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Abstract

Cancer growth models may be divided into macroscopic models, which describe

the tumor as a single entity, and microscopic ones, which consider the tumor as

a complex system whose behaviour emerges from the local dynamics of its basic

components, the neoplastic cells. Mesoscopic models (e.g. as based on the Local

Interaction Simulation Approach (Delsanto et al., 1998)), which explicitly consider

the behavior of cell clusters and their interactions, may be used instead of the

microscopic ones, in order to study the properties of cancer biology that strongly

depend on the interactions of small groups of cells at intermediate spatial and

temporal scales. All these approaches have been developed independently, which

Preprint submitted to Elsevier 18 September 2007

* 3. Manuscript



Acc
ep

te
d m

an
usc

rip
t 

limits their usefulness, since they all include relevant features and information that

should be cross-correlated for a deeper understanding of the mechanisms involved.

In this contribution we consider multicellular tumor spheroids as biological ref-

erence systems and propose an intermediate model to bridge the gap between a

macroscopic formulation of tumor growth and a mesoscopic one. Thus we are able

to establish, as an important result of our formalism, a direct correspondence be-

tween parameters characterizing processes occurring at different scales. In particu-

lar, we analyze their dependence on an important limiting factor to tumor growth,

i.e. the extra-cellular matrix pressure. Since the macro and meso-models stem from

totally different roots (energy conservation and clinical observations vs cell groups

dynamics), their consistency may be used to validate both approaches. It may also

be interesting to note that the proposed formalism fits well into a recently proposed

conjecture of growth laws universality.
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1 INTRODUCTION1

Crucial to our understanding of the development of complexity is our ability2

to relate phenomena occurring at different scales. This is necessary not only to3

predict the emergence of macroscopic phenomena from microscopic processes,4

but also to relate microscopic variables to the more accessible parameters of5

macroscopic phenomenology. In fact, the use of more realistic values for the pa-6

rameters of the microscopic (and mesoscopic) simulations may greatly enhance7

their predictive potentiality and, therefore, their applicability for biomedical8

clinical purposes. As a rule, numerical simulations are necessary to imple-9

ment microscopic or mesoscopic models, while analytical (or semi-analytical)10

solutions are usually possible for macroscopic models.11

Tumors are remarkable examples of complex self-organizing systems. Due12

to their inherent complexity, it is necessary to analyze their growth at dif-13

ferent scales. In a macroscopic approach, we consider them as single entities,14

whose behavior can be predicted in terms of their global interaction with the15

environment and a few internal parameters. This approach has led to a host16

of useful models of cellular population dynamics in different biological sys-17

tems (for example cell cultures (Murray, 2004), the immune system (Adam18

and Bellomo, 1996; Perelson and Weisbuch, 1997), neoplastic masses (Adam19

and Bellomo, 1996; Preziosi, 2003)).20

Interest in this approach has been further rekindled by the conjecture of21

Guiot et al. (Guiot et al., 2003) that the ontogenetic growth law for all living22

organisms of West, Brown, and Enquist (WBE) (West et al., 1999, 2001) may23

be fruitfully extended to cancer growth. In the form proposed by WBE, this24

law states that two hypotheses suffice to ensure the existence of a universal25

growth dynamics: the conservation of energy and the presence of a fractal26

3



Acc
ep

te
d m

an
usc

rip
t 

distribution network for energy supply at each part of the biological system27

considered. These basic hypotheses lead to the well-known exponent in the28

relationship between metabolic rate and mass scaling, which is purportedly29

characteristic of all organisms.30

In a microscopic description, one should identify individual cell properties31

and predict tumor development from cell-cell interactions. Such an approach32

has two drawbacks: first, cancer growth is a collective phenomenon whose33

complexity may not emerge from the ensemble of its individual cell properties34

alone. Second, the huge number of cells involved (typically 108 cells for a 1 cm3
35

tumor) restricts considerably the feasibility of simulations taking into account36

the behavior and dynamics of each individual cell, unless populations with a37

small number of individuals can be considered. As a consequence, mesoscopic38

models (Scalerandi et al., 1999; Scalerandi et al., 2001b; Sansone et al., 2001a;39

Ferreira et al., 2002; Scalerandi et al., 2002; Scalerandi and Sansone, 2002;40

Chen et al., 2003) have been proposed, in which the coarse graining of the41

system, and the behavior of cell clusters and their interactions is considered.42

