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Abstract

This work deals with a general class of two-time scales discrete nonlinear
dynamical systems which are susceptible of being studied by means of a reduced
system that is obtained using the so-called aggregation of variables method.
This reduction process is applied to several models of population dynamics
driven by demographic and migratory processes which take place at two different
time scales: slow and fast. An analysis of these models exchanging the role of
the slow and fast dynamics is provided: when a Leslie type demography is faster
than migrations, a multi-attractor scenario appears for the reduced dynamics;
on the other hand, when the migratory process is faster than demography,
the reduction process gives rise to new interpretations of well known discrete
models, including some Allee effect scenarios.

Keywords: Nonlinear discrete models; aggregation of variables; time scales;
population dynamics.

AMS Classification: 39A11; 92D25.

1 Introduction.

Ecological models always entail a decision on the level of detail to be included in
them, and this decision should be taken on the basis of optimizing the benefit of
the study. Any model is a compromise between generality and simplicity on the one
hand and biological realism on the other. The more biological details are included
in specifying a model the more complicated and specific it becomes.

Nature offers many examples of systems where several processes act at different
time scales. It is then usual to consider those events occurring at the fast scale
as being instantaneous with respect to the slower ones. This sort of decoupling
implies a reduction of the number of variables or parameters needed to describe
the evolution of the system. A subsequent issue is to determine conditions for
these reductions to give good approximations of the real results. An example of this
general framework are the so-called aggregation methods which study the relationship
between a large class of two-time scales complex systems and their corresponding
aggregated or reduced ones. The aim of aggregation methods is twofold. On the
one hand they construct the reduced systems that summarize the dynamics of the
complex ones, thus simplifying their analytical study, and on the other hand, looking
at the relationship in the opposite sense, the complex systems serve as explanations
of the simple form of the aggregated ones. A review on these methods in different
mathematical settings, with updated bibliography can be found in [3] and [4].
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In this work we will apply the aggregation of variables method in the setting of
discrete dynamical systems. In the construction of a discrete model with two time
scales it is essential to decide if the time unit should be associated to the slow process
or to the fast one. The references [7] and [9] study models in which the time unit
of the dynamical system is chosen to be that of the fast dynamics. Nevertheless,
this choice is not always possible, because the action of the slow process during a
fast time unit may not be describable. But if the system is expressed in the slow
time unit, it is always possible to describe the action of the fast process during it by
repeating a large enough number of times its action during a slow unit. From this
point of view, it is interesting to extend to nonlinear cases previous work, made by
some of us, that develop the methods of aggregation of variables for linear discrete
systems expressed in the slow time unit (see [15], [16]).

A first attempt to do this is [8], where the slow dynamics is assumed to be linear.
An extension to a general class of nonlinear discrete models has been recently made
by some of the authors and can be found in [17]. In this work, a very general discrete
system including two different processes acting at different time scales is proposed.
The time unit is the one corresponding to the slow dynamics and the effect of the
fast dynamics is represented assuming that the slow time unit is divided into a
large number of fast time units and so that it acts a large number of times during
one single slow time unit. Then some assumptions, generalizing those required
in previous works, are proposed which allow the construction of a reduced model
associated to the original one. Several results relating the solutions to both systems
have been established: it is possible to study the existence, stability and basins of
attraction of steady states and periodic solutions to the original system performing
the study for the corresponding aggregated system.

The hypotheses of the general results of [17] are not easy to prove in particular
cases. In [12] this is done for a particular multi-patch host-parasitoid model where
migration, which is fast in comparison to demography, is considered density inde-
pendent for hosts and dependent on local host population density for parasitoids.
In this work we present a general class of two-time scales nonlinear discrete models
as a particular case of the more abstract setting described in [17]. Then we con-
struct the corresponding reduced models and prove that the approximation results
established in [17] are valid. The reduction process is applied to several models
of population dynamics driven by nonlinear demographic and migration processes
which take place at two different time scales, slow and fast. We provide an analysis
of these models exchanging the role of the slow and fast dynamics: when a Leslie
type demography is faster than migrations, a multi-attractor scenario appears for
the aggregated dynamics; on the other hand, when the migratory process is faster
than demography, by introducing different migration schemes we derive some well
known discrete models whose analysis gives rise to some Allee effect scenarios.

The organization of the paper is as follows: In Section 2 we specify the mathe-
matical formulation of a general class of two-time scales discrete nonlinear dynamical
systems to which a reduction process can be applied, yielding the so-called aggregated
model, whose dynamical features approximate those of the original more complex
model. Section 3 is devoted to the application of these mathematical results to sev-
eral specific models of population dynamics. Some conclusions are given in Section
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4. To facilitate the reading, technical mathematical proofs of the results established
in Section 2 are deferred to a final Appendix.

2 Application of the aggregation of variables method to

the reduction of a general nonlinear discrete dynam-

ical system.

The main goal of this section is to apply the aggregation of variables method to the
reduction of a general class of nonlinear discrete models with two time scales, which
fit in the framework of an original formulation made by some of the authors and
developed in detail in [17]. To facilitate the reading, we will start describing the
model and its main mathematical features, as done in [17].

First of all, let us present the so-called complete or general system to which the
aggregation of variables method will be applied.

