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HAZARD FUNCTION FOR CANCER PATIENTS AND CANCER

CELL DYNAMICS

IVANA HOROVÁ1, ZDENĚK POSPÍŠIL2, JIŘÍ ZELINKA1

Abstract. The aim of the paper is to develop a procedure for an estimate
of an analytical form of a hazard function for cancer patients. Although a
deterministic approach based on cancer cell population dynamics yields the
analytical expression, it depends on several parameters which should be es-
timated. On the other hand a kernel estimate is an effective nonparametric
method for estimating of hazard functions. This method provides the point-
wise estimate of the hazard function. Our procedure consists in two steps: in
the first step we find the kernel estimate of the hazard function and in the
second step the parameters in the deterministic model are obtained by the
least squares method. A simulation study with different types of censorship is
carried out and the developed procedure is applied to real data.

1. Introduction

Survival analysis belongs to classical parts of mathematical statistics and occu-
pies an important place in the medical research. In the present paper we focus on
estimating hazard functions under random censorship. We use the model where
data are censored from the right3. This type of censoring is often met in many ap-
plications especially in medical research (see e.g Collett (2003), Hougaard (2001),
Therneau and Grambsch (2000)). Nonparametric methods seem to be adequate
for estimates of hazard functions because in contrast to the parametric modeling
assumptions of unknown functions are much weaker, only smoothness and differen-
tiability are required. Among these methods kernel estimates represent one of the
most effective methods. Kernel estimates of hazard functions have been developed
by many authors (see e.g. References in Horová and Zelinka (2007)).

Our approach is based on the method introduced by Tanner and Wong (1984),
Müller and Wang (1990), Jiang and Marron (2003). These methods provide point-
wise estimates of the hazard functions and are described in Section 3. Section 4 is
devoted to a deterministic model which is defined as a solution of a dynamical prob-
lem and yields an analytical form of the hazard function for cancer patients. This
dynamical problem is defined under assumption that the hazard is proportional
to a rate of proliferation speed of cancer cells and uses the Gompertzian model of
the tumor growth curve (Kozusko and Bajzer, 2003). But the deterministic model
depends on some parameters which should be estimated. It could be done by a
maximum likelihood method (see e.g. Hougaard (2001), Horová et al. (2008)), but
in Section 5 we develop a procedure for finding the parameters in the deterministic
model by means of the kernel estimate of the hazard function. Section 6 is devoted

1Research supported by MŠMT: LC06024
2Author supported by the Grant No. 201/01/0079 of the Grant Agency of the Czech Republic
3It is shortly reminded in Section 2.
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2 IVANA HOROVÁ1, ZDENĚK POSPÍŠIL2, JIŘÍ ZELINKA1

to a simulation study. Here the quality of obtained hazard functions for different
types of censoring and different sample sizes are evaluated in terms of L2-measure.
In Section 7 the developed procedure is applied to real data sets. Discussion and
conclusion are included in Section 8.

2. Random censorship model

Survival data are frequently censored thus it makes sense to define a random cen-
sorship model. Let T1, T2, . . . , Tn be independent and identically distributed life-
times with the cumulative distribution function F . Let C1, C2, . . . , Cn be indepen-
dent and identically distributed censoring times with the cumulative distribution
function G which are usually assumed to be independent of lifetimes. In the random
censorship model we observe pairs (Xi, δi), i = 1, . . . , n, where Xi = min(Ti, Ci)
and δi = I{Xi = Ti} indicates whether the observation is censored or not. It
follows that {Xi} are independent and identically distributed with the cumulative
distribution function L satisfying L(x) = F (x)G(x) where H = 1−H is a survival
function for any cumulative distribution function H .

The survival process can be also characterized by the hazard function λ = λ(x),
i.e. the probability that an individual dies at time x, conditional on he or she having
survived to that time. If the lifetime distribution F has a density f , for F (x) > 0
the hazard function is defined by

(1) λ(x) =
f(x)

F (x)
.

Since F (0) = 1, the survival function can be expressed by the formula

(2) F (x) = exp

⎛
⎝−

x∫
0

λ(t)dt

⎞
⎠ .

