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Synchronization of coupled biological

oscillators under spatially heterogeneous

environmental forcing

Andreas Bohn ∗ and Jordi Garćıa-Ojalvo

Departament de F́ısica i Enginyeria Nuclear, Universitat Politècnica de

Catalunya, Colom 11, 08222 Terrassa / Barcelona, Spain

Abstract

Spatially heterogeneous intensities of environmental signals are common in nature,

being caused, e.g., by rugged or curved surfaces leading to varying angles of inci-

dence and intensities. In this work, we perform numerical studies of one-dimensional

arrays of coupled phase oscillators driven by a periodic signal with spatially hetero-

geneous amplitude, considering both random and gradual amplitude distributions

of the driving. We compare the effects of global and next-neighbor interactions,

respectively, on the mutual and forced synchronization in the array. Weak global

coupling leads to full mutual synchronization for all studied driving configurations.

The degree of external synchronization follows a majority rule, depending on the

number of externally entrained oscillators in the uncoupled case. The effects of next-

neighbor coupling depend on the spatial distribution of the driving amplitude. For

random distributions, local interactions show the same qualitative effects as global

coupling. In contrast, for gradual distributions and large driving heterogeneities,

next-neighbor coupling is detrimental to both mutual and external synchronization.

We discuss these observations with respect to fundamental aspects of heterogeneity
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and variability of dynamical systems, as well as the intercellular synchronization of

circadian oscillators.

Key words: Synchronization, heterogeneity, phase oscillator, external field,

circadian rhythm

1 Introduction1

Periodic processes are at the heart of numerous dynamical phenomena in bio-2

logical sciences, with time-scales ranging from milliseconds to years (Winfree,3

2001; Strogatz, 2003; Moser et al., 2006). Many of these molecular and physi-4

ological rhythms are related to geophysical cycles like, e.g., the 24h-oscillation5

of day and night, giving rise to circadian rhythms and the corresponding bio-6

logical timekeeping systems (Gillette and Sejnowski, 2005). In the past years,7

networks of multiple, interacting clocks have received increased attention in8

the field of chronobiology (Roenneberg and Merrow, 2003; Yamaguchi et al.,9

2003).10

As circadian clocks are so-far known to be built on intracellular processes,11

multicellular tissues like, e.g. plant leaves, can be considered as multi-clock12

systems (Millar, 1998). Recent experiments and data analyses of in-vivo cir-13

cadian rhythms in leaves of a higher plant showed that under weak periodic14

∗ Corresponding author. Present address: Grupo de Biomatemática, Instituto de

Tecnologia Qúımica e Biológica, Universidade Nova de Lisboa, R Quinta Grande 6,

2780-156 Oeiras, Portugal. Tel +351 214 469 852, Fax +351 214 428 766.

Email addresses: abohn@itqb.unl.pt (Andreas Bohn),

jordi.garcia-ojalvo@upc.edu (Jordi Garćıa-Ojalvo).
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light stimuli, the leaf is divided into clusters which are entrained to an exter-15

nal 24h oscillation of light intensity, while others remain unlocked, exhibiting16

free-running circadian oscillations (Rascher et al., 2001; Bohn, 2003). It was17

conjectured that these dynamics are caused by the heterogeneous distribu-18

tion of light intensity throughout the leaf, caused by the curvature of the leaf19

surface in conjunction with the absence of interactions between different leaf20

regions due to high diffusion resistances in the leaf tissue. Derived from these21

findings, our work is motivated by the question whether coupling among the22

constituent elements of spatially extended systems under heterogeneous ex-23

ternal forcing can simultaneously improve the mutual synchronization of the24

elements, as well as the degree of synchronization to the external forcing field.25

This kind of question has already been addressed in the field of complex non-26

linear systems. For example Hemming and Kapral (2000) have studied the27

formation of spatiotemporal patterns in oscillatory reaction-diffusion systems28

under periodic stimulation with spatially random amplitudes, detecting front29

roughening and spontaneous nucleation of target patterns. The present work30

features a less complex scenario, as we consider phase oscillators, a minimal31

model for periodic processes that has also been featured in a vast number of32

studies on complex dynamical systems (Tass, 1999; Winfree, 2001). In par-33

ticular the Kuramoto model, which is made of mean-field (globally) coupled34

phase-oscillators, has provided deep analytical insight into the mechanisms35

of synchronization (Kuramoto, 1984; Acebrón et al., 2005). Our approach to36

assess the effects of heterogeneous environmental driving is based on a general-37

ized version of this model that includes an additional external forcing field, as38

studied by Sakaguchi (1988) for the case of homogeneous forcing amplitudes39

and Arenas and Pérez Vicente (1994) for heterogeneous amplitudes with ran-40
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dom spatial distributions. These works reveal the conditions under which the41

coherence of the array, i.e. the mean-field amplitude, undergoes a transition42

from steady-state to oscillatory behavior. The effects of driving forces acting43

