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bLaboratório de Avaliação e Promoção da Saúde Ambiental, FIOCRUZ, Av.
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Bioassays were performed to find out how field samples of the toxic cyanobacteria1

Microcystis aeruginosa affect Moina micrura, a cladoceran found in the tropical2

Jacarepagua Lagoon (Rio de Janeiro, Brazil). The DEBtox approach has been pro-3

posed for use in analysing chronic toxicity tests as an alternative to calculating4

the usual safety parameters (NOEC, ECx). DEBtox theory deals with the energy5

balance between physiological processes (assimilation, maintenance, growth and re-6

production), and it can be used to investigate and compare various hypotheses7

concerning the mechanism of action of a toxicant. Even though the DEBtox frame-8

work was designed for standard toxicity bioassays carried out with standard species9

(fish, daphnids), we applied the growth and reproduction models to M.micrura, by10

adapting the data available using a weight-length allometric relationship. Our mod-11

elling approach appeared to be very relevant at the individual level, and confirmed12

previous conclusions about the toxic mechanism. In our study we also wanted to13

assess the toxic effects at the population level, which is a more relevant endpoint in14

risk assessment. We therefore incorporated both lethal and sublethal toxic effects15

in a matrix population model used to calculate the finite rate of population change16

as a continuous function of the exposure concentration. Alongside this calculation,17

we constructed a confidence band to predict the critical exposure concentration for18

population health. Finally, we discuss our findings with regard to the prospects for19

further refining the analysis of ecotoxicological data.20

Key words: allometry, DEBtox models, matrix population model, Bayesian21

inference, Moina micrura, Microcystis aeruginosa22

∗ Corresponding author. Adress: billoir@biomserv.univ-lyon1.fr
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1 Introduction23

One of the main objectives in ecotoxicology is to provide an estimation of24

safety parameters, e.g. No Observed Effect Concentration (NOEC) and x%25

Effect Concentration (ECx), that can be derived from standardarized toxic-26

ity tests (OECD, 1998; ISO, 2000). These approaches have been criticized for27

many reasons: 1) NOEC and ECx usually focus on a single endpoint (mortality,28

growth or reproduction); 2) the standard tests involve a fixed exposure time,29

irrespective of the properties of the chemical being tested; 3) they generally30

use only a few standard species, which may not be relevant to the ecosystem31

being investigated; 4) NOEC and ECx are based on purely descriptive regres-32

sion models, and are unrelated to the physiological processes of the organisms33

that are being tested, and to the toxicokinetics of the compound being tested34

(Chapman, 1996; Kooijman & Bedaux, 1996; Péry et al., 2002; Jager et al.,35

2004, 2006). Biology-based models, such as DEBtox (Dynamic Energy Budget36

Theory applied to toxicity data) (Kooijman & Bedaux, 1996), have been pro-37

posed to overcome these shortcomings: 1) this modelling approach is based on38

the concept of No Effect Concentration (NEC), which is common to several bi-39

ological processes and consequently to several sublethal endpoints (e.g. growth40

and reproduction); 2) DEBtox models take into account the toxicokinetics of41

the chemical being tested; 3) they were originally developped for a standard42

panel of species, but they can be adapted to others; 4) DEBtox theory is a43

mechanistic modelling approach, based on several assumptions about how the44

test compound disrupts the energy balance between the various physiological45

processes.46

In addition, ecotoxicology is now attempting to assess the impact of chemical47
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compounds not only on individuals, but also at higher organizational levels.48