Let cohort of the initial size N0 die out with the time dependent death rate µ = µ(x),
i.e. the size of the cohort N = N(x) at time x evolves according to the differential
equation

N ′(x) = −µ(x)N(x), N(0) = N0

whose the solution is given by

(3) N(x) = N0 exp

⎛
⎝−

x∫
0

µ(t)dt

⎞
⎠ .

In this connection the survival function F is defined as

(4) F (x) =
N(x)

N0
.

Hence, the death rate µ equals the hazard function λ. Consequently

(5) λ(x) = −
N ′(x)

N(x)
.
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HAZARD FUNCTION FOR CANCER PATIENTS AND CANCER CELL DYNAMICS 3

3. Kernel estimates of the hazard function

These estimates have been dealt with many authors, (see e.g Horová and Zelinka
(2007) and references therein). Our approach is based on the model introduced by
Tanner and Wong (1984), Müller and Wang (1990) and Jiang and Marron (2003).

Let [0, T ], T > 0 be an interval for which L(T ) < 1, L is the cumulative distri-
bution function of Xi’s.

First let us make some assumptions:
1◦ λ ∈ Ck0 [0, T ], k0 ≥ 2, Ck0 [0, T ] denotes the class of functions having continuous

derivatives up to the order k0.
2◦ Let K be a real valued function on R satisfying conditions

(i) support(K) = [−1, 1], K(−1) = K(1) = 0

(ii) K ∈ Lip[−1, 1] : |K(x) − K(y)| ≤ q|x − y|, 0 < q, ∀x, y ∈ [−1, 1]

(iii)

1∫
−1

xjK(x)dx =

⎧⎨
⎩

1, j = 0
0, 0 < j < k
βk �= 0, j = k, k ≤ k0

Such a function is called a kernel of order k and a class of these kernels is denoted
by Sk.

3◦ Let {h(n)} be a non-random sequence of positive numbers satisfying lim
n→∞

h(n) =

0, lim
n→∞

n h(n) = ∞. These numbers are called bandwidths or smoothing param-

eters. For the sake of simplicity the dependence h(n) on n will be omitted in
following considerations.

4◦ Denote Kh(x) = 1
hK(x

h).

The kernel estimate of the hazard function λ at the point x ∈ [0, T ] with the

kernel K and bandwidth h is denoted by λ̂h,K(x) and defined by

(6) λ̂h,K(x) =

n∑
i=1

Kh

(
x − X(i)

) δ(i)

n − i + 1
,

where X(i) denotes the ith order statistics of X1,. . . ,Xn and δ(i) the corresponding
censoring status. The kernel K plays a role of a weight function and the bandwidth

h controls the smoothness of the estimate. Under assumptions given above λ̂h,K(x)

yields a consistent estimate of λ(x), i.e. λ̂h,K(x)
p

−→ λ(x), x ∈ [0, T ] (see e.g. Müller
and Wang (1990)).

The global quality of the estimate (6) can be described by the Mean Integrated
Square Error (MISE):

MISE(λ̂h,K) =

T∫
0

E(λ̂h,K(x) − λ(x))2dx =

=
V (K)Λ

nh
+ h2kβ2

kDk + o

(
h2k +

1

nh

)
,

where E denotes the expectation of a random variable and

βk =

1∫
−1

xkK(x)dx, V (K) =

1∫
−1

K2(x)dx,
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4 IVANA HOROVÁ1, ZDENĚK POSPÍŠIL2, JIŘÍ ZELINKA1

Λ =

T∫
0

λ(x)

L(x)
dx , Dk =

T∫
0

(
λ(k)

k!

)2

dx .

Now we focus on the leading term MISE(λh,K) of MISE(λh,K)

(7) MISE(λ̂h,K) =
V (K)Λ

nh
+ h2kβ2

kDk.

There is not any problem to choose a suitable kernel. There exists a class of optimal

kernels minimizing MISE(λ̂h,K) with respect to K (see e.g. Müller (1988), Marron
and Nolan (1989), Horová et al. (2002)). Here we recommend to use kernels of
order two, namely the Epanechnikov kernel K(x) = 3

4 (1 − x2) I[−1,1] or quartic

kernel K(x) = 15
16 (1 − x2)2 I[−1,1], I is an indicator function.

The problem of choosing how much to smooth, i.e. how to choose a bandwidth,
is of a crucial importance in kernel estimates.