The model evolves in discrete time and is driven by two processes with different
time scales, slow and fast. Such processes are defined respectively by two mappings

S,F : ΩN −→ ΩN , S, F ∈ C1(ΩN )

where ΩN ⊂ RN is a non-empty open set.
We choose as time step of the model that corresponding to the slow dynamics. In

order to approximate the effect of the fast process over a time interval much bigger
than its own, we assume that during this time step the fast process acts k times
before the slow process acts, where k is a positive integer that in applications will
take a big value.

Therefore, denoting by Xk,n ∈ RN the vector of state variables at time n, the
complete or general system is defined by

Xk,n+1 = S
(
F k(Xk,n)

)
=: Hk(Xk,n) (1)

where F k denotes the k-fold composition of F with itself.
In order to reduce the system (1), we have to impose some conditions on the fast

process, which are specified in the following hypothesis:

Hypothesis 1 For each initial condition X ∈ ΩN , the fast dynamics tends to an
equilibrium. That is, there exists a mapping F̄ : ΩN → ΩN , F̄ ∈ C1(ΩN ), such that

∀X ∈ ΩN , lim
k→∞

F k(X) = F̄ (X).

Moreover, there exist a nonempty open set Ωq ⊂ Rq with q < N , and two mappings

G : ΩN −→ Ωq , G ∈ C1(ΩN ) ; E : Ωq −→ ΩN , E ∈ C1(Ωq)

such that F̄ can be expressed as F̄ = E ◦ G.
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Let us define a new set of variables, called global variables, by

Yn := G(Xn).

The reduced or aggregated system which approximates system (1) is given by

Yn+1 = G ◦ S ◦ E (Yn) := H(Yn). (2)

Note that through this procedure we have constructed an approximation that
allows us to reduce a system with N variables to a new system with q variables. In
most practical applications, q will be much smaller than N .

To establish a relationship between the solutions to systems (1) and (2), the
following assumption is crucial:

Hypothesis 2 The mappings F and F satisfy that

lim
k→∞

F k = F̄ ; lim
k→∞

DF k = DF̄

uniformly on any compact set K ⊂ ΩN .

As usual, the notation DF represents the differential of F .
Then, the following theorem, whose details can be found in [17], guarantees that

the existence of an equilibrium point Y ∗ for the aggregated system implies, for large
enough k, the existence of an equilibrium X∗

k for the original system, which can be
approximated in terms of Y ∗. Moreover, in the hyperbolic case, the stability of Y ∗

is equivalent to the stability of X∗

k and in the asymptotically stable (A.S.) case, the
basin of attraction of X∗

k can be approximated in terms of the basin of attraction of
Y ∗.

Theorem 1 Under Hypotheses 1 and 2, let Y ∗ ∈ Rq be a hyperbolic equilibrium
point of system (2). Then, there exists an integer k0 ≥ 0 such that for all k ≥ k0

system (1) has an equilibrium point X∗

k which is hyperbolic and satisfies

lim
k→∞

X∗

k = X∗ ; X∗ := S ◦ E(Y ∗).

Moreover, the following holds:

i) X∗

k is A.S. (resp. unstable) if and only if Y ∗ is A.S. (resp. unstable).

ii) Let Y ∗ be A.S. and let X0 ∈ ΩN be such that Y0 := G(X0) satisfies that
limn→∞ H

n
(Y0) = Y ∗. Then, for all k ≥ k0, limn→∞ Hn

k (X0) = X∗.

Although it is not stated in Theorem 1, these results are also valid for m-periodic
points (see [17]).

Let us recall that an equilibrium point X∗ of a discrete dynamical system Xn+1 =
T (Xn) is hyperbolic if none of the eigenvalues of the differential operator DT (X∗)
has modulus 1. If all the eigenvalues of DT (X∗) have modulus strictly less than 1,
then X∗ is A.S. and the set of initial conditions whose corresponding solutions tend
to X∗ is called the basin of attraction. If any of the eigenvalues of DT (X∗) have
modulus larger than 1, then X∗ is unstable. See [14] for the general theory.
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2.1 Fast dynamics depending on global variables.

As we mentioned in the introduction, for a particular two time scales discrete model
it is difficult to prove that Hypothesis 2 in Theorem 1 is met. Here we present a
class of models for which this is proved and so Theorem 1 applies.

Let us suppose a population divided into groups, and each of these groups divided
into several subgroups. We can think, for instance, of an age-structured population
occupying a multi-patch environment. In this case, the population can be considered
divided into groups which are the age classes, and each group divided into subgroups
which are the individuals inhabiting each of the different patches.

The state at time n of a population distributed into q groups is represented by a
vector Xn := (x1

n, . . . , xq
n)T ∈ RN

+ , where each vector xi
n := (xi1

n , . . . , xiN i

n )T ∈ RN i

+ ,
i = 1, . . . , q, represents the state of the i-group which in turn is divided into N i

subgroups with N = N1 + · · · + N q.
Following [15], we will suppose that for each group i = 1, . . . , q, the fast dynamics

is internal, conservative of the total number of individuals and with an asymptot-
ically stable distribution among the groups. These assumptions are met in the
particular case of representing the fast dynamics for each group i by a projection
matrix which is a regular stochastic matrix of dimensions N i × N i. Hypothesis 2
in Theorem 1 is trivially satisfied if these projection matrices are constant. Our
aim in what follows is to extend this situation to the nonlinear case in which such
projection matrices depend on the total number of individuals in each group. To be
precise, let us introduce some definitions.

Let 1i := (1, . . . , 1)T ∈ RN i

, i = 1, . . . , q, U := diag (1T
1 , . . . ,1T

q ) and Ωq :=
UΩN ⊂ Rq.