For example, the population level is particularly relevant when different life49

stages may display different susceptibilities to toxic compounds (Emlen &50

Springman, 2007). In this case, the finite rate of population increase λ is51

considered to be a robust endpoint (Forbes & Calow, 1998). Various methods52

can be used to relate the effects of a compound on individuals to its impact53

on the finite rate of population increase. The one we chose was the matrix54

population model approach, which has already been successfully combined55

with DEBtox models (Lopes et al., 2005; Billoir et al., 2007).56

Cyanobacteria are some of the most ancient organisms on Earth ( ≃ 4 billion57

years), and the first to develop the ability to fix atmospheric carbon and re-58

lease oxygen through photosynthesis. Another distinguishing characteristic of59

cyanobacteria is the fact that they produce secondary metabolites with toxic60

properties, known as cyanotoxins (Carmichael, 1992). Cyanotoxins have been61

responsible worldwide for deaths of wild and domestic animals, and also for62

some human fatalities (Ressom et al., 1994; Jochimsen et al., 1998; Carmichael63

et al., 2001). The most common cyanotoxins are the hepatotoxic peptides,64

which are produced by some genera of freshwater bloom-forming cyanobac-65

teria such as Microcystis, Anabaena and Oscillatoria. In spite of the effects66

observed in non-target organisms, such as mammals, one of the most gener-67

ally accepted hypotheses to explain the evolutionary role of these toxins is68

that they are produced to protect cyanobacteria against their main predators,69

including the herbivorous zooplankton, such as Daphnia. According to this hy-70

pothesis, cyanotoxins act as chemical defenses against zooplankton predators,71

by decreasing their fitness (Lampert, 1981, 1987). The interaction between72

cyanobacteria and zooplankton has been widely used as a model system to73
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study the evolutionary role of cyanotoxins. Also, since cyanotoxins also pose74

some risk to human health, the ecotoxicology of the cyanobacteria-zooplankton75

system is used to study the mechanisms of action of these toxins in aquatic76

organisms, and can be used as the basis for guidelines for environmental health77

and water quality as well.78

In this study, we used ecotoxicological data from the study of Ferrão-Filho &79

Azevedo (2003), which reported the effects of naturally-occurring cyanobac-80

teria from a hypereutrophic coastal lagoon in Brazil, including data from life-81

table and growth experiments with Moina micrura Kurs, a tropical freshwa-82

ter cladoceran. In contrast to the big temperate cladocerans, such as Daphnia83

(2.0-4.0 mm body size), M. micrura is much smaller (0.8-1.0 mm body size),84

reaches maturity after only 2-3 days, and has a shorter life-cycle (no more85

than 20 days).86

Our main goal was to study the interaction between Microcystis and M. mi-87

crura by applying the DEBtox modelling framework to experimental data, in88

order to validate some hypotheses, in particular concerning the mechanism of89

action of the toxicant. Our second goal was to improve the ecotoxicological90

relevance of the analysis. To do this, both lethal and sublethal effect models91

were included in matrix population models, allowing us to extrapolate the im-92

pact of toxic effects observed in individuals to the population level. Moreover,93

a confidence band was added to the population endpoint to predict critical94

exposure concentrations for population health.95
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2 Models and Methods96

2.1 Data97

The data were obtained from life-table and growth experiments (Experiments98

2 and 5, respectively, described in Table I in the study of Ferrão-Filho &99

Azevedo (2003)), carried out with a sample of a naturally occurring bloom100

of cyanobacteria from Jacarepaguá Lagoon, in Rio de Janeiro (Brazil). The101

sample consisted of particulate material (seston) collected with a plankton net102

(25 µm). This sample was centrifuged, and the supernatant containing large103

colonies was discarded, while the settled material was used in the experiments.104

This material consisted mostly of single cells and small colonies of Microcystis105

(5-20 µm), and a small proportion of algae and detritus. Different concen-106

trations of seston, expressed as organic carbon (0.25 to 1.5 mg C L−1), were107

used in the experiments. The microcystin (toxin) concentration in this sample108

was 3.1 mg g−1 of dry weight, and nominal microcystin concentrations in the109

seston treatments ranged from 1.6 to 9.4 µg L−1. The controls (0.0 mg C L−1
110

of seston) consisted of animals fed solely with nutritious green algae at the111

concentration of 1.0 mg C L−1. To avoid interference from nutrition factors,112

as a result of a poor food supply, the same amount of green algae was mixed113

with all the seston treatments.114

The life-table experiment was performed with 20 replicate animals (females)115

per treatment, and lasted 16 days. Survivorship and neonates produced per116

female, as the cumulative number of offspring, were recorded daily. The growth117

experiment was performed with three replicate bottles containing 50 newborns118

(< 24 h), and lasted 6 days, with samplings for weighting the animals on days119
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2, 4 and 6.120

2.2 DEBtox modelling121

At the individual level, we used DEBtox modelling (Kooijman & Bedaux,122

1996) to describe the effects of the contaminant on life history traits measured123

during the experiments (e.g. growth, reproduction). The DEBtox framework124

is based on the DEB theory, which assumes that energy is derived from food,125

and is assimilated to constitute reserves. These reserves are shared between126

three main processes: maintenance, growth, and reproduction. DEBtox models127

deal with sublethal effects by assuming that the contaminant affects the en-128

ergy balance, and consequently affects growth and reproduction. The DEBtox129

theory also comprises a contamination kinetics model and a survival model130

for the lethal effects of the toxicant. These different parts are presented below.131