It is easy to find that the asymptotically optimal bandwidth hopt,k minimizing

MISE(λ̂h,K) with respect to h is given by

(8) h2k+1
opt,k =

V (K)Λ

2nkβ2
kDk

,

i.e. hopt,k = O(n− 1
2k+1 ).

The formula (8) provides simple insight into “good” bandwidth. But an obvious
problem of finding this optimal bandwidth is that hopt,k depends on the unknowns
Λ and Dk. In the random censorship model modified cross-validation methods (see
e.g. Uzunogullari and Wang (1992)) or modified likelihood methods (Tanner and
Wong, 1984) could be applied. In our paper we use a special iterative method based
on a suitable approximation of MISE (see Horová and Zelinka (2007), Horová et al.

(2006)).

Let us denote with ĥopt,k an estimate of hopt,k. The influence of the bandwidth
to the estimate is shown in Figure 1. Simulated data for n = 100 and censorship
type II (see section 6) are used. A small bandwidth leads to the undersmoothed
estimate of λ and a large bandwidth yields the oversmoothed estimate of λ.

At the end of this section we recall the formula for the asymptotic (1 − α)
confidence interval given by

(9) λ̂h,K(x) ±

{
λ̂h,K(x)V (K)

(1 − Ln(x))hn

}1/2

Φ−1
(
1 −

α

2

)
where Φ is the normal cumulative distribution function and Ln is the modified
empirical survival function of observation times

Ln(x) =
1

n + 1

n∑
i=1

I{Xi≤x}.

4. Deterministic model of hazard function

Let us assume that the hazard is proportional to the rate of proliferation of
cancer cells. Let y = y(x) denote a time dependent size of cancer cells population
and thus

(10) λ(x) = ρy′(x)
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HAZARD FUNCTION FOR CANCER PATIENTS AND CANCER CELL DYNAMICS 5
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Figure 1. Influence of the bandwidth to the kernel estimate of λ
solid line – true hazard function

dashed line – estimate with the optimal bandwidth hopt = 19.643
thin solid lines – undersmoothed (h = 7.5) and oversmoothed (h = 100)

estimates

where ρ denotes the positive rate of proportionality. It can be shown (Kozusko
and Bajzer, 2003) that under some not very restrictive conditions the classical
Gompertzian model could be an appropriate model of the cancer cells growth.
This model yields y as a solution of the differential equation

(11) y′ = −ay log
y

b
, y(0) = y0.

The parameters y0 and b denote the initial and the maximal possible size of cancer
cells population, respectively. The parameter a can be interpreted as the maximal
possible rate of increase of the tumor. Taking into account the assumption (10)
and the solution of the initial problem (11) we arrive at the formula for the hazard
function λ:

(12) λ(x) = λ(x, a, t∗, λ∗) = λ∗ exp
(
1 − a(x − t∗) − e−a(x−t∗)

)
where

λ∗ =
ρab

2
, t∗ =

1

a
log

(
log

b

y0

)
and λ(t∗) = λ∗, λ∗ and t∗ denote the maximal hazard and the time of its achieving.
The parameters a, λ∗ are positive, t∗ is non-negative.

Simple qualitative properties of this hazard function λ are in a good accordance
with clinical observations, at least for some types of cancer. In particular, the fact
that the force of mortality does not decrease immediately after surgery agrees with
the property

arg maxλ(x) = t∗ > 0 for b � y0.
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6 IVANA HOROVÁ1, ZDENĚK POSPÍŠIL2, JIŘÍ ZELINKA1

Further, the relation

∞∫
0

λ(x)dx =
e

a

[
1 − exp

(
−eat∗

)]
< ∞

expresses the fact that not all of patients die of cancer.
In this paper we want to show that the proposed hazard function can appro-

priately fit observed survival data. The parameters a, t∗, λ∗ can be estimated by
means of the kernel estimates. Such a procedure will be described in the next
section.

The actual hazard function can be more complicated. In such a case, we suppose
that the cohort of patients is split up into l subcohorts of the sizes N1,. . . ,Nl and
that the each of subcohort size evolves with its special dynamics:

Ni(x) = αiN0 exp

⎧⎨
⎩−

x∫
0

λi(t)dt

⎫⎬
⎭ , i = 1, . . . , l

where αi > 0,
l∑

i=1

αi = 1.