For each i = 1, . . . , q, let Pi(·) ∈ C1(Ωq) be a matrix function such that for all Y ∈
Ωq, Pi(Y ) is a regular stochastic matrix of dimensions N i×N i. As a consequence, 1
is an eigenvalue simple and strictly dominant in modulus for Pi(Y ), with associated
right and left eigenvectors vi(Y ), 1i, respectively. The eigenvector vi(Y ) is the
asymptotically stable probability distribution, i.e., vi(Y ) ≥ 0 and 1T

i vi(Y ) = 1.
The fast dynamics for the whole population is represented by the block diagonal

matrix:
∀Y ∈ Ωq , F(Y ) := diag (P1(Y ), . . . , Pq(Y )).

The Perron-Frobenius Theorem applies to each matrix Pi(Y ), so that we have

P i(Y ) := lim
k→∞

P k
i (Y ) = (vi(Y )| . . . |vi(Y )) = vi(Y )1T

i

Introducing the notations

F(Y ) := diag (P 1(Y ), . . . , P q(Y )) ; V(Y ) := diag (v1(Y ), . . . ,vq(Y ))

we also have
∀Y ∈ Ωq , F(Y ) = lim

k→∞

Fk(Y ) = V(Y )U .

Finally, the nonlinear model that we are considering is formulated as:

Xk,n+1 = S
(
Fk(UXk,n)Xk,n

)
. (3)
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If we think that the ratio of slow to fast time scale tends to infinity i.e., k → ∞,
or in other words, that the fast process is instantaneous in relation to the slow
process, we can approximate system (3) by the following auxiliary system:

Xn+1 = S(F(UXn)Xn) = S(V(UXn)UXn).

We see that the evolution of this system depends on UXn ∈ Rq, which suggests the
global variables should be defined by:

Yn := UXn

and therefore the aggregated system of system (3) is

Yn+1 = US(V(Yn)Yn). (4)

We can now establish an approximation result between the solutions to the com-
plete system (3) and the aggregated model (4), as a consequence of Theorem 1.

Theorem 2 Let Y ∗ ∈ Rq be a hyperbolic equilibrium point of system (4). Then,
there exists an integer k0 ≥ 0 such that for all k ≥ k0 system (3) has an equilibrium
point X∗

k which is hyperbolic and satisfies

lim
k→∞

X∗

k = X∗ ; X∗ := S(V(Y ∗)Y ∗).

Moreover, the following holds:

i) X∗

k is A.S. (resp. unstable) if and only if Y ∗ is A.S. (resp. unstable).

ii) Let Y ∗ be A.S. and let X0 ∈ ΩN be such that the solution {Yn}n=0,1,... to (4)
corresponding to the initial data Y0 := UX0 satisfies that limn→∞ Yn = Y ∗.
Then, for all k ≥ k0, the solution to (3) {Xk,n}n=0,1,... with Xk,0 = X0 satisfies
that limn→∞ Xk,n = X∗

k .

Proof.– See Appendix.
In some applications, particularly in ecology, it would be more realistic to have

the fast dynamics dependent on the state variables and not just on the global vari-
ables as in Theorem 2. Nevertheless, it does not seem easy to find a proof for this
more general case and specific proofs should be provided for each particular case of
fast dynamics depending on state variables as it is done in [12]. On the other hand,
as we will see in the next section, it is possible to develop interesting applications
keeping in the framework of Theorem 2.

3 Two-time discrete population dynamics models in-

cluding demography and migrations.

In this section we illustrate the previous results by means of some applications. We
begin treating the case of a population inhabiting a multi-patch environment but
with no further structure, thus the corresponding aggregated model is a scalar dif-
ference equation. Then we develop the reduction of a model of an age-structured
population in a multi-patch habitat with the special feature of considering demog-
raphy fast in comparison with migration. This last example extends slightly the
framework presented in Section 2.1.
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3.1 Multi-patch models with fast migrations.

The models we are considering in this section fit in the general setting of Section 2.1
but consider a non-structured population, that is, a population constituted by just
one group which is subdivided into m sub-groups representing the local populations
at the m patches making up its habitat.

As a consequence, the population vector at time n is Xn = (x1
n, . . . , xm

n )T , the
fast dynamics (associated in our models to the migration process) is represented
by a regular stochastic matrix F(y), whose entries depend on the total population
y := x1 + · · · + xm, and the slow dynamics is represented by a general C1-map
S : Ωm ⊂ Rm

+ → Ωm which gives the local demography in each patch that, in
general, could be influenced by the population densities in all the patches.

For the sake of simplicity in what follows we will consider a two patch environ-
ment (i.e. m = 2), and the local dynamics depending only on the local population.
That is, the slow dynamics is described by

S(Xn) := (s1(x
1
n), s2(x

2
n)) ; Xn := (x1

n, x2
n)

where si, i = 1, 2, are two non-negative C1 functions defined on R+.
The migration matrix F(y) can be written in terms of two C1 real functions

a, b : R+ → (0, 1):

F(y) :=

⎛
⎝ 1 − a(y) b(y)

a(y) 1 − b(y)

⎞
⎠ .

Since F(y) is a regular stochastic matrix, we have

F̄(y) := lim
k→∞

Fk(y) = (v(y)|v(y))

where

v(y) :=

(
v1(y)
v2(y)

)
=

⎛
⎜⎜⎝

b(y)

a(y) + b(y)

a(y)

a(y) + b(y)

⎞
⎟⎟⎠ .