All DEBtox variables and parameters are summarized in Table 1.132

2.2.1 Toxicological aspects133

Lethal and sublethal effects of a contaminant are modelled using the following134

stress function:135

s(cq(t)) = c−1
∗

(cq(t) − NEC∗)+ (1)136

where (cq(t) − NEC∗)+ = max(0, cq(t) − NEC∗). Indeed, in accordance with137

the DEBtox theory (Kooijman & Bedaux, 1996), the contaminant is assumed138

to produce an effect when the concentration inside the organisms (cq(t)) ex-139

ceeds a concentration called the No Effect Concentration (NEC∗, ∗ = L for140

the lethal effects, ∗ = S for the sublethal effects). Moreover, the toxic effect is141
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assumed to be proportional to the excess above the NEC∗. c∗ is the so-called142

tolerance concentration (Kooijman & Bedaux, 1996), which can be seen as a143

kind of toxicity rate reciprocal (∗ = L for the lethal effects, ∗ = H , R, A, G,144

or M for the sublethal effects, depending on the mechanism of action being145

considered (see Sublethal effects)). cq(t) corresponds to the scaled concentra-146

tion of the toxic compound inside the organism at time t, determinated by147

the following one-compartment kinetic model:148

dcq(t)

dt
=

ck̇e

l(t)
− cq(t)(

k̇e

l(t)
+

d ln(l(t)3)

dt
) (2)149

where k̇e is the elimination rate, c the exposure concentration and l(t) the150

scaled body length at time t. The initial condition for the contamination ki-151

netics equation was set at cq(t = 0) = 0, as exposure started at the beginning152

of the experiment. For a more detailed explanation of this kinetics, see Kooi-153

jman & Bedaux (1996).154

2.2.2 Lethal effects155

As far as the lethal effects were concerned, we used a classical modelling with156

a tolerance function q(t, c) expressed as the exponential of minus a cumulative157

hazard function. Thus, the probability q(t, c) of surviving until time t with an158

exposure concentration of c can be written as follows:159

q(t, c) = exp(−

t
∫

0

ḣ(τ, c)dτ) (3)160
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where ḣ(τ, c) is the hazard rate at time τ and exposure concentration c. ḣ(τ, c)161

is written as follows:162

ḣ(τ, c) =































ṁ + s(cq(τ)) if c > NECL and τ > t0

ṁ else

163

where t0 is the time at which cq(τ) exceeds NECL: t0 = −k̇−1
e ln(1 −

NECL

c
)164

being defined only if c > NECL.165

2.2.3 Sublethal effects166

Five possible mechanisms of action were proposed to deal with sublethal ef-167

fects of the contaminant on the various processes considered in the DEBtox168

framework (assimilation, maintenance, growth, reproduction): an increase in169

maintenance costs (Maintenance), an increase in growth costs (Growth), a170

decrease in assimilation (Assimilation), an increase in egg production costs171

(Costs), or a surmortality during oogenesis (Hazard) (Kooijman & Bedaux,172

1996). These five assumptions led to different equations for modelling growth173

and reproduction, the endpoints potentially measured in toxicity tests involv-174

ing zooplankton. Contaminant kinetics, individual growth and reproduction175

are interrelated, so the corresponding equations had to be considered simulta-176

neously. All the equations are summarized in Table 2 (Billoir et al., in press),177

and their variables and parameters in Table 1.178
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2.2.4 DEBtox parameter estimation179

In this study, the investment ratio g was fixed at g = 1, the reference value for180

control organisms at optimal temperature (Kooijman & Bedaux, 1996; Kooi-181

jman et al., 2003), and the ingestion rate as a fraction of its maximum value,182

f , was fixed at f = 1, as the organisms were fed ad libitum. We collected data183

for 16 days, but we only used the data from day 0 to 10 to fit the models,184

because after 10 days, senescence effects appeared, which were not taken into185

account in the models. For the estimation of survival DEBtox parameters (k̇e,186

NECL, k̇t and m), we performed nonlinear regression of equation (3) on the187

survival data, based on a least squares criterion, implying data independence,188

homoscedasticity and normal error assumptions. To minimize the residual sum189

of squares, we used the optim() function implemented in the R language (R190

Development Core Team, 2007). For the estimation of the growth and repro-191

duction DEBtox parameters (k̇e, NECS, c∗, Lm, γ, Ṙm and lp), Billoir et al.192

(in press) have shown that nonlinear regression is sometimes inadequate, so we193