on arrays of coupled oscillators with heterogeneous phases have recently been44

depicted by Brandt et al. (2006), showing that intermediate phase disorder45

enhances network synchronization.46

We extend those previous works by comparing i) the effects of global versus47

next-neighbour coupling, and ii) the influence of randomly distributed forc-48

ing amplitudes versus corresponding gradual patterns. We thus confront two49

extreme situations with respect to spatial scale, putting none or the most50

minimal spatial correlation possible (local coupling, random driving force am-51

plitudes) against a system-wide space scale (global coupling, gradual driver52

patterns). In view of our motivation to connect recent spatiotemporal phenom-53

ena observed in experimental plant physiology with the extensive theoretical54

work in dynamical pattern formation, we restrict ourselves to these extreme55

cases. Both global and next-neighbour coupling have been intensively studied56

so far, and both can be depicted with biological meaning: global coupling with57

a quickly diffusing messenger, and local coupling with a substance with a very58

low diffusion constant with respect to the time-scale of the oscillator.59

Our results confirm former findings that global coupling is more efficient60

in synchronizing non-identical oscillators than local interactions (Sakaguchi61

et al., 1987; Acebrón et al., 2005). A novel aspect surging from our studies62

is that the efficiency gap between both coupling types apparently depends63

on the spatial structure of the external forcing: a small spatial correlation64

of the external pattern provides synchronization properties similar to global65

coupling, while under gradual forcing patterns with large spatial correlation66
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lengths, local coupling might even elicit negative consequences for the degree67

of mutual and external synchronization.68

This work is organized as follows: In Section 2 we introduce the mathematical69

framework, the observables used to describe spatiotemporal dynamics, and70

the choice of parameter values. The results of our simulations are presented71

in Section 3. We start by considering the case of uncoupled arrays, followed72

by combinations of each of the coupling types and external driving patterns73

for strong coupling and a discussion of the system dynamics as a continu-74

ous function of increasing coupling strength. We add results for simulations75

with intermediate noise strength and with an alternative distribution of nat-76

ural frequencies. In Section 4 we discuss the results, both with respect to77

the intercellular coupling of circadian rhythms, as well as general aspects of78

spatio-temporal dynamics and synchronization under heterogeneous external79

forces.80

2 Modeling and analysis methods81

2.1 Systems of coupled phase oscillators82

Our numerical studies are based on the Kuramoto model, describing the tem-83

poral evolution of phases ϕi in a one-dimensional array of i = 1, ..., N globally84

coupled phase oscillators with natural frequencies ωi, and coupling strength85

K. Given an additional term for a periodic external field with amplitudes εi,86

phase Φ and frequency Φ̇ = ωe, one writes (Sakaguchi, 1988)87

ϕ̇i = ωi +
K

N

N∑
j=1

sin(ϕj − ϕi) + εi sin(Φ − ϕi). (1)
88
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Transforming to the rotating frame of the external driver and substituting89

the phase differences φi(t) = ϕ(t) − Φ(t) and natural frequency mismatches90

νi = ωi−ωe, we obtain an expression for the evolution of the phase differences91

between each individual oscillator and the external driver92

φ̇i = νi +
K

N

N∑
j=1

sin(φj − φi) − εi sin φi + ξi(t) , (2)
93

where stochastic effects are represented by a white, Gaussian noise with zero94

mean and correlation < ξi(t)ξj(t
′) >= 2Dδijδ(t − t′).95

We compare the globally coupled system (2) with a system where the inter-96

actions involve only the next neighbors of each oscillator, by modifying the97

coupling term in (2) in order to obtain98

φ̇i = νi +
K

3

i+1∑
j=i−1

sin(φj − φi) − εi sin φi + ξi(t). (3)
99

We integrate these equations with a second-order Heun scheme for N = 1000100

oscillators, with initial values φi(0) being randomly distributed in [0.8, 1.2] and101

time steps δt = 0.1. Each realization extends over 3000 timesteps, discarding102

the first 1000 steps as transient. In the case of next-neighbour coupling, pe-103

riodic boundary conditions are used. Running the simulations for a smaller104

array with N = 100 yields the same qualitative results (data not shown).105

2.2 Spatiotemporal data analysis106

In the following, we define the observables used to characterize the state of107

synchronization and the spatiotemporal dynamics of the array. One part of108

them is based on the distribution P (Ωi) of the real frequencies Ωi, which109
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are defined as the average increase of φi per unit of time calculated over110

m = 1, . . . , M − 1 timesteps.111

Ωi =
1

M

M−1∑
m=1

φi(tm+1) − φi(tm)

δt
, (4)

112

where δt = tm+1−tm for all m. From P (Ωi) we compute the spatially averaged113

frequency Ω, as well as the spatial standard deviation σ(Ωi), the latter defining114

the degree of internal frequency disorder, which is inversely proportional to115

the degree of mutual entrainment.116

The degree of forced entrainment, η, is defined as the proportion of oscillators117

with Ω = 0, i.e. no average real-frequency mismatch with the external driver,118

reading119

η = P (Ωi = 0). (5)120

As Ω is a temporally averaged frequency, it provides a relatively weak mea-121

sure of synchronization, in terms of frequency locking. A further, more rigor-122

ous quantity for mutual entrainment, implicitly expressing phase order is the123

mean-field amplitude (Kuramoto, 1984)124

R =

√(∑N
i=1 sin φi

)2

+
(∑N

i=1 cos φi

)2

N
. (6)