The splitting up of the patients into subcohorts (i.e. values of parameters αi)
may be carried out with respect to some clinical indications. The hazard function
for the complete cohort is given by the formula

(13) λc(x) = −
N ′(x)

N(x)
=

l∑
i=1

αiλi(x) exp

{
−

x∫
0

λi(t)dt

}
l∑

i=1

αi exp

{
e
−

xR

0

λi(t)dt
}

and λc is called a composed hazard function.
In terms of parameters αi, ai, t∗i , λ∗

i , i = 1, . . . , l, the composed hazard function
can be expressed as

λc(x) = λc(x, α1, a1, t
∗
1, λ

∗
1, . . . , αl, al, t

∗
l , λ

∗
l )

and l four-tuples of parameters should be estimated.

5. Estimates of deterministic model

The aim of this section is to propose the parameters estimate procedure of the
composed hazard function (13) by means of the kernel estimates of this function.

For our purpose it is sufficient to use the kernel estimate λ̂h,K with the kernel

of order two and the bandwidth ĥopt,2 = O(n−1/5).

Let λ̂j = λ̂h,K(xj), j = 1, . . . , s denote the kernel estimate of the hazard function
at the point xj . The parameters of λc can be estimated by the least squares method,
i.e.

(14)

(α̂1, . . . , α̂l−1, â1, . . . , âl, λ̂
∗
1, . . . , λ̂

∗
l , t̂

∗
1, . . . , t̂

∗
l ) =

= arg min

{
s∑

j=1

(
λ̂j − λc(xj , α1, a1, t

∗
1, λ

∗
1, . . . , αl, al, t

∗
l , λ

∗
l )

)2
}
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HAZARD FUNCTION FOR CANCER PATIENTS AND CANCER CELL DYNAMICS 7

where αi > 0, ai > 0, t∗i ≥ 0, λ∗
i > 0, i = 1, . . . , l and

αl = 1 −
l−1∑
i=1

αi.

This procedure yields the estimate of the analytical form of the hazard function
and it is denoted by

(15) λ̂c(x) = λc(x, α̂1, â1, t̂
∗
1, λ̂

∗
1, . . . , α̂l, âl, t̂

∗
l , λ̂

∗
l ).

The minimum (14) is located by the Newton method (procedure nlm from the
R language) and the initial approximations are obtained by the maximal likelihood
method from the observed (Kaplan and Meier, 1958) survival function (see Posṕı̌sil
(2005) for details).

6. Simulation study

The suggested method is tested on 12 sets of simulated data.
Survival data are simulated using the hazard function (13) with l = 2 and the

following parameters:
parameter i = 1 i = 2

αi 0.2 0.8
ai 0.02 0.06
t∗i 70 100
λ∗

i 0.1 0.005

The data are generated for three patient groups sized – n =50, 100, 250, and four
types of censoring time. Let Tmax denotes the maximal time of the simulated death.
Then censoring times are generated as a sample from the uniform distribution on the
interval (tm, tM ) where tm, tM depends on Tmax. The applied types of censorship
are

I. tm = Tmax, tM = 2Tmax

II. tm = 1
2Tmax, tM = 2Tmax

III. tm = 0, tM = 2Tmax

IV. tm = 0, tM = Tmax

For each of the 12 simulated data sets the kernel estimation of the hazard func-
tion λh,K is computed and then the parameters of the hazard function λc are

estimated. Let the estimated parameters be α̂1, α̂2, â1, â2, t̂
∗
1, t̂

∗
2, λ̂

∗
1, λ̂

∗
2 and put

λ̂c(x) = λc(x, α̂1, α̂2, â1, â2, t̂
∗
1, t̂

∗
2, λ̂

∗
1, λ̂

∗
2). The quality of data fit is measured by

the “average L2-distance” defined by
(16)

ErrK =
1

Tmax

Tmax∫
0

(
λc(x)− λ̂h,K(x)

)2
dx, ErrP =

1

Tmax

Tmax∫
0

(
λc(x)− λ̂c(x)

)2
dx.

We use value Tmax = 200 for all simulated data sets. The results are summarized
in Table 1.

