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1 Introduction

This paper is based on recent works [5,4,8] where a system of ordi-
nary differential equations (ODE’s) has been proposed to model
the growth of cell population levels in presence of tumor cells and
under a combined immune, vaccine and chemotherapy of cancer.
While modeling the entire immune system is a highly complex
task [20], reasonably simple models can be obtained when con-
centrating on the reaction of the immune system to tumor growth
(see [5,4,8,7] and the reference therein). In particular, the model
proposed in [5,4,8] enables the basic qualitative phenomenons
such as tumor dormancy, oscillation in tumor size as well as
bifurcation-like behavior to be reproduced under particular re-
alistic conditions. Moreover, the tumor and the immune system
responses to particular medical interventions (chemotherapy drug
and immune response modifiers injection) have been modeled.
Corresponding simulations show clearly the following facts [5,4] :
first combined immune and chemotherapy may be crucial to the
success of cancer treatment, and also as the model parameters
may heavily depend on the patient, the same open-loop injection
profile can be successful for one patient and inadequate for an-
other even when starting from the same initial state.



The resolution of optimal control problem in cancer treatment
therapy is a very performing tool that already showed particu-
larly interesting performances [14,15,1]. However this is generally
done in an open-loop, namely, by computing the best strategy to
be applied based on the model and some initial state. The speci-
ficity of NMPC scheme is to be a feedback scheme that need
optimal control problem to be repeatedly solved at each decision
instant in order to robustify the results against model mismatch
and parameter uncertainties. To the best of our knowledge, this
scheme, while widely assessed to be of a great efficiency by control
systems theorists has been but rarely (if never) been used in can-
cer treatment computation in feedback form. Thus, the feedback
scheme proposed here combines both the advantages of optimal
control theory and the performances of a feedback scheme. Indeed
it is a well known fact that controlled systems gain in robustness
when a feedback control is applied to achieve the desired be-
havior. More precisely, feedback decreases the sensitivity of the
overall result to parametric uncertainties and modeling errors.
Moreover, when large deviations in the values of parameters are
expected to hold, it may be necessary to use the available mea-
surements in order to improve the robustness of the treatment
result.

The feedback scheme proposed here is applied on the mathe-
matical model proposed.in[5,4,8], but the method is very generic
and such feedback scheme could be implemented for any other
types of models as bidimensional models[10] or infinite dimen-
sional model[3] since the model is used here only as a black-box
simulator.

The aim of the present paper is to propose a complete (feedback
control, adaptation) scheme that implement the above ideas on
the mixed immunotherapy/chemotherapy of tumors. The paper
is organized as follows. First, the model of [5,4,8] is briefly de-
scribed in section 2. Follows a description of the control problem.
More precisely, two possible Nonlinear Model Predictive Control
formulations are defined using two different optimal control prob-
lems :



(1) In the first, the problem is to minimize the tumor size at the
end of the prediction horizon while keeping the number of
circulating lymphocytes beyond a minimal level during the
whole therapy.

(2) In the second, the problem is to maximize the number of cir-
culating lymphocytes while imposing a contraction rate on
the number of tumor cells at the end of the prediction hori-
zon compared to its value at the beginning of the prediction
horizon.

Once an optimal control problem is defined, the corresponding
NMPC feedback amounts to solve this optimal control problem
leading to an optimal sequence of future control actions, to ap-
ply the first action in the resulting optimal sequence during the
sampling period. At the next decision instant, the optimal con-
trol problem to be solved is updated based on the value of the
current state, the resulting problem is solved yielding an optimal
sequence of future actions, the first one is applied during the sam-
pling period until the next decision instant and the procedure is
repeated.

The use of the predictive control strategy to yield a mixed ther-
apy in feedback form without updating scheme is proposed in
section 4 together with some validating simulations using the hu-
man data given in [5,4] (patients 9 and 10). These simulations
suggest a nice robustness behavior against parameters discrep-
ancy up to a certain level. In section 5, a novel updating scheme
is proposed and its effectiveness in improving the robustness is
assessed through dedicated simulations. Finally, the different con-
sequences that result from the use of each one of the above two
different formulations are also discussed in section 6. The paper
ends with a conclusion summarizing the paper contributions and
giving guidelines for future work.