used Bayesian inference with WinBugs (Lunn et al., 2000) and WBDiff (Lunn,194

2004) softwares, as proposed by Billoir et al. (resubmitted). From the arbitrary195

prior probability distribution for each parameter, Bayesian inference provides196

estimates as samples of posterior distributions given the data. Moreover, this197

estimation method made it easy to fit growth and reproduction data simulta-198

neously. In this study, we used slightly informative prior distributions which199

are summarized in Table 3. After checking the convergence of the estimation200

process, we considered the posterior distribution means as estimates. k̇e was201

involved in both the lethal and sublethal models, and consequently it was es-202

timated in two different ways, which could yield different values. Thereafter,203

though this is questionable (see Discussion), we kept both these estimates,204
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and used each for the models for which it had been estimated.205

2.3 Allometric relationship206

As only dry body weight data were available, rather than the body length207

data required to fit DEBtox models, these two quantities were related using208

an allometric relationship. The typical form for such a relationship is as follows209

(Jerison, 1973):210

y = axb or log(y) = log(a) + b log(x) (13)211

where y and x are biological quantities, a and b are both regression parameters.212

In our case, y corresponded to the body length, and x corresponded to the213

dry body weight. To estimate the a and b parameters, we performed a linear214

regression in the log-log representation with data collected between day 2 and215

6 in five independent growth experiments performed on M. micrura fed with216

different kinds of food (data from Ferrão-Filho et al. (2005)). As neither body217

length nor dry body weight was a controled variable, we used an orthogonal218

regression method. Once the allometric relationship had been established, we219

used it to infer body lengths from dry body weights, once again for weight220

data collected between day 2 and 6 in the toxicity experiments with seston.221

2.4 Matrix population model222

2.4.1 Principles223

To extrapolate the effects of contaminants from the individual to the popu-224

lation level we used matrix population models, which were first proposed by225
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(Leslie, 1945, 1948), and which have already been coupled to DEBtox models226

(Lopes et al., 2005; Billoir et al., 2007). These discrete time models deal with227

populations subdivided into classes based on age or body length. Individuals228

pass from one class to the next at each time step, the number depending on229

their survival rates. The number of age-class 1 offspring produced by adults230

depended on their fecundity rates. Only females were taken into consideration231

in our study. Let N(t) represent the population at time t (the components232

of the vector are the size of each class). If L denotes the Leslie matrix, the233

population dynamics is modelled using the following matrix equation:234

N(t + 1) = LN(t)235

Within this matrix modelling framework, the dominant eigenvalue of L, de-236

noted by λ, corresponds to the finite rate of population increase (Caswell,237

2001; Skalski et al., 2007). If λ > 1, the population increases. The finite rate238

of population increase, λ, is related to another common index at the popula-239

tion level, the intrinsic rate of population increase, r, with λ = exp(r).240

2.4.2 Application241

In our case, an age-specific population structure was more appropriate, be-242

cause we had far more information about reproduction and survival as a func-243

tion of age than about body length, which was deduced from weight measure-244

ments using the allometric relationship. The effect models of DEBtox theory245

provided survival (Equation (3)) and reproduction (Equations (8 to 12)) as246

functions of time, t, and of the toxicant exposure concentration, c. This also247

made it possible to calculate the vital rates as continuous functions of t and c.248

We decided to use a pre-breeding census (Caswell, 2001), meaning that data249
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were collected just before the birth pulse. Let Pi be the probability of sur-250

viving from one age class to the next and Fi be the fecundity rate, i.e. the251

number of offspring reaching age class 1 per female of age class i. Hence, we252

got:253

Pi(c) =
q(i + 1, c)

q(i, c)
(14) and Fi(c) =

i+1
∫

i

P1(c)Ṙ(t, c)dt (15)254

where q(i, c) is the probability of surviving until age class i for a toxicant255

exposure concentration c (Equation (3)), and R(t, c) is the reproduction rate256

at time t and exposure concentration c (Equations (8 to 12)).257

We used a matrix model with 10 age classes and a time step of 1 day (0-1 day,258

1-2 days, ..., 9-10 days), because we used data over 10 days to fit individual259

models. M. micrura can live and reproduce for more than 10 days, so we added260

a term G10 to the diagonal of the matrix, allowing the organisms to loop in261

the last age class. However, in the experiments under consideration, almost all262