A straightforward application of the results established in Section 2 leads to the
aggregated system:

yn+1 = s1 (v1(yn)yn) + s2 (v2(yn)yn) . (5)

3.1.1 Malthusian local demography.

We will carry out a detailed analysis of the above model assuming that a malthusian
dynamics acts at each patch, that is:

S(Xn) := (d1x
1
n, d2x

2
n). (6)

Moreover we will assume that 0 < d1 < 1 < d2, which means that patch 1 behaves
as a sink and patch 2 as a source.

7
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When the slow dynamics is given by (6), the aggregated model (5) reads as:

yn+1 =

(
d1b(yn) + d2a(yn)

a(yn) + b(yn)

)
yn := h(yn)yn. (7)

It is evident that y0 = 0 is a fixed point of the above model, but we are mainly
interested in the existence and stability properties of the positive fixed points y∗,
which are the solutions to equation h(y) = 1.

To study the behaviour of function h, we should take into account its derivative:

h′(y) = (d2 − d1)
a′(y)b(y) − a(y)b′(y)

[a(y) + b(y)]2
.

For the sake of simplicity we restrict our analysis to the case in which functions a(y),
b(y) are monotone. When one of them is increasing and the other is decreasing, it
is evident that h(y) is strictly monotone. Therefore, whether function h(y) crosses
or not the line y = 1 is completely determined by the values h(0) and h(∞) :=
limy→+∞ h(y). Moreover, in the case in which y∗ exists, it is unique and its stability
is determined by the value h′(y∗)y∗. On the other hand, the stability of the fixed
point y0 = 0 depends on the value of h(0).

These results are summarized as follows:

a(y) b(y) h(0) h(∞) y0 = 0 y∗

↘ ↗ > 1 ∈ (0, 1) U. ∃, U. or A.S.

↘ ↗ > 1 > 1 U. �

↘ ↗ ∈ (0, 1) ∈ (0, 1) G.A.S. �
↗ ↘ ∈ (0, 1) > 1 A.S. ∃, U.

↗ ↘ ∈ (0, 1) ∈ (0, 1) G.A.S. �
↗ ↘ > 1 > 1 U. �

where the arrows ↘ and ↗ stand for a decreasing and an increasing function
respectively , and U., A.S. and G.A.S. stand for unstable, asymptotically stable and
globally asymptotically stable, respectively.

The fact that local dynamics are of malthusian type allows extinction and un-
bounded growing to be expected at a global level. Nevertheless, as we see in the first
row of the previous table, certain kinds of density dependent migrations can lead to
a positive asymptotically stable equilibrium. Two examples are described below.

If we choose

a(y) =
α − d1(1 + βy)

d2 − d1
and b(y) =

d2(1 + βy) − α

d2 − d1
(8)

for positive parameters α and β, formal calculations yield the well-known Beverton-
Holt equation [5]:

yn+1 =
αyn

1 + βyn

which always possesses a positive equilibrium whic is globally asymptotically stable.
The formal calculations are valid provided that a(y), b(y) ∈ (0, 1), which is true if

α − d2

β
< y <

α − d1

d2β
.

8
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So, if we choose α ∈ (d1, d2) and β ∈ (0, α−d1

d2ŷ ) we can easily prove that a(y), b(y) ∈
(0, 1) whenever y ∈ [0, ŷ].

Similar requirements allow us to obtain the Ricker equation [13]

yn+1 = exp(r(1 − yn/K))yn,

where r and K are positive parameters, by choosing

a(y) =
er(1−y/K) − d1

d2 − d1
and b(y) =

d2 − er(1−y/K)

d2 − d1
. (9)

We have illustrated how the aggregation procedure provides an explanation of
two classical mono-species discrete models in terms of a sink-source environment
with fast density dependent migrations coupled to simple local malthusian dynamics.
Similar approaches using aggregation methods for ordinary differential equations
were presented in [1] and [2].

Some others interpretations of this kind have been recently presented by Geritz
and Kisdi ([11]). There, starting from a continuous-time resource-consumer model
for the dynamics within a year, a discrete-time model for the between-year dynamics
is derived. This model is analyzed assuming that the within-year resource dynamics
in absence of consumers takes different functional forms. Considering particular
constant rates for the influx and efflux of the resource, the Beverton-Holt model,
the Ricker model and many other models are recovered. Further models derived
by systematically varying the within year patterns of reproduction and aggression
between individuals can be found in [10].

To go on with the study of equation (7), we notice that the cases in which both
a(y) and b(y) are simultaneously increasing or decreasing functions yield a more
complicated dynamics and Allee effect scenarios may arise.

We illustrate this fact with the next example. Let us assume that a(y) and b(y)
are increasing functions given by

a(y) :=
y2

y2 + β
and b(y) :=

y2 + β

y2 + δ
, 0 < β < δ.

Function h(y) in (7) becomes

h(y) =
d1

(
y2 + β

)2
+ d2

(
y2 + δ

)
y2

(y2 + β)2 + (y2 + δ) y2
.

The qualitative analysis of equation (7) is straightforward having in mind that
positive solutions are decreasing if h(y) < 1, increasing if h(y) > 1 and the positive
fixed points are the roots of equation h(y) = 1. Since h(0) = d1 < 1, the fixed point
y∗0 = 0 is always asymptotically stable.

