduced model and (X(ε), Z(ε)) for the system

instead of the origin.
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