of the organisms had died after 16 days, including the controls. Consequently,263

we used G10 = 0.5P9, ensuring a survival probability of less than 1 % after 16264

days.265
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Assuming that reproduction can occur from age class 2, the matrix is written266

as follows:267

L =



































































0 F2 F3 · · · F9 F10

P1 0 0 · · · 0 0

0 P2 0 · · · 0 0

0 0 P3 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · P9 G10



































































268

where all the matrix coefficients depend on the exposure concentration. To269

evaluate the effects of cyanobacteria on zooplankton at the population level,270

the finite rate of population increase, λ, was plotted as a function of the271

exposure concentration.272

2.4.3 Confidence interval for λ273

In order to evaluate a confidence interval for the finite rate of population274

increase, λ, we proposed a method based on bootstrapping. For both lethal275

and sublethal parameters, we drew 10000 DEBtox parameter sets: in their 95276

% Beale joint confidence region (Beale, 1960) for the lethal ones (k̇e, NECL, k̇t277

and m) which were estimated by nonlinear regression, and in the sample of the278

joint posterior distribution for the sublethal ones (k̇e, NECS, c∗, Lm, γ, Ṙm279

and lp) which was provided by the Bayesian inference. From each parameter280

set, we next deduced the vital rates of the matrix population model and the281
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corresponding λ, thus we obtained 10000 λ values. Finally, we considered the282

2.5th and 97.5th quantiles of this sample as the limits of a 95% confidence283

interval for λ, the finite rate of population increase.284

3 Results285

3.1 Allometric relationship286

All the data we used to calculate the allometric relationship are plotted in287

Figure 1 (A). They were consistent with underlying hypotheses of the model,288

we did not identify any outlier or marginal value. The orthogonal linear regres-289

sion gave good results, with distances to the regression line close to normality290

(Figure 1 (B)). We obtained the following allometric relationship (Jerison,291

1973):292

y = exp(6.42)x0.144 or log(y) = 6.42 + 0.144 log(x)293

x being the dry weight and y being the body length.294

3.2 Lethal effects295

The survival data were fitted by a nonlinear regression based on the least296

squares criterion. Results are presented in Figure 2. Although the theoretical297

curves did not all fit the data perfectly (Figure 2), we considered that the fits298

were satisfactory for our purposes. We were not attempting to describe the299

survival data accurately, but just wanted to exrapolate the results from the300

individual level to the population level.301
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3.3 Sublethal effects302

Simultaneous fitting performed by Bayesian inference on growth and repro-303

duction data with the five assumptions about the mechanism of action of the304

toxicant are shown in Figure 3. For reasons of clarity, data replicates are not305

shown, and we only plotted the replicate mean for each time and each expo-306

sure concentration. Figure 3 allowed us to visualize the quality of fit, and to307

compare the different assumptions about the seston mechanism of action. The308

two best models seemed to be the Assimilation and the Maintenance models309

(Figure 3 (A) and (C)). With these two assumptions of either decreased as-310

similation or increased maintenance costs, the DEBtox models fitted both the311

reproduction and growth data well, except for reproduction at 1.0 mg C L−1.312

However, we had only few replicates of the data at this concentration, because313

of high mortality. Consequently, the reproduction data at 1.0 mg C L−1 were314

not as reliable as the data measured at lower exposure concentrations.315

As far as the other assumptions about mechanism of action of the seston were316

concerned (Figure 3 (B), (D) and (E)), they clearly disagreed with the growth317

data. The Costs and Hazard models considered no effect of the contaminant318

on the growth process (Figure 3 (D2) and (E2)), whatever the exposure con-319

centration. The assumption of increased growth costs (Growth model) (Figure320

3 (B2)) did not match the body length data. Moreover, this mechanism of321

action is marked by a delay in the onset of reproduction as soon as the No322

Effect Concentration (NEC) is exceeded. This feature is not obvious from the323

reproduction data (Figure 3 (B1)), as a delay in the onset of reproduction324

was only noticed for the two highest concentrations of seston (1.0 and 1.5 mg325

C L−1, which were less reliable), and although a clear effect of seston was326
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already observed at lower concentrations (0.25 and 0.5 mg C L−1), this was327