To find when h(y) < 1 and when h(y) > 1 we know that h(0) = d1 < 1 and
limy→∞ h(y) = (d1 + d2)/2. Moreover, if we look at the sign of h′(y),

h′(y) =
2(d2 − d1)y

(
(2β − δ)y4 + 2β2y2 + β2δ

)
(2y4 + (2β + δ)y2 + β2)2

,

9
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we see that if δ ≤ 2β then h(y) is increasing in [0,∞) while if δ > 2β then h(y) is
increasing in [0, yM ) and decreasing in (yM ,∞), where yM =

√
βδ/(δ − 2β) is the

only positive root of equation h′(y) = 0. Thus, we have:

• If δ ≤ 2β and (d1 + d2)/2 ≤ 1, there is no positive fixed point.

• If δ ≤ 2β and (d1 +d2)/2 > 1, there is a positive fixed point which is unstable.

• If δ > 2β and h(yM ) < 1, there is no positive fixed point.

• If δ > 2β and h(yM ) = 1, yM is the only positive fixed point and it is unstable.

• If δ > 2β, h(yM ) > 1 and (d1 + d2)/2 ≥ 1, there is a positive fixed point,
y∗1 < yM , which is unstable.

• If δ > 2β, h(yM ) > 1 and (d1 + d2)/2 < 1, there are two positive fixed points,
y∗1 < yM < y∗2. In this case the positive solutions of equation (7), which are all
monotone, verify the following:

If the initial condition y0 < y∗1 then limn→∞ yn = 0 and if y0 > y∗1 then
limn→∞ yn = y∗2,

i.e., at low population densities population gets extinct, while the evolution of
population densities above y∗1 leads to y∗2.

As we see in the last case, an Allee effect scenario appears out of local malthusian
dynamics in a sink-source environment with fast density dependent migrations.

3.1.2 Beverton-Holt local demography.

Our main goal in this section is to illustrate through another example, now with local
dynamics different from malthusian, that nonlinear fast migrations can give rise to a
variety of situations, among them Allee-type effect dynamics. Let us choose a local
demography of Beverton-Holt type, together with monotone migrations. That is, in
lieu of (6), we assume that the slow dynamics is given by:

S(Xn) :=

(
d1x

1
n

1 + c1x1
n

,
d2x

2
n

1 + c2x2
n

)
, 0 < d1 < 1 < d2 , ci > 0 , i = 1, 2

and that functions a(y), b(y) defining the fast dynamics F(y) are given by

a(y) :=
y

1 + y
; b(y) :=

1

1 + y
.

In this situation, the aggregated system (5) reads:

yn+1 = h(yn)yn ; h(yn) :=
d1

1 + (1 + c1)yn
+

d2yn

1 + yn + c2y2
n

.

Arguing in a similar way to the previous section, we obtain that y0 = 0 is an
equilibrium point which is always A.S. since h(0) = d1 < 1.

10
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The positive equilibria, if they exist, are the positive solutions to h(y) = 1.
Notice that

h′(y) = − d1(1 + c1)

[1 + (1 + c1)y]2
+

d2(1 − c2y
2)

(1 + y + c2y2)2
.

If d2 > d1(1 + c1), then there exists a unique value yM ∈ (0, 1/
√

c2) such that
h′(yM ) = 0 and moreover h takes its maximum value at this point. Therefore,
bearing in mind that h(0) = d1 < 1 and h(+∞) = 0, the equation h(y) = 1 will
have either two positive solutions or none according to h(yM ) > 1 or h(yM ) < 1
respectively. One sufficient condition for h(yM ) > 1 is that h(1/

√
c2) > 1 which

yields a relationship between the parameters of the model. In turn, a simple sufficient
condition for this is d2 > 1+2

√
c2. Summing up, we can assure that for large enough

values of d2 the aggregated model has two positive equilibria 0 < y∗ < y∗∗ such that
y∗ is unstable and y∗∗ can be asymptotically stable or unstable.

3.2 An age-structured population model with fast demography.

This section can be considered as an extension of some results in [16], where a linear
case is discussed. The theory developed in Section 2 does not exactly match with
the setting here, but it can be easily adapted: everything works if the fast dynamics
is given by a non-negative C1 matrix function whose dominant eigenvalue is 1 and
the corresponding associated normalized left eigenvector is constant.

To be precise, let us consider an age-structured population distributed between
two spatial patches. We will distinguish two age classes: juvenile (class 1, non
reproductive) and adult (class 2, reproductive), so that the state of the population
at time n is represented by a vector:

Xn := (x1
n, x2

n)T ∈ R4
+ , xi

n := (xi1
n , xi2

n )T , i = 1, 2

where xij
n stands for the individuals of class j inhabitant patch i.

Let us set demography as a local process driven by a Leslie C1 matrix function:

∀y ∈ R+ , Li(y) :=

⎛
⎝ 0 f i

12(y)
ti21(y) ti22(y)

⎞
⎠ , i = 1, 2

where, as usual, f i
12(·) stands for the fertility rate of the adults and ti2j(·), j = 1, 2,

stand for the survival rate of each age class. In order to fit in the framework of
Section 2.1, let us impose that 1 is the strictly dominant in modulus eigenvalue of
matrix Li(·), which yields

∀y ∈ R+ , ti22(y) + f i
21(y)ti21(y) = 1 , i = 1, 2. (10)

As a consequence, we can find associate positive right and left eigenvectors vi(y),
ui(y), which can be chosen normalized by the condition uT

i (y)vi(y) = 1. In fact,
these vectors are given by:

ui(y) =

⎛
⎝ 1

1

ti12(y)

⎞
⎠ :=

(
ui

1(y)
ui

2(y)

)
; vi(y) =

⎛
⎜⎜⎝

f i
12(y)ti21(y)

1 + f i
12(y)ti21(y)
ti21(y)

1 + f i
12(y)ti21(y)

⎞
⎟⎟⎠ :=

(
vi
1(y)

vi
2(y)

)
.