Let us consider the composed hazard function

λc(x) = λc(x, 0.2, 0.02, 70, 0.1, 0.8, 0.06, 100, 0.005).
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8 IVANA HOROVÁ1, ZDENĚK POSPÍŠIL2, JIŘÍ ZELINKA1

Type of censorship
n I II III IV

ErrK 3.41·10−6 3.41·10−6 3.65·10−6 4.56·10−6

50
ErrP 3.29·10−6 3.31·10−6 3.58·10−6 6.7·10−7

ErrK 3.98·10−7 5.06·10−7 3.32·10−6 2.04·10−6

100
ErrP 3.88·10−7 4.93·10−7 3.28·10−6 2.04·10−6

ErrK 1.86·10−7 1.85·10−7 2.73·10−7 2.48·10−6

250
ErrP 1.8·10−7 1.81·10−7 1.81·10−7 1.66·10−6

Table 1. L2-distance (16) of actual and estimated hazard functions

Type of censorship
n = 50

I II III IV
p p̂ γ p̂ γ p̂ γ p̂ γ

α1 = 0.2 0.05 0.774 0.05 0.767 0.04 0.806 0.12 0.380
α2 = 0.8 0.95 0.194 0.95 0.192 0.96 0.201 0.88 0.095

a1 = 0.02 0.016 0.188 0.016 0.187 0.016 0.221 0.015 0.267
a2 = 0.06 0.020 0.667 0.020 0.664 0.019 0.690 0.060 0.000

t∗1 = 70 77 0.096 77 0.103 77 0.105 128 0.823
t∗2 = 100 78 0.222 77 0.232 78 0.218 100 0.000
λ∗

1 = 0.1 0.0822 0.178 0.0817 0.183 0.0791 0.209 0.8034 7.034
λ∗

2 = 0.005 0.0023 0.545 0.0022 0.560 0.0019 0.614 0.0050 0.000

Table 2. Estimated parameters for distinct simulated data sets,
p denotes any parameter, p̂ its estimate, γ = |p̂ − p|/p.

Type of censorship
n = 100

I II III IV
p p̂ γ p̂ γ p̂ γ p̂ γ

α1 = 0.2 0.17 0.128 0.17 0.134 0.29 0.467 0.24 0.203
α2 = 0.8 0.83 0.032 0.83 0.034 0.71 0.117 0.76 0.051

a1 = 0.02 0.020 0.005 0.020 0.009 0.003 0.831 0.002 0.883
a2 = 0.06 0.048 0.197 0.043 0.277 0.041 0.324 0.044 0.270

t∗1 = 70 73 0.050 74 0.060 490 6.000 836 10.942
t∗2 = 100 102 0.018 104 0.036 158 0.575 109 0.093
λ∗

1 = 0.1 0.0946 0.054 0.0929 0.071 0.0725 0.275 0.5647 4.647
λ∗

2 = 0.005 0.0038 0.231 0.0037 0.251 0.0005 0.893 0.0016 0.670

Table 3. Estimated parameters for distinct simulated data sets,
p denotes any parameter, p̂ its estimate, γ = |p̂ − p|/p.

Tables 2, 3 and 4 bring the estimates of the parameters obtained by the proposed
method (14) including the relative errors: p denotes the parameter, p̂ its estimate
and γ = |p̂ − p|/p is the relative error.

It can be seen that the estimation of parameters is of the correct order (relative
error less than 0.5) provided that the patient cohort is large enough (at least 100
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HAZARD FUNCTION FOR CANCER PATIENTS AND CANCER CELL DYNAMICS 9

Type of censorship
n = 250

I II III IV
p p̂ γ p̂ γ p̂ γ p̂ γ

α1 = 0.2 0.19 0.058 0.19 0.065 0.18 0.115 0.18 0.123
α2 = 0.8 0.81 0.015 0.81 0.016 0.82 0.029 0.82 0.031

a1 = 0.02 0.028 0.407 0.027 0.351 0.022 0.080 0.023 0.147
a2 = 0.06 0.053 0.109 0.052 0.141 0.060 0.003 0.056 0.067

t∗1 = 70 49 0.293 52 0.256 70 0.005 66 0.063
t∗2 = 100 101 0.013 102 0.016 98 0.023 99 0.008
λ∗

1 = 0.1 0.0664 0.336 0.0706 0.294 0.1055 0.055 0.1141 0.141
λ∗

2 = 0.005 0.0043 0.145 0.0043 0.131 0.0052 0.042 0.0079 0.583

Table 4. Estimated parameters for distinct simulated data sets,
p denotes any parameter, p̂ its estimate, γ = |p̂ − p|/p.

patients) and the censorship is not excessively severe (i.e. for the censorship types
I and II).