2 Model description and Control related problem

2.1 The state variables

In this section, the mathematical model proposed in [5,4] to de-
scribe the dynamic evolution of the population of cells in the pres-
ence of tumor and under the combined immune and chemother-
apy treatment is briefly described. This model involves the fol-
lowing cell populations:

e 7T, tumor cell population,

e N, total NK cell population. These cells are part of the innate
immune system and therefore exist even when no tumor cells
are present [4,21].

e L, total CD8'T cell population. These are active tumor spe-
cific cells that are part of the specific immune response. Con-
sequently, these cells are only present in large numbers when
tumor cells are present [4,21,13].

e (', number of circulating lymphocytes (or white blood cells).
This number can be used as a measure of the patient health
[19,18].

e M, chemotherapy drug concentration in the blood stream.

e /, immunotherapy drug concentration in the bloodstream.

2.2 The modeling assumptions

Before going into the model description, it is important to note
that, as it is recalled in [4], there is no universal agreement as
to the underlying dynamics or the precise cascades of events that
take place in the tmmune response process. The model recalled
and described bellow is however based on published statements
derived from clinical validations [9] [11] [22] as well as on reason-
able assumptions depicted on table 1.



2.3  Mixed immunotherapy and chemotherapy of tumor model

The considerations depicted on Table 1 lead to the following sim-
plified model for cell population dynamics in presence of tumor
cells and under mixed immune and chemotherapy medical inter-

ventions:
dT -M
—=aT(1—bT) = eNT — DT — Kr(1 — e )T, (1)
AN T*
— —eC— fN+qg—— N —pNT — Kn(1 — e MYN. (2
- eC — f +gh+T2 P NI —e )N, (2)
dL . D’T?
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To summarize, the model involves

e 6 measured state variables T', N, L, C' M, and I,
e 3 manipulated (control) variables vy, vy and vy,

e and 24 parameters:
a,b,c,d, s, Kp,e, f,g,h, Kn,m,j,k,q,r1,79,u, Ki, o, 3, Ko, v and
[. Almost all these parameters vary from one patient to an-
other. Two sets of experimentally estimated parameters for two
different patients can be found in [4]. These sets are used in the
remainder of the paper for simulation and validation purposes.
Relative errors on a subset of these parameters are also sim-



The number of tumor cells grows logistically in
the absence of immune response.

aT'(1-bT) (in the
r.h.s of (1))

Both NK and CD8'T kill tumor cells.

—cNT and —DT
(in the r.hs of

(1))

The cytokine IL-2 stimulates the recruitment of
CDS8*'T cells [21]. Tt is naturally present in the
immune system but it can also be injected ther-
apeutically [13]. The additional amount of cy-
tokine IL-2 that corresponds to this medical in-
tervention is represented by the state variable
1.

NK cells are normally present in the body even
in the absence of tumor cells. In the model of [4],
the source of NK cells is taken to be a fraction
of the circulating lymphocytes. This is clearly
a simplification that aims to represent a rather
complex cascade of biological events that result
in the stimulation of NK cells production.

eC (in the r.h.s of
(2))

The fraction of cells (both tumor and healthy
cells) killed by chemotherapy depends on the
amount of drug present in the body.

(1 —e=™) (in the
r.h.s of (1)-(4))

Both the NK and the CD8TT cell populations
are stimulated by the presence of tumor cells.

T2
—N
hyT
DT
j—— L
k + D217
(in (2) and (3)
respectively )

and

All cells are in competition for space and nutri-
ments.

bilinear terms
NT, LT, NL? in
equations (1)-(3)

Table 1

Table describing the modeling assumptions on the 6 population evolutions and their
mathematical formulations. This table has to be related to the system dynamics
described by (1)-(7)

ulated to evaluate the robustness of the resulting closed-loop
behavior.



2.4 The control problem

The basic paradigm in cancer therapy drug administration is to
decrease the number of tumor cells T" while monitoring the num-
ber of circulating lymphocytes C' as they are a good measure
of the patient health [12,16,6]. There are two different ways to
formally write this control objective:

(1) The first formulation is the one used by [6,17,1] among many
other works. It amounts to minimize the tumor size T'(¢s) at
the end of some prediction horizon while keeping the circu-
lating lymphocytes above a given threshold C),;,:

P min  T(ty) (8)

’UM('),’UL('),’U[(')

under C(t) > Chin, Yt € [0,14]

This formulation aims to reduce the tumor size as faster as
possible under the health constraint C(t) > Cin.