11
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The general theory of non-negative matrices applies, so that there exists the
limit:

∀y ∈ R+ , L̄i(y) := lim
k→∞

Lk
i (y) = vi(y)uT

i (y) , i = 1, 2.

The fast dynamics for the whole population will be represented by the block
diagonal matrix:

∀Y :=

(
y1

y2

)
∈ R+ , L(Y ) :=

(
L1(y1) 0

0 L2(y2)

)
.

Bearing in mind the above considerations, it is evident that the following limit exists:

L̄(Y ) := lim
k→∞

Lk(Y ) =

(
L̄1(y1) 0

0 L̄2(y2)

)
= V(Y )U(Y )

where as in Section 2 we have introduced the notations:

V(Y ) := diag (v1(y1),v2(y2)) ; U(Y ) := diag (uT
1 (y1),u

T
2 (y2)).

In addition, we consider migrations between patches. To simplify, we will con-
sider a linear process represented by a constant stochastic matrix:

M :=

⎛
⎜⎜⎜⎜⎝

1 − a1 0 a2 0
0 1 − b1 0 b2

a1 0 1 − a2 0
0 b1 0 1 − b2

⎞
⎟⎟⎟⎟⎠ , ai, bi ∈ (0, 1) , i = 1, 2

where ai and bi stand for the fraction of juvenile and adult individuals which move
from patch i respectively.

In this section we are assuming that demography is much faster than migrations
and spatially internal, that is, only dependent on the population on each patch.
In order to be able to retain the smoothness results established in Section 2, we
will assume that matrix U(·) is constant. To met this assumption we only need to
suppose that ti21(·) is constant, what we do in the sequel.

Then, the global variables are defined by

Yn := UXn =

(
x11

n + (1/t112)x
12
n

x21
n + (1/t212)x

22
n

)
:=

(
y1

n

y2
n

)

which have a biological meaningful interpretation as they are the population at each
patch weighted by its reproductive values. Therefore it makes sense to consider the
fertility rates of the reproductive class as a function of the global variables, and then
the coefficients ti22(·), i = 1, 2 are also dependent on the global variables because of
relation (10).

Finally, the slow-fast model that we are considering is:

Xk,n+1 = MLk(UXk,n)Xk,n

12
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which, arguing as in Section 2 can be reduced to the following system expressed in
terms of the global variables:

Yn = UMV(Yn)Yn.

Direct substitutions lead to the following nonlinear aggregated system:⎧⎨
⎩

y1
n+1 =

[
u1

1(1 − a1)v
1
1(y

1
n) + u1

2(1 − b1)v
1
2(y

1
n)
]
y1

n +
[
u1

1a2v
2
1(y

2
n) + u1

2b2v
2
2(y

2
n)
]
y2

n

y2
n+1 =

[
u2

1a1v
1
1(y

1
n) + u2

2b1v
1
2(y

1
n)
]
y1

n +
[
u2

1(1 − a2)v
2
1(y

2
n) + u2

2(1 − b2)v
2
2(y2

n)
]
y2

n

to which the general results on stability of equilibria established in Section 2 apply.
To perform an numerical analysis of this system, set

f i
12(y

i) :=
αi

1 + yi
αi ≥ 0 , i = 1, 2

which provides the aggregated system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1
n+1 =

[
(1 − a1)α1t

1
21 + (1 − b1)(1 + y1

n))

1 + α1t121 + y1
n

]
y1

n +

[
t221(a2α2 + b2(1 + y2

n)/t121)

1 + α2t221 + y2
n

]
y2

n

y2
n+1 =

[
t121(a1α1 + b1(1 + y1

n)/t221)

1 + α1t121 + y1
n

]
y1

n +

[
(1 − a2)α1t

2
21 + (1 − b2)(1 + y2

n)

1 + α2t221 + y2
n

]
y2

n

whose fixed points are the solutions to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = −a1α1t
1
21 + b1(1 + y1)

1 + α1t
1
21 + y1

y1 +
t221(a2α2 + b2(1 + y2)/t121)

1 + α2t
2
21 + y2

y2

0 =
t121(a1α1 + b1(1 + y1)/t221)

1 + α1t121 + y1
y1 − a2α1t

2
21 + b2(1 + y2)

1 + α2t221 + y2
y2.

(11)

Obviously, (y1
0 , y

2
0) := (0, 0) is a fixed point to equation (11). Moreover, there are no

fixed points of the form (y1, 0) or (0, y2) with y1 > 0 or y2 > 0. Further calculations
give rise to

y2 =
a2b1α2(y

1 + 1)

a1b2α1
− 1

where y1 is any solution to equation

a1α1t
1
21 + b1(1 + y1)

1 + α1t121 + y1
y1 =

t221

(
a2α2 + a2b1α2(1+y2)

a1α1t1
21

)
α2t221 + a2b1α2(1+y1)

a1b2α1

[
a2b1α2(y

1 + 1)

a1b2α1
− 1

]
.