0 50 100 150 200 250
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Figure 2. Results for simulated data and the censorship of the type II

solid line – λc(x, 0.2, 0.02, 70, 0.1, 0.8, 0.06, 100, 0.005)

dashed line – λ̂h,K , h = 102.9599, 28.9217, 20.9116, successively

dotted line – λc(x, · , α̂1, α̂2, â1, â2, t̂
∗
1, t̂

∗
2, λ̂

∗
1, λ̂

∗
2) (see Tables 2, 3 and 4)

Since visualization is an important component of data analysis the graphical rep-

resentation of the estimated hazard functions λ̂c together with the kernel estimates

λ̂h,K for simulated data of type II censorship is given on Figure 2.

7. Application

The first data set we are going to deal with have been kindly provided by the
Masaryk Memorial Cancer Institute in Brno, Czech Republic (Soumarová et al.,
2002).

This data set (BRB) include 236 patients with breast carcinoma. The study has
been based on the records of women who received both the breast conservative sur-
gical treatment and radiotherapy as well at the Masaryk Memorial Cancer Institute
in Brno in the period 1983–1994. The patients with breast carcinoma of the I and
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10 IVANA HOROVÁ1, ZDENĚK POSPÍŠIL2, JIŘÍ ZELINKA1

II clinical stage are only included in this study. Of the complete set of 236 patients,
47 (19.9%) died of cancer.

The second data set (BRCB) comprises 152 patients with the same diagnosis and
the treatment, but the patients were treated at the Hospital of České Budějovice in
the period 1990 – 2005. Of the complete set of patients, 32 (21.1%) died of cancer
(Dolečková et al., 2006).

The characteristics of treated data sets are summarized in Table 5.

Set of patients n T nd pd

Breast carcinoma, Brno BRB 236 220 47 19.9
Breast carcinoma,České Budějovice BRCB 152 172 32 21.1

Table 5. Characteristics of treated patients data sets; n — num-
ber of patients, T — maximal follow up in months, nd — number
of deaths, pd — percents of deaths.

Numbers of deaths in separate years for BRB and BRCB data are presented in
Figures 3 and 4.
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Figure 3. Deaths for BRB data

Our procedure is realized in two steps:

1◦ Find the kernel estimate λ̂h,K with the kernel K(x) = 3/4(1 − x2) I[−1,1] and

the corresponding optimal bandwidth ĥopt,2.

Compute values λ̂h,K(xj), j = 1, . . . , s.

2◦ Use the least squares method (14) to obtain the parameters of the function λ̂c.

In order to compare the kernel estimate of the hazard function and the determin-
istic form of it obtained by (12) both estimates including the confidence intervals
are displayed in the same figure. The 95%-confidence intervals are used, it means
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Figure 4. Deaths for BRCB data

that the probability that the value λc(x) lies in the interval is 0.95 (Figures 5 and
6).

Since the estimated deterministic function λ̂c lies within the confidence limits
of the kernel estimate, we can conclude that the proposed method could provide a
suitable tool for the analysis of survival data for cancer patients.

Table 6 brings the estimates of the parameters obtained by minimization process
(14).

BRB BRCB
p̂ i = 1 i = 2 i = 1 i = 2
α̂i 0.8983 0.1017 0.6174 0.3826
âi 0.04874 0.02125 0.03517 0.01985
t̂∗i 31.29 161.5 25.2 86.13

λ̂∗
i 0.00319 0.1254 0.002236 0.004196

Table 6. Estimated parameters of composed hazard functions for
BRB and BRCB data

The composed hazard function for the BRB data takes the form

λ̂c(x) = λ̂BRB(x) =
0.8983 λ̂1(x) e

−
xR

0

λ̂1(t)dt
+ 0.1017 λ̂2(x) e

−
xR

0

λ̂2(t)dt

0.8983 e
−

xR

0

λ̂1(t)dt
+ 0.1017 e

−
xR

0

λ̂2(t)dt

for
λ̂1(x) = 0.00319 exp

{
1 − 0.04874(x− 31.29)− e−0.04874(x−31.29)