125

For a given set of parameters, we compute its temporal average R̂ and its126

amplitude ΔR = maxt(R) − mint(R). We consider the array to be in full127

simultaneous, i.e. mutual and external, synchronization, when the conditions128

η > ηthresh = 0.99, R̂ > R̂thresh = 0.98, ΔR < ΔRthresh = 0.001 (7)129
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are simultaneously fulfilled. Both ηthresh and ΔRthresh are chose arbitrarily,130

while on a 24h-scale R̂thresh = 0.98 corresponds to an average phase spread131

of about ±1.2h, which is similar to the spread in natural periods of circa-132

dian oscillations (see below). As the results section will show, in most cases133

R̂thresh is the limiting factor for simultaneously achieving both external and134

internal synchronization. Lowering R̂thresh would increase the proportion of135

the parameter space in which full synchronization is observed.136

2.3 Spatial distribution of natural frequencies and forcing amplitudes137

We assume both the natural frequencies νi and the driving amplitudes εi to be138

uniformly distributed over the intervals [ν −Δν, ν +Δν] and [ε−Δε, ε+Δε],139

respectively, given the center values ν and ε, and variabilities Δν and Δε. In all140

simulations, the νi are distributed in a random fashion over the grid. For εi, in141

addition to the random distribution, we also investigate gradual distributions142

(Fig. 1). With periodic bounds given, we need to maintain steady parameter143

values at the edges of the system. Therefore, we use the expression144

εi = ε + Δε

(
1 − 2 ·

|2i − N − 1|

N − 1

)
, (8)

145

to compute gradual patterns of εi, which rise from ε − Δε at i = 1 to ε + Δε146

at i = (N − 1)/2, and decline back to ε − Δε at i = N . As each εi ∈147

[ε − Δε, ε + Δε] appears twice, the corresponding random patterns of εi are148

computed as two independent uniform random distributions for i ≤ N/2, and149

i > N/2, respectively.150

8



Acc
ep

te
d m

an
usc

rip
t 

2.4 Parameter values151

As this work is inspired by circadian rhythms and their synchronization to152

signals with 24-hour period, we are interested in the 1:1 synchronization with153

the environment, and therefore chose a range of small values for νi. Our default154

parameters are ν = 0.02, and Δν = 0.05. Assuming that ωe = 1 corresponds155

to a period τ = 24 h, this parameter configuration corresponds to circadian156

oscillations of 23.5 ± 1.2 h (Gonze et al., 2005).157

Figure 2 (left) depicts the resonance diagram of a single phase oscillator, in-158

dicating the 1:1 locking zone determined by (Winfree, 2001)159

ε ≥ ν (9)160

The overlaid rectangle is defined by the distributions of νi and εi. For the161

uncoupled case K = 0, one may recognize some structures in the forcing-162

parameter space Δε vs. ε, Fig. 2 (right), by purely geometrical arguments163

derived from Fig. 2 (left). For instance, one may deduce that the synchroniza-164

tion of the array should be largely dominated by the external driver if the165

rectangle is fully contained in the locking zone. For ν > 0 this is the case if166

the lower right corner of the rectangle (ν + Δν, ε − Δε) is inside the locking167

zone, i.e. ε − Δε ≥ ν + Δν. Together with Eq. (9) this corresponds to the168

section of the forcing-parameter space given by169

Δε ≤ ε − ν − Δν. (10)170
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Furthermore we require the driving amplitude to be positive for all oscillators,171

i.e. ε − Δε > 0, thus excluding the region172

Δε > ε (11)173

from consideration. As will be seen in the following chapters, expressions (10)174

and (11), which are fully determined by the choice of ν and Δν, delimit the area175

of the forcing-parameter space where the most apparent differences between176

the considered coupling types and spatial driving patterns are evidenced. To177

focus our attention on this section of the parameter space, we choose ε, Δε ∈178

[0, 0.2], without limitation of the general validity of the results.179

2.5 Symbol survey180

All used symbols are gathered and explained in Table 1.181

3 Results182

3.1 Uncoupled oscillators, K=0183

We start our analysis by monitoring the observables of spatiotemporal dy-184

namics defined in the previous section for the uncoupled case, K = 0, and in185

the absence of noise, D = 0 [Fig. 3(a-e)]. Two principal areas dominate the186

forcing-parameter space. First, the lower left corner (ε, Δε ≈ 0), where one187

finds the maximum values of Ω, σ(Ωi), and ΔR (panels a,b,e), and minimum188

values of η, and R̂ (c,d). Here, due to the spread of natural frequencies Δν189

and weak driving forces, the array exhibits low mutual and external synchro-190

10



Acc
ep

te
d m

an
usc

rip
t 

nization. This behavior extends along the line Δε = ε, where mini(εi) = 0,191

but is less pronounced as ε becomes much larger than zero.192

The second principal area is the sector in the lower right corner delimited193

by (10), where all oscillators are mutually and externally entrained, as is194

manifested by Ω, σ(Ωi), and ΔR ≈ 0, as well as η, and R̂ ≈ 1. Inspecting195

the spatio-temporal dynamics in the array for this parameter region, one ob-196

serves temporally stationary relative phases φi, exhibiting a spatially heteroge-197