(2) The second possible formulation investigated hereafter uses a
reverse logic. Namely, it.aims to maximize the patient health
under a contraction constraint on the tumor size at the end
of the prediction horizon. More precisely, the following game

is defined:
Ps max min C(t 9
2 i, () (9)
under T'(t;) < ~T'(0) with v €]0, 1]

This formulation focuses on the health level by allowing a less
faster decrease of the tumor size.

To the best of our knowledge, the second formulation has never
been considered and one of the contributions of the present paper
is to show that the above different two formulations lead to quite
different results. Namely, as shown hereafter, the second formu-
lation may lead to huge improvement in the health indicator at
the price of a imperceptibly longer treatment duration.



In the following section, it is shown how nonlinear model predic-
tive control design enables the above formulations to be handled
yielding two corresponding feedback schemes.

3 Recall on Nonlinear Model Predictive Control

This section is devoted to a brief recall on Nonlinear Model Pre-
dictive Control (NMPC) that is a state feedback design tool,
refer to [2] for a detailed presentation of NMPC. Let us consider
a time-invariant system

x(t) = F(xo, t,u); x(t) € R", u(t) e R™ (10)

with z(.) the state trajectory that is completely determined through
the map F(.) given the initial state 29 = x(0) and the control
profile u,

w = {u(7)} e ulr)eU. (11)
Let 75 > 0 be a sampling period, the NMPC is a control strategy
in which the current control action is obtained by solving at each
sampling instant a finite constrained horizon open-loop optimal
control problem

min J(zo,ts,u); o(zo,u) <O0. (12)
uely %]

with ¢ty = N7, the prediction horizon. This yields an optimal
control profile. The first part of this profile is applied during the
current sampling period until the next decision instant is reached.
At this decision instant, the problem is updated according to the
new initial state (equal to the current one) and the procedure is
repeated yielding a state feedback.

Note that in many applications, the system dynamics is submit-
ted to state constraints that are here described by the inequality
o(xg, u) < 0. In our case, the state constraints are imposed either
by the threshold on the number of circulating lymphocytes in the



optimal control problem P; [see (8)], or by a contraction rate on
the number of tumor cells at the end of the prediction horizon in
the optimal control problem P, [see (9)].

For the mixed immunotherapy and chemotherapy of tumors, the
NMPC will either be defined using the optimal control problem
Py or Py described respectively by (8) or (9). Note that in both
cases, the optimal control problems are submitted to state con-
straints. Now, in order to reduce the optimal control problem
complexity, it is interesting to consider a control parametrization
that can be described by a map

C:P—-UY (13)
C(p)=(u'(p) ... u"(p))

where P is a set of admissible parameter values, leading to a
so-called P-parameterized piecewise constant control profile

u :Upwc(-,p), (14)

such that, if the decision instants are denoted by {t; = i.7,}¥,,
one has:

Upwe(t,p) = u'(p), withiie {1,...,N} and t € [t;_1,t]. (15)

This way, a parameterized receding-horizon control is defined,
where the new decision variable is p. The cost function is now a
function of p since

J(zo,tr,w) < J(zo,tr,Upwe(., D)) < J(zo,ts,p).  (16)

At each decision instant t;, the solution of the parameterized
optimization problem (17) over the prediction horizon ¢ :

min J (2 (), t,0); oo (ti).p) <0 (17)

yields the optimal parameter value p(x(¢y)). The sampled receding-
horizon feedback described by (15) is then obtained by applying



the first element of the control sequence that is defined by the
optimal parameter value

u(ty) = u' (B2 (tr))) = Upne(0, D (tr)))- (18)

At the next decision instant t;1, a new optimal parameter p(x(t;11))
is computed by minimizing the new cost function J(z(t5+1), s, p)
and the resulting control:

u(tier) = w' (p(e(tes))) = Upue(0, P (tii1)))

is applied during the sampling period [tx. 1, tx12] and so on.