}
and

λ̂2(x) = 0.1254 exp
{
1 − 0.02125(x− 161.5)− e−0.02125(x−161.5)

}
.
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The composed hazard function for the BRCB data can be expressed as

λ̂c(x) = λ̂BRCB(x) =
0.6174 λ̂1(x) e

−
xR

0

λ̂1(t)dt
+ 0.3826 λ̂2(x) e

−
xR

0

λ̂2(t)dt

0.6174 e
−

xR

0

λ̂1(t)dt
+ 0.3826 e

−
xR

0

λ̂2(t)dt

,

λ̂1(x) = 0.002236 exp
{
1 − 0.03517(x− 25.2)− e−0.03517(x−25.2)

}
,

λ̂2(x) = 0.004196 exp
{
1 − 0.01985(x− 86.13)− e−0.01985(x−86.13)

}
.
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Figure 5. Deterministic and kernel estimates of hazard function for BRB data

solid line – kernel estimation λ̂h,K , ĥopt,2 = 25.2488

dashed line – composed hazard function = λ̂BRB

dotted line – confidence intervals for the kernel estimate

8. Discussion and conclusion

The standard method for survival or hazard function parameters estimations
from observed data is the maximum likelihood method (see e.g. Hougaard (2001)).
The method was adopted and applied for the hazard function of the form (13)
(Horová et al., 2008). A disadvantage of the maximum likelihood method is that
the numerical minimization need not converge for all simulated data. The proposed
method of parameters identification — the kernel smoothing of the hazard func-
tion and the subsequent minimization of (14) — converged for all simulated data.
Moreover, it identifies parameters more precisely. This fact can be demonstrated
by simulations. We provided 100 simulations, in each of them we generated survival
data for 250 patients using the hazard function (13) with l = 2, with parameters
listed in Table 7, and with type III censorship. Subsequently, we estimated the pa-
rameters for each of the 100 simulated data sets by the maximum likelihood method
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Figure 6. Deterministic and kernel estimates of hazard function for BRCB data

solid line – kernel estimation λ̂h,K , ĥopt,2 = 43.0545

dashed line – composed hazard function = λ̂BRCB

dotted line – confidence intervals for the kernel estimate

and by the method proposed in this paper. Table 7 shows average and extremal
values of parameters obtained by the both methods.

Maximum likelihood method Proposed method
p mean minimum maximum mean minimum maximum

α1 = 0.2 0.3576 0.336 0.38 0.1948 0.1668 0.2363
α2 = 0.8 0.6424 0.62 0.664 0.8052 0.7637 0.8332
a1 = 0.02 0.07066 0.06671 0.07568 0.02968 0.01913 0.04604
a2 = 0.06 0.05376 0.04409 0.06986 0.05386 0.04433 0.06504
t∗1 = 70 16.65 14.31 17.88 51.55 25.02 74.38
t∗2 = 100 99.98 94.49 104.8 100.9 96.71 105.4
λ∗

1 = 0.1 0.02099 0.01864 0.0229 0.07052 0.02831 0.1073
λ∗

2 = 0.005 0.005961 0.004551 0.007433 0.004404 0.003482 0.005695

Table 7. Characteristics of parameters estimated for 100 simu-
lated survival data sets by the maximum likelihood method and
by the proposed method.

The parameters ai in the hazard function λc (13) should characterize an intrinsic
property of disease — rate of cancer cells proliferation; roughly saying, | log log 2/a|
is the doubling time for the cells. We can take notice of the fact, that ai’s estimated
for both of the analyzed data sets are not very different, see Table 6. Since these
data were collected on patients with the same type of cancer, this observation
suggests that these parameters characterize the disease in real terms.
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To verify this hypothesis, more patient sets with the same diagnosis and treat-
ment (i.e. the breast carcinoma and the breast conservative surgical treatment with
subsequent radiotherapy) should be examine.

Another hypothesis, namely that the parameters ai characterize a type of cancer
can be tested by examination of survival data for cancer patients with a different
diagnosis.

The results of the application to the real data do not argue against our assump-
tions that the hazard is proportional to the rate of cancer cell proliferation. This
fact can serve as a starting point for a future collaboration with oncologists or
molecular biologists to test the hypothesis in more details.
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