Numerical experiments carried out using a large range for the parameters show
that there are several scenarios for which there exists a positive asymptotically stable
fixed point, as well as several scenarios for which there exist two positive asymptot-
ically stable fixed points. This is shown for particular values of the parameters in
figure 1 and figure 2.
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Figure 1: From white to black, zones with none, one or two positive asymptotically
stable fixed points. Parameter values: a1 = 0.1, a2 = 0.3, α1 = 100, α2 = 45, t121 =
0.3, t221 = 0.1, and b1, b2 range from 0.01 to 1.0, step 0.005.

Figure 2: Basins of attraction of the asymptotically stable fixed points (0, 0),
(3.44, 1.57) (too small to be plotted in this picture) and (5.36, 2.68). Parameter val-
ues: a1 = 0.1, a2 = 0.3, b1 = 0.3, b2 = 0.7, α1 = 100, α2 = 45, t121 = 0.3, t221 = 0.1

4 Conclusions.

In this paper we have presented a general class of nonlinear two-time scales discrete
dynamical systems susceptible to be reduced by the so-called aggregation of variables
method. These systems can serve as models for population dynamics that combine
both migratory and demographic processes taking place at different time scales.
In the applications proposed in this paper we have considered situations in which
demography can be considered fast with respect to migration and others in whic the
opposite holds.

We have shown that our formulations enter in the more abstract framework
described in [17], so that it is possible to study the hyperbolic fixed points of the
slow-fast complex system, as well as their basins of attraction in the case they are
stable, by performing the corresponding study in the aggregated system.
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In Section 3.1 we consider that migration, which is dependent on the total pop-
ulation, is fast when compared with demography. In the simplest case that migra-
tions depend monotonically on the total population, and the local demography is
of malthusian type, we have derived the classical Beverton-Holt and Ricker models
in terms of source-sink systems linked by migrations, which constitutes a possible
interpretation for these models.

In the same setting, with more complex situations corresponding to monotone
migrations, the Allee effect can appear. Our analysis can be related with the results
in [6] concerning the Allee effect. These authors critically review and classify de-
terministic non-spatial models of single species population dynamics subject to the
demographic Allee effect. The outcome of all models studied in the above-mentioned
work is either unconditional extinction, extinction-survival scenario or unconditional
survival. The same kinds of results have been established in Section 3.1 for the ag-
gregated model. As the general slow-fast spatially structured model miss its spatial
features when its aggregation is performed, our method allows us to study spatially
distributed populations by means of non-spatial models.

In Section 3.2 we change the point of view and consider demographic processes
depending on population densities as fast dynamics driven by Leslie-type matrices.
We may think, for instance, of a parasitoid population being the guest in a species
that migrates. After building up a general aggregated system for this setting, nu-
merical experiments considering migration, survival and fertility rates as parameters
give rise to multi-attractor scenarios.
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5 Appendix.

5.1 Proof of Theorem 2.

The result is a consequence of Theorem 1, since the model (3) fits in the general
formulation given by (1) if we choose

∀X ∈ ΩN , F (X) := F(UX)X. (12)
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Therefore, bearing in mind that for all Y ∈ Rq we have UF(Y ) = U , the following
holds for all X ∈ ΩN :

lim
k→∞

F k(X) = lim
k→∞

Fk(UX)X = F(UX)X = V(UX)UX.

Then,
∀X ∈ ΩN , F (X) := V(UX)UX (13)

and since the global variables are defined by G(X) := UX, finally we choose

∀Y ∈ Rq , E(Y ) := V(Y )Y.

Now we will check that Hypotheses 1 and 2 are satisfied in the above setting.
The regularity conditions imposed in Hypothesis 1 hold immediately from the

C1 regularity of eigenvectors vi(·), i = 1, . . . , q, as established in Lemma 1 below.

Lemma 1 Let P (·) be a C1 matrix function defined on Ωq, such that for each Y ∈
Ωq, P (Y ) is a n × n regular stochastic matrix.

Let us consider the function v : Ωq −→ Rn where v(Y ) is the unique eigenvector
associated to eigenvalue 1, normalized by the condition 1T

nv(Y ) = 1.
Then, v ∈ C1(Ωq).

Proof.– For each Y ∈ Ωq, the normalized eigenvector v(Y ) associated to the
eigenvalue 1 is the unique solution to the system:

(EV)

{
(P (Y ) − In)v = 0

1T
nv = 1

Set Y0 ∈ Ωq and let v(Y0) be the corresponding solution to (EV). Since 1T
n (P (Y )−

In) = 0T
n , an elementary application of the Rank Theorem (see [18], Prob. 4.4d,

p.199) allows to solve the system (EV) in a neighbourhood of (Y0,v(Y0)), N(Y0) ⊂
Ωq ×Rn, by eliminating the last row of the matrix P (Y )− In. As an immediate con-
sequence, this theorem assures that the function v(·) defined implicitely by system
(EV) is C1 in a neighbourhood of Y0, as we wanted to prove.

Let us observe that the application of the Rank Theorem to system (EV) is based
on the following elementary result:

For each n × n regular stochastic matrix P0, we have:

Rank

(
P0 − In

1T
n

)
= n.