not accompanied by any delay in the onset of reproduction.328

3.4 Population level329

As a population endpoint, the finite rate of population increase λ is repre-330

sented as a function of seston exposure concentration in Figure 4 (A), with331

the five possible assumptions concerning the toxicological mechanism of ac-332

tion. We have also included in the graph the results reported by Ferrão-Filho333

& Azevedo (2003): in their study, they calculated the intrinsic population334

rate of increase r, and we were able to compare this to our results by using335

λ = exp(r). For exposure concentrations between 0 and 0.5 mg C L−1, our re-336

sults seemed to be consistent with those obtained by Ferrão-Filho & Azevedo337

(2003), though we obtained slightly lower values in general. From about 0.7338

mg C L−1, with the Maintenance, Growth and Assimilation models, we ob-339

served a drastic drop in population growth due to effects on reproduction.340

Indeed, using these three assumptions to explain the mechanism of action of341

the seston, the DEBtox models predicted no reproduction at all for exposure342

concentrations from 1.0 mg C L−1 (Figure 3 (A1, B1 and C1)). Consequently,343

the choice of the mechanism of action strongly influenced the threshold con-344

centration from which the population was predicted to go extinct (λ = 1), as345

this threshold concentration ranged from 0.75 to 1.2 mg C L−1, depending on346

the mechanism of action considered. Ferrão-Filho & Azevedo (2003) obtained347

λ ≈ 1.05 for the exposure concentration of 1.0 mg C L−1This prediction was348

much more optimistic than our results (λ ≈ 0.25) using the two best models349

of sublethal effects at the individual level (the Assimilation and Maintenance350
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models).351

We also calculated a confidence interval for λ, and in Figure 4 (B) we show352

the results obtained with the Assimilation model which appeared to be one of353

the two best models for describing sublethal effects. Calculating a confidence354

interval for λ as a continuous function of exposure concentration led to a355

confidence band that could also be read horizontally. This enabled us to deduce356

a prediction interval for the threshold concentration leading to population357

extinction (λ = 1): 0.68-0.82 mg C L−1 with the Assimilation model. We358

obtained similar results with the Maintenance model.359

4 Discussion360

The best fits for our data were obtained with the Assimilation and Mainte-361

nance models, which suggests that these indirect effects (a decrease in food362

assimilation and an increase in maintenance costs) are the most probable363

mechanisms of action of cyanobacteria on M. micrura. This was consistent364

with the results of Ferrão-Filho & Azevedo (2003), which showed that ses-365

ton containing toxic Microcystis reduced the filtering rate (and therefore the366

food assimilation) and fitness (measured as the intrinsic rate of population367

increase, r) in this cladoceran species. Moreover, microcystins are known to368

inhibit the activity of protein phosphatase 1 and 2A in Daphnia (DeMott &369

Dhawale, 1995), which leads ultimately to the disruption of the cell cytoskele-370

ton (Carmichael, 1992). Recent research has also shown that microcystins371

can cause gut damage in Daphnia by disrupting contact between gut cells372

(Rohrlack et al., 2005). This biochemical-cellular mechanism of action of the373

microcystins is therefore completely compatible with the decrease in assimi-374
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lation predicted by DEBtox models used to analyse the data of M. micrura375

exposed to toxic Microcystis containing microcystins.376

An important assumption of DEB theory is that food is shared between four377

main metabolic processes: assimilation, somatic maintenance, growth and re-378

production. As cyanobacteria form part of the zooplankton diet, they are also379

a source of energy, and so toxins (i.e. microcystins) can be assimilated di-380

rectly with food from the gut. Our findings show that the DEBtox theory381

can provide an excellent framework for studying the effects of cyanobacteria382

on zooplankton, since the exposure of zooplankton to cyanotoxins is directly383

coupled to the assimilation of food in the gut, and can therefore interfere with384

the energy balance.385

As far as DEBtox parameter estimation was concerned, we used a set of meth-386

ods that had already been proposed: nonlinear regression for survival models387

(Kooijman & Bedaux, 1996; Billoir et al., 2007), and Bayesian inference for388

the growth and reproduction models (Billoir et al., resubmitted). However,389

when growth, reproduction and survival data are all available, it would be390

more logical to estimate all the parameters simultaneously especially because391

the kinetic parameter k̇e is involved in both the sublethal and lethal models.392

Jager et al. (2004) performed a simultaneous estimation of this type, but they393

ran into some statistical issues, such as very large confidence intervals, and394

the need to fix k̇e. We are currently trying to extend the Bayesian approach395

by integrating a survival module into the Bayesian model. We hope to report396

the results of this work in the near future.397

At the population level, our results and those of Ferrão-Filho & Azevedo (2003)398

differ somewhat. Using the data collected for the exposure concentration of399
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1.0 mg C L−1, they obtained an intrinsic rate of population increase r = 0.042400