4 NMPC for mixed immunotherapy and chemotherapy treatments

Recall that according to (1)-(7), the effect of chemotherapy and
immunotherapy treatments (TIL and IL-2 injections) on the state
variables are modeled respectively by vy (.), vz (.) and vy(.). These
three variables correspond to the control actions, their profiles
will be determined by two different ways:

e The explicit direct effects of immunotherapy treatments on the
dynamical behavior of the system leads to determine the im-
munotherapy control vy (.) and vy(.) explicitly through a simple
feedback loop as explained in section 4.1.

e On the opposite, the effect of chemotherapy is quite complex
because it induces positive effects (tumor regression) and nega-
tive effects (regression of immune system). As a result, it is nec-
essary to implement a prediction-based implicit NMPC scheme
in order to determine the chemotherapy control profile.

We will see in section 4.2 that when considering medical ap-
plications, piecewise constant and parameterized control profiles
seems particularly well-adapted.

10



4.1 Computation of immunotherapy treatment vr(.) and v;(.) through an ez-
plicit feedback loop

The goal of immunotherapy is to strengthen the ability of the
body to fight against cancer by enhancing the effectiveness of
the patient immune system. To get into more details, we can
observe that through equations (3) and (6), the immunotherapy
treatments vy (.) and vy(.) tend to increase the CD8+T cell pop-
ulation L. As a result, immunotherapy acts on the tumor cell
population through the tumor lysis by CD8+T cells described
by the term D [see (7)] in equation (1).

Now, since the term D(L,T) is a function of CD8+T cells L and
tumor cells 7', one can observe through relation (7) that with a
high rate of CD8+ cells, the tumor lysis by CD8+ cells tends
to the value of the parameter d, while for a loew population of
CD8+T the term D tends to zero.

The control objective of immunotherapy appears thus relatively
simple, it aims at maximizing the tumor lysis by CD8+T cells
by increasing the CD8+T cell population with d as a set point.
Indeed, according to the model, when D approaches d, No ben-
efit can be obtained from immunotherapy and treatment can be
almost stopped.

Therefore at each decision instant ¢, the quantity of of both TIL
and IL-2 drugs-are computed through the following expression

vL(tr) = Satg ™ (\(d — D(L(ty), T(t))))
vr(ty) = Saty™ (\(d — D(L(ty), T(ty)))

with A > 0 a coefficient that determines the bandwidth of of the
feedback. The maximum concentration of immunotherapy treat-
ments vz (.) and vy(.) is bounded by the following values taken
from [4]: a maximum boost of TILs of Ve = 10° cells and a
maximum boost of IL-2 of Viee = 5 x 10° cells.

11



4.2 Parametrization of the chemotherapy treatment

Following the control parametrization principle recalled in sec-
tion 3, the parametrization of the chemotherapy profile to be
used in the implementation of the NMPC feedback is detailed in
the present section.

In medical applications, a drug treatment is often defined by the
following parameters : dosages, duration of the treatment, sched-
ule (number of administrations and times of administration), way
of administration, and administration profile (bolus, infusion). As
a result, the parametrization of the chemotherapy treatment pro-
file used in the NMPC related computation appears completely
natural. As shown in figure 1 the chemotherapy control profile
will be described by 3 parameters : the dosage (amplitude) ayy,
(bounded by a maximum value Vi,q.), the duration of each dose
Oy and the period T)y.

t

Fig. 1. Parametrization of the chemotherapy treatment

4.3 NMPC for-chemotherapy treatment

The control profile of the chemotherapeutic treatment is found
by solving at each decision instant the optimal control problem
Py or P in the vector of unknown parameter

p = (@MaéMaTM>'

In fact, for the simultaions presented here, the period of the
chemotherapy treatment 73, was kept constant and equal to the

12



prediction horizon, but this parameter can easily be used as an

optimizable variable.

As explained in section 3, in order to reduce the optimal control

problem complexity, the control parametrization for the NMPC

feedback control for mixed chemotherapy /immunotherapy is based
on a quantization of the chemotherapy treatment. The set P of

admissible parameter values, defined in 13, is here descibed by

the set of discretized drug quantities and treatment durations

(caar, Oar) € {0,0.2,0.4,0.6,0.8, 1}.Virmawx {0, 0.25, 0.5, 0.75, 1, 2}.611mas

which is particularly suitable for medical applications.
4.4 Simulations of NMPC-based mized therapy

The simulations are obtained using a routine written in C4++ that
uses the GSL library. For the simulations, two sets of parameters
are used, their values taken from [4] correspond to two patients
(9 and 10). A brief look at these two sets of parameters allows
to observe a wide range of parameter variations. It is therefore
necessary to check the robustness of the mixed immunotherapy
and chemotherapy of tumors.