neous pattern due to the randomly distributed natural frequency mismatches198

νi (data not shown). The subspace of temporal constancy of the mean-field199

(ΔR = 0) is delimited by the gray solid line in Fig. 3(e), and roughly coincides200

with Eq. (10), while η > ηthresh holds for an even larger area of the parame-201

ter space [gray solid line in Fig. 3(c)]. Due to the spatial heterogeneity of φi,202

however, the condition R̂ > Rthresh is fulfilled only in a smaller section, here203

to be found in the very lower right corner of Fig. 3(d) (gray line).204

3.2 Coupled arrays, K=2205

To assess the effect of coupling, we first consider K = 2, as for this value the206

patterns in the forcing-parameter space are stationary with respect to further207

increases of K.208

Random driving - global coupling209

The first scenario we investigate is the combination of randomly distributed210

ε with global coupling, following the model described by Eqs. (2). The be-211

havior of this system is displayed in Figs. 3(f-k). Again, for the moment, the212
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noise intensity is assumed zero, D = 0. There is a clear difference between213

the measures based on the real frequencies Ωi, panels (f)-(h), and the mean-214

field statistics R̂, ΔR, panels (j) and (k). While the latter clearly indicate full215

mutual synchronization in the entire parameter space, the former reveals a216

bisection at a value of ε = ν = 0.02. For ε > ν the system is fully entrained to217

the external driver, while for ε < ν, η = 0 (h) and Ω > 0 (f). The frequency218

disorder σ(Ωi) shows non-zero values in a transition zone around ε ≈ ν.219

Figure 4(a) depicts the spatio-temporal dynamics of the mutually but not220

externally synchronized array, which is observed for (ε, Δε) = (0.015, 0.01).221

The location of this point is marked with a cross in Figs. 3(f-k). Inspection of222

the spatiotemporal dynamics confirms the full mutual synchronization, while223

the periodic dynamics of the entire array exhibits lack of synchronization with224

the external driver. This is shown in Fig. 4(d), which depicts the distribution225

of actual frequencies, P (Ωi), versus the coupling strength K. It is evidenced226

that the global interaction forces the distribution of natural frequencies into227

synchrony for fairly low values of K, such that the array locks to a common228

frequency Ω different from the driving frequency, with 0 < Ω < ν = 0.02.229

Global coupling thus provides mutual synchronization for all combinations of230

ε and Δε. However, the common system frequency and hence η depend on the231

configuration of ε. The line ε = ν in Fig. 3(h), which marks the transition from232

Ω > 0 to Ω = 0 corresponds in Fig. 3(c) (i.e. for K > 0), to η = 0.5. In other233

words, global coupling leads to full external synchronization of the entire array234

if the majority, i.e. more than half, of the oscillators are already synchronized235

with the external driver in the absence of inter-oscillator coupling. In the236

geometrical terms of Fig. 2, global coupling yields full external synchronization237

if the center of mass of the (ν, ε) rectangle lies with the resonance zone of the238
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single oscillator.239

Random driving - local coupling240

A bisection of parameter space is also evident for the locally coupled system241

(3) under random forcing amplitudes [Figs. 3(l-p)]. However, a detailed ex-242

amination yields a number of differences with respect to the case of global243

coupling.244

First of all, both mutual and external entrainment is observed for ε ≥ 0.03,245

which in terms of the used parameters is equivalent to ε ≥ Δν − ν. Hence,246

the bisection line is shifted to higher average driving forces. Also this line is247

not completely straight as in the case of global coupling. The second major248

difference is that for ε < Δν − ν no mutual entrainment is achieved, as is249

manifested mainly by the frequency disorder σ(Ωi) > 0 and ΔR � 0. Roughly250

speaking, for the given scenario at K = 2, we observe either mutual and251

external synchronization together, or no synchronization at all.252

The spatio-temporal dynamics in the non-synchronization regime, with (ε, Δε)253

indicated by the gray cross in Figs. 3(l-p), shows that the random combination254

of νi and εi, plus the effect of coupling, leads to phase waves running through255

the array, leading to low values of both σ(Ωi) and η (Fig. 4b). Hence, only if256

the influence of the external force is sufficiently dominant, both heterogeneities257

are overcome in order to yield low σ(Ωi) and high η. The dependence of the258

frequency distribution P (Ωi) on K, displayed in Fig. 4(e), shows that the259

transient behavior spreads over an interval of K (0 < K < 0.5) larger than260

in the case of global coupling. For large enough K, the stationary situation261

consists of oscillations with a common Ω, but low R̂ and high ΔR, as the262
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local coupling does not compensate the randomness to the extent of providing263

in-phase oscillations throughout the array.264

Gradual driving - local coupling265

For the case of global coupling, the system’s behavior is invariant to the spatial266

structure of the driving. We hence consider the scenario of a gradual driving267

only for local coupling [Fig. 3(q-u)]. Here, the structure in the (ε, Δε)-space268

clearly differs from the two aforementioned scenarios. A large area without269

external locking extends between the lines delimited by Eq. (11) and270

Δε ≤ ε + ν − Δν. (12)271

The latter apparently approximates the maximum extension of the area of272

the parameter space where the conditions (7) are fulfilled (gray lines in Figs.273