(equivalent to λ = exp(r) = 1.043). In contrast, our results for the Assimila-401

tion and Maintenance models were much more pessimistic (λ ≪ 1), indicating402

that population health was threatened using the same exposure concentration.403

However, we obtained fewer data for this exposure concentration than for the404

lower concentrations, as a result of high mortality. Using data collected solely405

at one exposure concentration did not seem to be as reliable as that obtained406

by our methodology. Indeed, with the DEBtox modelling approach, all the407

exposure concentrations tested were considered simultaneously, as the models408

were continuous in exposure concentration. Moreover, the Bayesian inference409

took into account the amount of data available for each exposure concentra-410

tion tested. Combining both approaches made it possible to achieve the best411

inference of the finite rate of population increase, λ, as a continuous function412

of the exposure concentration.413

The use of native species, such as M. micrura, and naturally occurring sam-414

ples of cyanoabacteria are important issues in ecotoxicology, as this leads to415

better extrapolation of results from laboratory to the field. Although this416

is not a standard test species, like D. magna, the biology of M. micrura is417

relatively well known, and has been shown to be very sensitive to cyanobacte-418

ria, especially to toxic Microcystis (Ferrão-Filho et al., 2000; Nandini, 2000).419

However, although the application of DEBtox and matrix population models420

to natural samples gave more realistic results than when we used laboratory421

samples (i.e. cultures), caution was still called for when extrapolating from422

these results to field situations. The threshold concentrations calculated from423

laboratory toxicity tests could sometimes be underproctective, because other424

stresses (predation, density-dependence, etc...) were not taken into account.425
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In contrast, our results seemed to be overprotective. The predicted thresh-426

old concentration range of 0.68-0.82 mg C L−1, above which the population427

would become extinct was much lower than the values commonly found in the428

Jacarepaguá Lagoon (2.7-38.1 mg C L−1; (Ferrão-Filho et al., 2002)). Also, in429

spite of some reported outbreaks of M. micrura populations in this lagoon,430

it is important to note that this species coexists with high concentrations of431

Microcystis and microcystins (Ferrão-Filho et al., 2002). This was attributed432

mainly to the predominance of Microcystis colonies of large size (> 20 µm)433

that cannot be eaten by most cladocerans (Ferrão-Filho & Azevedo, 2003).434

Even though the DEBtox framework has been applied to standard toxicicity435

bioassays involving D. magna, a much larger cladoceran, our results showed436

that this model can also be applied to other zooplankton species, such as M.437

micrura, which is a much smaller cladoceran with a shorter life cycle. Once438

again, the combination of DEBtox and matrix population models appeared439

very useful when extrapolating from the individual to the population level. All440

lethal and sublethal effects were integrated into the finite rate of population441

increase, which is much more ecologically relevant than any statistically-based442

parameter (such as NOEC and ECx) derived from a single endpoint (such as443

mortality, growth or reproduction). Moreover, our methodology made it possi-444

ble to calculate the finite rate of population increase as a continuous function445

of time. Thanks to matrix population modelling, sensitivity analysis could446

also be used to gain demographic information, as in Billoir et al. (2007). Here,447

we used a fresh approach: parameter uncertainty was taken into account and448

integrated into a confidence band, which enabled us to provide a prediction in-449

terval for the threshold concentration leading to population extinction (when450

λ becomes < 1). In conclusion, our results showed the potential value of us-451

21



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

ing nested models to predict the threshold concentrations of cyanobacteria452

required for zooplankton population extinction to occur. These could be used453

as parameters in guidelines for protecting both aquatic life and environmental454

health.455
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Symbol Status Dimension Interpretation

t covariable T time from the experiment beginning, and also organism age

c covariable C exposure concentration

cq variable C internal concentration

s variable - stress function

q variable - survival probability

ḣ variable T−1 hazard rate

l variable - scaled body length

Ṙ variable #T−1 reproduction rate

NEC∗ parameter C No Effect Concentration for lethal (∗ = L), sublethal effects (∗ = S)

c∗ parameter CT−1 or C tolerance concentration, ∗ = L, H, R, A, G, or M

k̇e parameter T−1 elimination rate

ṁ parameter T−1 control mortality rate

lb parameter - scaled body length at birth

γ̇ parameter T−1 von Bertalanffy growth rate

lp parameter - scaled body length at puberty

ṘM parameter #T−1 maximum reproduction rate

f parameter - ingestion rate as a fraction of its maximum

g parameter - investment ratio

Table 1

Quantities considered in the DEBtox framework, their status (variable, covariable,

or parameter), their dimension and their biological interpretation. T, C and #

denote the dimensions of time, concentration and number respectively. Dots denote

rates.
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Mode of action Growth Reproduction