The control parameters and the initial conditions are given in
table 2, additional parameters that vary for simulation purposes
(as initial tumor cells Tj or contraction factor ) will be speci-
fied inside the caption of the corresponding figure. For robustness
analysis, we introduce a discrepancy on 9 randomly chosen pa-
rameters: a, d, ¢, p, q, u, r1, 79, pI always in the most pessimistic
case. Figure 2 a. shows the successful treatment for an initial tu-
mor size of T'(0) = 5 x 107 when the optimal control problem P;
is used under 15% of discrepancy (Figure 2 b. will be exploited in
section 6). For this simulation, the initial conditions considered
on the system parameters are N(0) = 5.0 x 10?, L(0) = 50 and
C(0) = 5.625 x 10 cells. The threshold for the minimum number
of lymphocytes is fixed three times smaller than the initial num-
ber of lymphocytes, namely C,,;, = 1.875 x 10! cells. Despite the

13
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Fig. 2. Behavior of the population levels under the two treatment strategies: using
the optimal control problem P; (Figure a.) and Ps (Figure b.) under 15% of param-
eter discrepancy. On both cases the treatment is successful since it leads to a tumor
regression. Note however that the treatment strategy corresponding to the optimal
control problem P, appears here particularly attractive since even though the treat-
ment duration is slightly longer, the health of the patient is kept at its maximum
level over the whole treatment period. [Simulation conditions 7°(0) = 5 x 107, 15%
of discrepancy on nine parameters|

15% of parameter discrepancy, the treatment strategy leads to a
tumor regression while keeping above the threshold the number
of circulating lymphocytes.

To quantify more systematically the robustness property of the
NMPC scheme, we examine the case of a discrepancy on the pa-
rameters ranging from 0% to 50%. Figure 3 shows a table sum-
marizing the successful (the dark green area) or unsuccessful (all
but the dark green area) treatments for an initial tumor size go-
ing from 1'x 107 cells to 1.5 x 10® cells with respect to different
model uncertainties (Note that Figure 3 contains two other re-
gions that correspond to the adaptive scheme, they are described
in section 5). The treatment is considered to be successful when
the total number of cancerous cells by the end of the treatment
is sufficiently low, for example less than 1 x 103, but it is to
be noticed that the treatment period is extended when needed
to satisfy this criterion of minimum number of cells. The initial
conditions are kept identical to the above simulation. When there
is no uncertainty between the patient parameters and the model,

14



T0 initial tumor size

0 10 20 30 40 50
% of parameter discrepancy

Fig. 3. Robustness analysis of the NMPC with and without updating scheme using
different updating periods. Four areas appear : Successful treatments with NMPC
without updating mechanism (dark green), area of recovering successful treatment
with one update/day (light green), area of recovering successful treatment with
three updates/day (yellow) or unsuccessful treatments (white area).

we can observe that the NMPC scheme is able to kill a tumor of
initial size T,q.(0) = 1.3 X 10% cells. When the uncertainties in-
crease, the maximum allowable size of the initial tumor decreases:
for 10% of unmodeled uncertainties, the maximum initial size of
the tumor for the treatment to succeed is of T} (0) = 9 x 107
and for 20% Tn4.(0) = 6 x 107. Note that for high unmodeled
uncertainties, the NMPC is still able to kill an initial tumor of
size Thnar(0) = 1x 107, Clearly, the proposed NMPC presents nice
robustness properties with respect to unmodeled uncertainties.
It is interesting to notice that in a general manner, the optimal
solution obtained in this work yields in applying chemotherapy
at the beginning of the treatment therapy. This solution is differ-
ent from the optimal solutions obtained in [12,15,23] that lead to
apply the drugs at the end of the treatment period. In [1], these
two different strategies were observed, and they were due to the
existence of multiple solutions, the solution was thus for the con-
sidered compartmental model, sensitive to the initial guess.