3(s-u)). The geometrical correspondence of expression (12) is the inclusion of274

the lower left corner of the distribution rectangle into the locking zone [Fig.275

2(left)]. In terms of the probability distribution of Ωi for K = 0, this situation276

corresponds to the situation where Ωi ≥ 0, i.e. the array consists of either277

externally locked oscillators (Ωi = 0) or oscillators whose real frequencies are278

higher than the external driver (Ωi > 0). Hence, with the gradual driving279

pattern, local coupling only leads to full external synchronization, if there are280

no Ωi < 0 in the uncoupled case K = 0.281

The spatio-temporal dynamics of an array with ε = 0.06, Δε = 0.05 is depicted282

in Fig. 4(c). The space is divided in two sections: first, the center region of283

intermediate oscillator indices, featuring large ε, yielding a sub-array that is284

phase locked to the external driver, as is manifested by temporally constant Ωi.285
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The non-locked regions at the margins of the array show running phase waves,286

resembling the dynamics of Fig. 4(b). In the probability distribution P (Ωi),287

shown in Fig. 4(f) these dynamics are reflected by a stationary bimodality for288

large enough K, with peaks at Ω = 0 and Ω < ν = 0.02.289

3.3 Increasing coupling strength, K=0...2290

In Fig. 5 we quantify the effects of coupling strengths K in the range [0..2]291

by measuring the proportion of the (ε, Δε)-space, where η, R̂ and ΔR are292

above their respective thresholds (7). The top row corresponds to the three293

cases with K > 2 in Fig. 3(f-u). Notice the smaller scale of the x-axis for the294

case of global coupling (left column), corresponding to the reduced transient295

zone caused by the high synchronization efficiency of global coupling [Fig.296

5(a)]. Starting from K = 0 the smallest area above threshold, which limits the297

full-locking zone (indicated by the bold solid line) is defined by R̂ (triangular298

symbols), up to K = 0.15, where η (diamond symbols) becomes and remains299

the limiting quantifier for large K. In that case, while the mean-field related300

measures are above threshold in the entire parameter space, η occupies about301

95% of its total area [cf. Figs. 3(h-k)].302

The case of random driving and local coupling shown in Fig. 5(b) confirms303

the results plotted in Figs. 3(n-p), in the sense that full external locking is304

observed in a somewhat smaller area than with global coupling, and it takes305

higher values of K to reach the maximum area, which is about 90%. The306

limiting factor for full entrainment area is the temporal average of the mean-307

field R̂.308
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The latter also holds true for the scenario of gradual forcing with local coupling309

[Fig. 5(c)]. As stated in the previous section, the above-threshold areas for this310

scenario are considerably lower, reaching a maximum coverage of about 60% of311

the parameter space. Deviations from a monotonous increase of the observables312

with K [e.g. η in Fig. 5(c)] are due to the loss of some above-threshold areas313

at the borderlines, which is caused by the implicit randomness and averaging314

over a limited number of realizations (data not shown).315

3.4 Noise effects316

In order to study the effects of noise, we scanned the driving-parameter space317

in the same fashion as before, for non-zero noise intensities. The bottom row318

of Fig. 5 shows the above-threshold proportions for the noisy system. In all319

scenarios, the least affected observable is η, as is to be expected for a tem-320

porally averaged quantity. For global coupling, the principal effect is to shift321

the increase of the area with R̂ > R̂thresh to higher K values (Fig. 5d). Nev-322

ertheless, a situation identical to the deterministic case is fully recovered at323

about K = 0.4. For local coupling, noise has a significant impact on the mean-324

field properties, as is observed by clearly diminished proportions of area above325

threshold in comparison to the deterministic case [Figs. 5(e,f)]. Different from326

this, however, for high values of K, the limit for full forced entrainment is given327

by ΔR (square symbol), not R̂ (triangles). For local coupling, we compare the328

structures of the full-locking zones in the (ε, Δε)-space for both the determin-329

istic and stochastic cases in Fig. 6. It is clear that noise leads to a shrinking330

of the above-threshold area for both spatial driving patterns, but does not331

introduce any qualitative changes of the structure of the zones detected in the332
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deterministic case (solid lines, correspond to Fig. 3).333

The fact that global coupling is more efficient in achieving mutual and forced334

synchronization also under the influence of noise nourishes the evidence that335

the attaining population synchrony despite environmental heterogeneity might336

better be achieved with long-range interactions given by mean-field coupling.337

3.5 One-sided natural frequency distribution338

In a final set of simulations we investigated a one-sided distribution of natural339

frequencies, i.e. νi > 0 for all oscillators, therefore choosing ν = 0.1 and340

maintaining Δν = 0.05 as before. In Fig. 7, we show the driving-parameter341

spaces for the four scenarios of Fig. 3, indicating the zones of simultaneous342

full external and mutual entrainment by the solid line. The cases in panels343

(a)-(c) clarify that the shape of the locking zones is congruent with the case of344