Growth
dl
dt

= γ̇
f+g

f+g(1+s(cq(t)))
(f − l(t)) (4) Ṙ(l(t)) =

ṘM

1−l3p
[fl(t)2(

g(1+s(cq(t)))+l

g(1+s(cq(t)))+f
) − l3p] (8)

Maintenance
dl
dt

= γ̇(f − l(1 + s(cq(t)))) (5) Ṙ(l(t)) =
ṘM

1−l3p
(1 + s(cq(t)))[fl(t)2(

g(1+s(cq(t)))−1+l(t)

g+f
) − l3p] (9)

Assimilation
dl
dt

= γ̇
f+g

f(1−s(cq (t)))+g
(f(1 − s(cq(t))) − l(t)) (6) Ṙ(l(t)) =

ṘM

1−l3p
[f(1 − s(cq(t)))l(t)2(

g+l(t)

g+f(1−s(cq(t)))
) − l3p] (10)

Hazard
dl
dt

= γ̇(f − l(t)) (7) Ṙ(l(t)) =
ṘM

1−l3p
[fl(t)2(

g+l(t)
g+f

) − l3p]e−s(cq(t)) (11)

Costs
dl
dt

= γ̇(f − l(t)) (7) Ṙ(l(t)) =
ṘM

1−l3p
[fl(t)2(

g+l(t)
g+f

) − l3p](1 + s(cq(t)))−1 (12)

Table 2

DEBtox growth and reproduction equations for each assumption about the toxicant

mode of action.

Parameter (unit) Distribution

Lm (µm) N(1000, 100) I(500, +∞)

γ̇ (-) U(0, 2)

lp (-) N(0.75, 0.1) I(0.5, 1)

Ṙm (#d−1) N(5, 2) I(0, +∞)

k̇e (d−1) U(0.0001, 10)

NEC (mg C L−1) U(0, 1.5)

c∗ ∗ = H, R, G, or M (mg C L−1) U(0, 20)

cA (mg C L−1) U(2, 20)

Table 3

Prior distributions used for the DEBtox sublethal parameter estimation which was

performed by Bayesian inference. N(m, sd)I(a, b) denotes a normal distribution

with mean m and standard deviation sd, where I(a, b) represents interval censoring

(see Spiegelhalter et al., 2003, p. 12 for details) (Spiegelhalter et al., 2003). U(c, d)

denotes a uniform distribution between c and d.
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Fig. 1. (A) Log-Log representation of the data used to establish the length/dry

weight allometric relationship. Data were collected during experiments involving

various kinds of food (data from Ferrão-Filho et al. (2005)). (B) Orthogonal linear

regression fit on these data.
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Fig. 2. Fitting performed by nonlinear regression of survival data: time profile of

survival probability for various seston exposure concentrations (0, 0.25, 0.5, 1.0, 1.5

mg C L−1)
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Fig. 3. Simultaneous fitting performed by Bayesian inference of (1) reproduction

and (2) growth data under the assumption of (A) a decrease in Assimilation (B)

an increase in the Growth costs (C) an increase in the Maintenance costs (D) an

increase in egg production Costs, and (E) excess mortality during oogenesis (Haz-

ard): time profiles of the cumulative number of offspring and body length for various

seston exposure concentrations (0, 0.25, 0.5, 1.0, 1.5 mg C L−1)
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Fig. 4. (A) Evolution of the finite rate of population increase λ of M. micrura

as a function of the seston exposure concentration (mg C L−1). Comparison of

the five assumptions about the toxicological mechanism of action: Hazard, Costs,

Maintenance, Growth and Assimilation. The results from Ferrão-Filho & Azevedo

(2003) (means ± SE) are also shown on this graph. (B) Change in the finite rate

of population increase λ of M. micrura and its confidence interval as a function

of seston exposure concentration (mg C L−1) when we assumed that a decrease in

Assimilation was the toxicological mechanism of action.
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