15



5 NMPC with updating scheme

5.1  An updating scheme

It goes without saying that updating the values of the 24 parame-
ters of the model would be illusory. Indeed, it is a well known fact
in identification theory that when the system is described by a
large number of parameters, the problem might be ill-conditioned
unless the identification is performed under extremely rich exci-
tation signal. Unfortunately, this is impossible to do in our case
where the identification would have been performed under the
on-line treatment signals that are generally insufficient to guar-
antee good identifiability of the model parameters.

Based on the above argumentation, a low dimensional updat-
ing scheme is proposed here. This scheme allows to reduce the
number of parameters to adapt, by focusing exclusively on what
is directly linked to the control objectives. Thus, we propose to
correct the evolution model of the key variable T' by adding a
correction term on equation (1) (when used by the controller to
perform prediction) as follows:

dT
- =aT(1 —bL) =~ eNT — DT — Kp(1 — e ™)T — a,, (H)D)

where t; = i7,; are the updating instants, while 7, is the updat-
ing period. ev,(-) is a piecewise constant correction term deter-
mined according to

up(tivr) = up(ti) + tup(ti) (Tprea(ti) = Tineas(ti)), — (20)

where fi,,(t;) = po.Tprea(t;) with py € [0,1] is a filtering coeffi-
cient and (7}, eq(ti) —Tineas(ti)) corresponds to the prediction error
at time ¢; between the total number of tumor cells measured on
the patient and the total number of tumor cells predicted by the
model. After each measurement, o, (.) is updated and imple-
mented according to (20).

16



5.2 Numerical experiments

First, let us observe in Figure 4 the evolution of the updating
coefficient v, over the treatment period, in the case of 20% of
parameter discrepancy. Note how the value of o, evolves before
reaching a constant value meaning that the corrected model pro-
vides correct predictions of the tumor cells evolution 4 quite long
time before the end of the treatment period.

In addition to the results of the updating free NMPC presented

T(cont), N(dash), L(dot), C(dash—dot) “up

10 20 30 40
time (in days) time (in days)
Vi’ Vivimax VL’ Vimax Vi/ Vimax
1.2 1 1
1
0.8 0.8
0.8
0.6 . 0.6
0.6
0.4 0.4 0.4
0.2 0.2 0.2
o o o
o 20 40 o 20 40 o 20 40

time (in days) time (in days) time (in days)

Fig. 4. Evolution of the model correction coefficient o, (related to the prediction
error through (20)) over the treatment period for 20% of parameter discrepancy in
the case of an NMPC with upadating scheme.

in section 4.3, Figure 3 shows the treatment results (successful
or unsuccessful) for two updating periods 7,,, namely: 24 hours
or 8 hours. We can observe that regardless the uncertainty level,
updating always enlarge the area of recoverable initial conditions.
An other important feature is that the region of recoverable ini-
tial conditions is increased as the updating frequency increases.

17



6 Interesting alternative : the control problem P,

6.1 The role of the contraction factor with control problem Po

The contraction factor v € [0, 1] in (9) used in the formulation of
the optimal control problem P, plays a critical role for the suc-
cess or failure of the treatment strategy. Depending on its value,
the resulting strategy is completely different as illustrated-by fig-
ure 5. If the contraction of the tumor cell population over the
prediction horizon is fixed too low (close to zero), the circulating
lymphocytes population might fail below the threshold (as for
71 = 107°). On the opposite if the contraction factor is fixed too
high (close to one), we force the health indicator to be so good
that the treatment won’t use chemotherapy and as a result the
treatment will not lead to a tumor regression. Therefore the con-
traction factor has to be chosen very carefully. If we consider only
the acceptable values of v (no constraints violation and tumor re-
gression by the end of the treatment), this contraction factor al-
lows to impose a minimum health level with, as a counter part, a
slower tumor regression. We can observe in figure 5 the treatment
strategy for the optimal control problem P;, the tumor regres-
sion slope with this strategy is close to the one obtained for a
contraction factor of v; = 10~* with the optimal control problem
P,. For higher value of v (as for 1 = 107?), the slope of tumor
regression is lower but the population of circulation lymphocytes
is consequently increased. The control problem P,, based on the
contraction factor v seems therefore to be a very interesting al-
ternative since it offers treatment strategy with higher health
indicator profile for slightly longer tumor regression.