ν = 0.02, and thus show that the principal structure of the parameter space345

is not dependent on the particular choice of parameters for νi. In particular,346

global coupling again follows the majority rule of achieving η = 1 for ε > ν347

[Fig. 7(b)]. In the case of gradual driving and local coupling [Fig. 7(d)], the348

limits are close to the line349

Δε = ν + ε, (13)350

corresponding to a location of the distribution rectangle in Fig. 2(left), where351

the point (ν, ε − Δε) enters the single-oscillator locking-zone. This implies352

that local coupling under a gradual driver pattern only leads to both mutual353

and external entrainment, if the the uncoupled array (K = 0) is exclusively354

composed of oscillators with Ωi = 0 or Ωi ≥ ν but does not contain systems355
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with Ωi < ν.356

The apparent relation between the passage of given points of the distribution357

rectangle into the single-oscillator locking zone, and the onset of synchroniza-358

tion of the entire array, warrants a deeper, analytical and more detailed study359

of heterogeneously driven arrays of phase-oscillators with local coupling. Be-360

ing beyond the scope of the present paper, this may be pursued in a future361

work.362

4 Discussion363

We have numerically investigated the mutual and forced synchronization of364

one-dimensional arrays of phase oscillators under the influence of an external365

periodic driver with heterogeneous forcing amplitudes, comparing the effects366

of global (mean-field) vs. local (next-neighbor) coupling for both random as367

well as gradual distributions of the external driver strength. The results of our368

work show that weak global coupling generally leads to full mutual synchro-369

nization of the array, with the resulting frequency being in between the central370

natural frequency ν and the external frequency (Fig. 4a+d). Forced synchro-371

nization occurs for situations whenever more than half of the oscillators are372

phase-locked to the external driver in the absence of inter-oscillator coupling373

(Fig. 3f-k). Negative effects of intermediate noise levels on the synchroniza-374

tion can be fully compensated by moderately increasing the coupling strength375

(Fig. 5d). As expected, local coupling gives rise to much more complex dy-376

namics, showing the co-existence of locked and unlocked zones in the array,377

together with running phase waves which emerge from the random distribution378

of natural frequencies and pattern of the external driver (Fig. 4c+f). It also379

18



Acc
ep

te
d m

an
usc

rip
t 

shows less efficiency in achieving mutual and forced synchronization, leading380

to smaller areas in the driving-parameter space with full internal and external381

synchronization, and a larger reduction of the degree of synchronization by382

noise (Fig. 5b,c,e,f). An interesting feature is the fact that this synchronizing383

efficiency also depends on the spatial structure of the external driver, with384

random driving patterns yielding results close to the case of global coupling,385

while the impact by large-scale gradual driving patterns implies a significantly386

diminished capability of achieving synchronization through next-neighbor in-387

teractions. As we discuss in the following, these results may contribute to the388

further understanding of intercellular coupling of biological rhythms, as well389

as the general effects of variability in non-linear dynamical systems.390

Intercellular coupling of circadian clocks391

Our work departed from results obtained from the quantitative analyses of392

circadian rhythms in leaves of a higher plant (Bohn, 2003). There, the coexis-393

tence of synchronized and non-synchronized patches in the leaves was related394

to the absence of intercellular coupling, which is caused by a very low intercel-395

lular CO2 conductance, resulting from the small intercellular airspace in the396

succulent model plant Kalanchoë daigremontiana (Rascher et al., 2001). For397

circadian oscillations in plants, global coupling may be considered as a mini-398

mal model of high CO2 conductance, as differences in CO2 concentration may399

level out in the entire tissue on a much faster time-scale than 24h. Correspond-400

ingly, low conductance may be associated with next-neighbour coupling, which401

is in concordance with the simulation results (phase waves, synchronization402

clusters) and the experimental facts observed by Rascher et al. (2001).403
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The question, whether circadian rhythms in plants are coupled across cell404

boundaries is thus far undecided. In spite of the evidence for CO2-mediated405

metabolic interactions between neighboring rhythmic patches in plant leaves406

(Duarte et al., 2005), and combined modeling and experimental work sug-407

gesting coupling to be important for the emergence of circadian rhythmic-408

ity in plant seedlings (Fukuda et al., 2004), other experimental results stress409

the functional independence of circadian clocks across cell boundaries (Thain410

et al., 2000). Together with our results one may thus conjecture that the411

most successful strategies to achieve robust synchronization to a heteroge-412

neous environment are either by a high plasticity of cellular clocks, allowing413

synchronization in a large range of environmental conditions, or, in the case of414

existing cell-cell interaction, a highly diffusive coupling agent that transmits415