Regarding Hypothesis 2, let us notice that for each Y ∈ Ωq, matrix F(Y ) can be
written as:

F(Y ) = (V(Y )|R(Y ))

(
Iq O
O H(Y )

)( U
S(Y )

)
= V(Y )U + Q(Y )

with Q(Y ) := R(Y )H(Y )S(Y ), R(Y ), S(Y ) are suitable matrices and H(Y ) corre-
sponds to the Jordan blocks of F(Y ) associated to eigenvalues of modulus strictly
lesss than 1. Therefore

∀Y ∈ Ωq , ρ(Q(Y )) < 1 (14)
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where ρ denotes the spectral radius.
Moreover, straightforward calculations lead to

Fk(Y ) = V(Y )U + Qk(Y ) , k = 1, 2, . . . (15)

Bearing in mind Lemma 1, and since F ∈ C1(Ωq), let us observe that we also
have Q ∈ C1(Ωq).

We are now able to prove the following:

Proposition 1 The functions F and F defined in (12) and (13) satisfy that:

i) limk→∞ F k = F

ii) limk→∞ DF k = DF

uniformly on each compact set KN ⊂ ΩN .

Proof.– From (15) we have, for each X ∈ ΩN :

‖F k(X) − F (X)‖ = ‖Fk(UX)X − V(UX)UX‖ ≤ ‖Qk(UX)‖‖X‖.

Therefore, as U is a constant matrix, to prove (i) it is enough to prove that, for each
compact set Kq ⊂ Ωq we have

sup
Y ∈Kq

‖Qk(Y )‖ −→ 0 (k → ∞)

which, in turn, will be a consequence of the existence of two constants C > 0 and
β ∈ (0, 1) such that

∀Y ∈ Kq , ‖Qk(Y )‖ ≤ Cβk , k = 1, 2, . . . (16)

Since Q(·) is continuous, the spectral radius ρ(Q(·)) is also continuous on Ωq

and then, bearing in mind (14), we can assure the existence of a constant α with
0 < α < 1 such that supY ∈W ρ(Q(Y )) ≤ α, where W is some bounded open set with
Kq ⊂ W and W ⊂ Ωq.

Let β be fixed with α < β < 1 and set Y ∈ W . It is a well known fact that there
exists a matrix norm ‖ · ‖Y (depending on Y ) for which ‖Q(Y )‖Y < β.

The continuity of Q(·) and of the norm allow us to assure the existence of an
open neighbourhood of Y , B(Y ) ⊂ W , such that supZ∈B(Y ) ‖Q(Z)‖Y ≤ β.

Obviously, the family B := {B(Y ) ; Y ∈ W} is an open covering of Kq and since
Kq is a compact set, there exist a finite collection of points Yj ∈ W , j = 1, . . . , r
such that Kq ⊂ ∪r

j=1B(Yj).
Then, for each Y ∈ Kq there exists j ∈ {1, . . . , r} such that ‖Q(Y )‖Yj

≤ β, and

therefore ‖Qk(Y )‖Yj
≤ βk, k = 1, 2, . . ..

As a consequence, bearing in mind that all the matrix norms are equivalent, we
have that ‖Qk(Y )‖ ≤ Cjβ

k, for some constant Cj > 0. Choosing C := max(C1, . . . Cr),
the estimation (16) holds.
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To prove the assertion (ii) let us notice that (15) implies that

∀X ∈ ΩN , DF k(X) = DF (X) + D[Qk(UX)X].

Therefore, we have to prove that, for each compact set KN ⊂ ΩN we have

sup
X∈KN

‖D[Qk(UX)X]‖ −→ 0 (k → ∞).

Let us start with some straightforward calculations. Let A(·) := (aij(·))i,j=1,...,N

be a C1 matrix function defined on ΩN and set R the scalar function defined on ΩN

by R(X) := A(X)X, X := (x1, . . . , xN )T ∈ ΩN .
A direct calculation of the partial derivatives leads to the following expression:

DR(X) = A(X) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
j=1

xjgrad a1j(X)

...
N∑

j=1

xjgrad aNj(X)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Choosing A(X) := Qk(UX) in the above expression, with the help of the chain rule
we have:

D[Qk(UX)X] = Qk(UX) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
j=1

xjgrad q
(k)
1j (UX)

...
N∑

j=1

xjgrad q
(k)
Nj(UX)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

U

where we have denoted by q
(k)
ij (Y ) the entries of matrix Qk(Y ).

Let KN ⊂ ΩN be a compact set and set Kq := UKN ⊂ Ωq, which is also a
compact set. Bearing in mind (16), the above expression leads to the following
estimation:

‖D[Qk(UX)X]‖ ≤ C1β
k + C2‖U‖‖X‖ max

i,j=1,...,N

(
sup

Y ∈Kq

∣∣∣∣∣∂q
(k)
ij

∂ys
(Y )

∣∣∣∣∣ , s = 1, . . . , q

)

where C1 > 0, C2 > 0 are two constants whose specific values are not relevant.
For each Y := (y1, . . . , yq)

T ∈ Ωq and k = 1, 2, . . . we have

∂Qk

∂ys
(Y ) =

∂Q

∂ys
(Y )Q(Y )(k−1). . . Q(y)

+Q(Y )
∂Q

∂ys
(Y )Q(Y )(k−2). . . Q(Y ) + · · · + Q(Y )(k−1). . . Q(Y )

∂Q

∂ys
(Y )

and since Q(·) has continuous partial derivatives, then bounded on each compact
set, we can conclude that

sup
X∈KN

‖D[Qk(UX)X]‖ ≤ C1β
k + C3kβk−1 −→ 0 (k → ∞)
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as we wanted to prove.
This finishes the proof of Theorem 2. �
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