Note that in order to determine the optimal value of the contrac-
tion factor, an adaptation scheme can be simply implemented,
this will be realized in future work.
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Fig. 5. Influence of the contraction factor : [Simulation conditions: Ty = 6.107, ¢y = 4
days]

6.2 The need for a combined therapy and the benefit of the control problem
P

First, let us precise that depending on the initial conditions (level
of the populations of circulating lymphocytes and tumor cell), a
combined treatment can be necessary for the success of the treat-
ment as illustrated by figures 6 and 7. Figure 6 shows unsuccessful
treatments when using only chemotherapy or only immunother-
apy and Figure 7 shows, for identical initial conditions, the result-
ing successful treatments based on a combined therapy, obtained
with the the optimal control problem P, in Figure 7 a. , and in
Figure 7 b. with the optimal control problem P;.

Let us recall that the optimal control problem P, aims at maxi-
mizing the patient health under a contraction constraint on the
tumor cell population. As a result if the required contraction
of the tumor cell population is not too high, this strategy will
minimize the use of chemotheralpy and thus maximize the pop-
ulation of circulating lymphocytes. Figure 2 a. and b. illustrate
perfectly the interesting alternative of the optimal control prob-
lem Ps. Indeed, we can observe that no chemotherapy is needed
for ensuring a successful treatment with the optimal control prob-
lem Ps,. Even though the treatment duration is slightly longer, a
direct consequence of this strategy is the total number of circulat-
ing lymphocytes which is kept at its higher level, which ensures a
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Fig. 6. Unsuccessful treatments when using exclusively chemotherapy (Figure a.) or
immunotherapy (Figure b.). [Simulation conditions : Ty = 7e7 cells, Cp = 4.Cyin
ty =4 days, v = le — 3, and 10% of parameters uncertainties
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Fig. 7. Successful treatment when using combined chemotherapy and immunother-
apy with optimal control problem Py (Figure a.) and optimal control problem Py
(Figure b.). [Simulation conditions : Ty = 7e7 cells, Cy = 4.Chin, ty = 4 days,
v = le — 3, and 10% of parameters uncertainties]

good patient health during the whole treatment duration. On the
opposite, with the optimal control problem Py, the total number
of circulating lymphocytes lies at the minimum acceptable value,
which corresponds to a threshold on the patient health.
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6.3 critical role of immunotherapy for treatment success

It is also interesting to observe in Figure 7 a. that when using the
optimal control problem P,, immunotherapy plays a critical role
for the success of the strategy. The chemotherapy is only used
in a single pulse of two hours at the beginning of the treatment,
the decrease of the number of tumor cells after these first hours
is therefore clearly resulting from the immunotherapy action.

7 Conclusion

This paper presents a feedback scheme that aims at improving
treatment strategies in the case of mixed immunotherapy and
chemotherapy of tumors. This scheme is based -on a reasonably
simple mathematical model proposed by [4] that enables basic
qualitative phenomenons to be reproduced. The simulations pro-
posed in the previous sections illustrate the following points

v' A mixed explicit/NMPC-based feedback design methodology
has been proposed for combined therapy of cancer. This feed-
back strategy shows inherent robustness property against model
discrepancy.

v" The robustness of the proposed scheme can be significantly
improved using a scalar updating scheme that concentrate on
the effects of potential uncertainties on the tumor cells evolu-
tion. The region of recoverable initial conditions is hence sig-
nificantly enlarged.

v A new optimal control problem has been proposed (to be used
in NMPC control schemes) that amounts to maximize the pa-
tient health while imposing a contraction of the tumor size.
It has been shown that under certain circumstances, the re-
sulting NMPC feedback enables to obtain successful treatment
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with a huge increase of the health indicators. When compared
to classical formulations that are based on the minimization
of the number of tumor cells, the new proposed formulation
seems to be extremely promising.

This suggest to use a more general predictive strategy in which

the controller systematically evaluate the two strategies before to
decide about the control to apply, this option is currently under
evaluation.
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ACCEPTED MANUSCRIPT

Simulation data value

Maximum dose of immunotherapy Vet = 10° and Vet =5 x 10°

Maximum dose of chemotherapy Vit =1

Prediction horizon ty =4 days

Coefficient for immunotherapy feedback || A = 42

control

Coefficient for the updating algorithm po = 1076

Circulating lymphocytes threshold Crnin = 106

Initial conditions Lo = 50, Ny = 5x10% Cy = 4% Cynin
Table 2

The set of parameters used in the control strategy
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