information throughout the array on a time-scale faster than 24h. Chloro-416

phyll fluorescence has become a valuable tool to assess the spatio-temporal417

dynamics of metabolic processes in plant leaves in a fluctuating environment418

(Rascher and Lüttge, 2002). Periodic driving of leaf photosynthesis has thus419

far been performed on a time-scale of seconds (Nedbal and Brezina, 2002). If420

transferred to the 24h-scale, together with a deliberate manipulation of the421

spatial structure of light incidence, this technique could give access to im-422

porant dynamical parameters such as the frequency distribution in the leaf,423

spatial correlation lengthes and the signal-to-noise ratio of the oscillations un-424

der spatially heterogeneous forcing. With plant leaves appropriately prepared425

at the tissue or cellular level, putative cell-cell coupling agents and their spatial426

motility could be detected in this fashion.427

Outside the plant kingdom, numerous examples and models for intercellular428

coupling of circadian clocks support the mean-field mechanism. For example,429
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the synchronization of circadian oscillations of the unicellular algae Gonyaulax430

polyhedra was shown to be communicated by the intercellular medium (Broda431

et al., 1985). For animal clocks, it was suggested that the coupling of individual432

neurons in the suprachiasmatic nucleus is partly provided by the secretion of433

neurotransmitters into the intercellular space (Shirakawa et al., 2001). Accord-434

ingly, the model by Gonze et al. (2005) features global coupling and underlines435

its effectiveness. For the insect clock in Drosophila, a globally coupled model436

was put forward by Ueda et al. (2002). Our work adds to these evidences437

by showing that even by adding a common and realistic environment-bourne438

heterogeneity on top of the intrinsic variability due to the spread of natural439

frequencies of circadian clocks, global coupling proves to be a robust mecha-440

nism to provide system-wide mutual and forced synchronization. These results441

could support future experimental work on the mechanisms of cell-cell cou-442

pling of circadian clocks, by concentrating the search for suitable coupling443

agents towards those candidates that exhibit a sufficiently high conductivity444

in the intercellular medium.445

The generality of the Kuramoto model would allow to extrapolate these con-446

clusions to spatially heterogeneous signals and oscillations on any time and447

space-scale. In fact, the influence of combined spatial and temporal environ-448

mental heterogeneities plays an important role in theoretical ecology and evo-449

lution (Dieckmann et al., 1999). Even though the intrinsic dynamics of the450

featured reaction-diffusion models are generally not oscillatory, it is interest-451

ing to notice that also for other generic models of spatiotemporal dynamics,452

temporal heterogeneity in combination with spatial disorder favors high dis-453

persion rates (Hutson et al., 2001).454
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Non-linear dynamics of heterogeneously forced systems455

Adding to the ongoing work in mathematical and theoretical biology, the study456

of the effects of variability on spatio-temporal pattern formation has recently457

become a very active field of research in the physics of non-linear dynamical458

systems (Sendiña Nadal et al., 1998; Zhou et al., 2001; Glatt et al., 2006).459

From such a theoretical point of view, our work exposes extreme situations460

concerning the space scales of the external signal and the coupling. The ran-461

dom driving pattern, as well as the next-neighbor coupling give examples of462

the absence of spatial correlations, while the gradual pattern, and the global463

coupling have correlation lengths in the same order of magnitude of the total464

array extension. Our results suggest that in order to yield optimal adaption465

and synchronization to a heterogeneous environment through system-inherent466

interactions, the spatial scale of the internal interactions should be equal or467

larger than the scale of the external heterogeneity. Future work in this field468

should thus investigate the synchronization properties for external patterns469

and internal interactions by increasing their spatial ranges in a continuous470

fashion.471

In our work, we address a current problem in plant biology with the mathemat-472

ically most simple model possible and expose it to four well defined scenarios473

of external driving and coupling structure. The results of this work can be474

given realistic biological meaning, and at the same time could serve as a point475

of departure for future studies in complex nonlinear dynamics. We suggest four476

extensions of our model, which should lead to new insights to heterogeneously477

driven networks of oscillators: i) the spatial ranges of both coupling and exter-478

nal driving should be changed in a continuous fashion, in order to verify the479

hypothesis that full synchronization can be achieved whenever the coupling480
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scale is larger than the environmental space scale. ii) two-dimensional networks481

of coupled should be considered. Our results can be most easily transferred482

to 2D, by considering heterogeneities with radial symmetry. Running phase-483

waves like in Fig. 4 would then translate to target patterns. For anisotropic484

geometries we would expect scenarios of target patterns and complex phase-485

front propagation (Hemming and Kapral, 2000). According to Sakaguchi et al.486

(1987) achievement of full synchronization is easier in dimensions larger than487

one. In the long term, the relation of topology and synchronization as ad-488

dressed by Arenas et al. (2006) should also be investigated under heteroge-489

neous external driving. iii) The external signal should be modeled in a more490

realistic fashion, e.g. using a noisy external driver. As Zhou and Kurths (2002)491

point out, an intermediate level of such global noise, corresponding to random492

fluctuations on a time-scale faster than 24h, can enhance the phase synchro-493

nization of the array. iv) Finally the uniform distributions featured here could494

be substituted by more realistic, e.g. Gaussian, distributions. Earlier work by495

Arenas and Pérez Vicente (1994) showed that different distributions of, e.g.496

natural frequencies, do not yield different effects, as long as the distribution is497

unimodal, and symmetric around the mean value, which applies to both the498

uniform and the normal distribution. One might expect the strongest effects499

for the case of local coupling and random driving, as either natural frequencies500

or driver strengthes from the tail of the normal distribution might yield large501

perturbation, which would require significantly higher coupling strengthes to502

achieve synchronization. Qualitatively different effects might be expected from503

more complex assymmetric or multimodal distributions.504
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Tables

Symbol Definition

εi driving amplitude

ε mean driving amplitude

Δε driving amplitude spread

νi natural frequencies

ν mean natural frequency

Δν natural frequency spread

ωe external driver frequency

Ωi real frequencies

Ω mean real frequency

σ(Ωi) standard deviation of real frequencies

P (Ωi) probability function of real frequencies

η degree of forced entrainment

R̂ temporal average of mean-field amplitude

ΔR temporal variation of mean-field amplitude

D noise intensity

K coupling strength

Table 1

Definition of used symbols
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Figure captions

Fig. 1. Spatial distributions of the driving force ε. Left : Uniform random distribution

in the interval [ε − Δε, ε + Δε], with ε = 0.1 and Δε = 0.05. Right : Gradual

distribution according to Eq. (8), with ε and Δε identical to the left panel.

Fig. 2. Geometrical relation of single-oscillator resonance zones and the driv-

ing-parameter space. Left: Resonance diagram of a single phase oscillator with nat-

ural frequency mismatch ν to an external driver acting with force ε. The shaded

triangle marks the phase-locking zone, given by Eq. (9). The line-filled rectangle

indicates the situation of a population of uncoupled phase oscillators distributed in

ν ∈ [ν − Δν, ν + Δν] and ε ∈ [ε − Δε, ε + Δε]. Right: driving-parameter space Δε

vs. ε. The line-filled triangle in the upper left half marks the area given by Eq. (11),

which is not explored numerically in this work as it yields mixed positive and nega-

tive values of εi. The shaded triangle in the lower right corner marks the area given

by expression (10), in which the rectangle in the left panel is completely contained

in the locking zone, and dominance of the external driver is to be expected.
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Fig. 3. Array statistics and observables in the driving-parameter space for four

different scenarios, and ν = 0.02, Δν = 0.05. The gray scales read, from top to

bottom: Ω, σ(Ωi), η, R̂, ΔR. The left-most panels (a)-(e) show the values for the

uncoupled array, K = 0. The center-left column with panels (f)-(k) correspond

to a random spatial distribution of ε and global coupling, with K = 2. Column

(l)-(p) features random distributions of ε, next-neighbour coupling, and K = 2.

The right-most column (q)-(u) plots the situation of a gradual distributions of ε,

next-neighbour coupling, and K = 2. The dotted gray lines correspond to Eqs.

(10) and (11), compare Fig. 2. The third, additional, dotted line in panels (q)-(u)

corresponds to Eq. (12). Solid gray lines mark the passage of the threshold given

by Eq. (7). The crosses in the panels for K = 2 indicate the location of the special

cases exhibited in Fig. 4.

Fig. 4. Special cases of three scenarios without full external synchronization. Top

row: Contour plots of the spatio-temporal dynamics of three scenarios with partial

external synchronization. Gray scales represent sin(φi(t)). Bottom row: Contour

plots of the real frequency distribution P (Ω) as a function of coupling strength

K. Gray dotted lines mark the values Ω = 0, where Ω = ωe, and Ω = ν = 0.02.

In all cases Δν = 0.05. (a/d) A random spatial distribution of ε and global cou-

pling, with ε = 0.015, Δε = 0.01. (b/e) Random spatial distribution of ε, and

next-neighbour coupling, ε = 0.015, Δε = 0.01. (c/f) Gradual spatial distribution

of ε, and next-neighbour coupling, ε = 0.06, Δε = 0.05.

Fig. 5. Proportions of driving-parameter space above thresholds (7) as a function of

K. Symbols represent � : η, 	 : R̂, � : ΔR. The minimum of the three criteria, i.e.

the proportion of the area with full synchronization, is marked by the bold line. Top:

Deterministic oscillators, ν = 0.02, Δν = 0.05. Bottom: Noisy oscillators, D = 0.01.

(a/d) Random distribution of ε, global coupling, (b/e) random distribution of ε,

next-neighbour coupling, (c/f) gradual distribution of ε, next-neighbour coupling.
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Fig. 6. Limits of full external synchronization in driving-parameter space. Compared

are the case of deterministic oscillators (dotted line) and stochastic oscillators with

D=0.01 (solid lines) at K = 2, featuring local coupling. Top: Random spatial dis-

tribution of ε, bottom: gradual distribution. All other parameters as in Fig. 3.

Fig. 7. Limits of full entrainment in driving-parameter space for ν = 0.1. The solid

line marks the border where all conditions (7) are fulfilled. For all other parameters

and explanations refer to Fig. 3. In (d) the gray dotted line in addition to the ones

given by Eqs. (10) and (11), is defined by Eq. (13).
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