Mesoscopic models are also better adapted to describe the influence of the43

macroscale world on microscale phenomena and viceversa. A nice exposition44

of the insights that mathematical modeling can yield about the mechanisms45

underpinning the great complexity of the various phases of cancer growth is46

presented in a recent review by Byrne et al. (Byrne et al., 2006). Among other47

recent papers about modeling tumor growth, we can quote another review48

paper by Alarcón et al. (Alarcón et al., 2005) or, more generally, refer to the49

repository of mathematical models and corresponding computational codes50

assembled within the framework of the CViT (Center for the development of51

a Virtual Tumor) Project (http://www.cvit.org), belonging to the US NIH-52

NCI ICBP (Integrative Cancer Biology Program).53
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Multicellular Tumor Spheroids (MTSs) represent convenient experimental54

systems for analyzing and comparing tumor growth models at different lev-55

els. They are spherical aggregations of tumor cells that may be grown in56

vitro under strictly controlled conditions, mimicking some of the important57

features of solid tumors developing in vivo (Hamilton, 1998; Thomson and58

Byrne, 1999; Mueller-Klieser, 2000; Chignola et al., 2000; Kelm et al., 2003).59

Due to their simple geometry, the possibility of culturing them in large quan-60

tities and of controlling relevant parameters, such as the porosity and stiffness61

of the surrounding environment, they are excellent systems upon which to62

test the applicability of various models (Marusic et al., 1994; Delsanto et al.,63

2004, 2005a). Experimental spheroid setups are designed to provide a suitable64

amount of oxygen and other nutrients, which diffuse to the outer edges of65

the MTS, and then to the interior. Due to consumption by the outer region,66

nutrient concentration decreases towards the center. Consequently, as it has67

been observed, proliferating cells are usually present in the outermost shell,68

quiescent (non reproductive) cells dominate in the interior, and, eventually at69

a later stage of growth, a necrotic core is formed by dead cells. An MTS is70

thus an heterogeneous cellular system of considerable complexity, but whose71

properties and growth can be carefully monitored and modeled.72

Using MTS’s as working models (but with the expectation that our con-73

clusions may be applied also to the study of some aspects of in vivo tumor74

growth), we review in Sections 2 and 3 two recently proposed growth mod-75

els at the mesoscopic (Delsanto et al., 2005b) and macroscopic (Guiot et al.,76

2003; Delsanto et al., 2004) levels, respectively. The latter is extended in order77

to take into account the pressure exerted by the growing tumor against its78

environment. This term plays a crucial role in the mechanisms involved in79

tumoral invasion (Guiot et al., 2006b), which ultimately represents the proce-80
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dure which allows further growth of tumors in vivo. Then, in Sec. 4, we show81

that it is possible to formulate a coherent picture embodying both descriptions82

by means of an Intermediate Model (IM) (Delsanto et al., 2005a). A detailed83

description of the IM and of the relationship (mediated by the IM) between84

the mesoscopic and macroscopic parameters represents the main goal of the85

present contribution.86

2 A LINK TO CELL DYNAMICS: MESOSCOPIC MODEL87

In this Section we review the mesoscopic MTS model of Ref. (Delsanto88

et al., 2005b). In this model space is divided into concentric isovolumetric89

shells n = 0, .., N (n = 0 labels the central sphere of radius r0). Each shell90

has a volume V0 = (4/3)πr3
0, and a correspondence is established between91

the shell system and a one-dimensional grid. The center of the shell system92

coincides with the location of the implanted spheroid seed. The MTS growth is93

controlled by local nutrient availability and proceeds according to the following94

rules (see Fig. 1):95

a) Feeding: nutrient is absorbed by each shell at a rate γcn, where cn is the96

number of live cancer cells in the nth shell.97

b) Reproduction: cancer cells reproduce at rates ρncn, only in the shells98

where the number νn of locally available nutrient units exceeds a given thresh-99

old QR.100

c) Migration: cells migrate to adjacent shells with a flux μncn per unit of101

grid cell surface if the number of nutrient units falls below a threshold QM .102

Since nutrients diffuse inwards, migration will usually proceed towards outer103

shells. We may plausible assume that outwards migration is also favored by104

mechanical stress gradients (Gordon et al., 2003). Due to the bias introduced105
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by the radial gradients, we distinguish between outwards (μ+) and inwards106

(μ−) migration fluxes.107

d) Death: cell death occurs (at rates δncn) where the number of nutrient108

units falls below the threshold QD.109

The thresholds satisfy the conditions QD < QM < QR. Figure 1 sum-110

marizes in a simple scheme the set of thresholds associated to the different111

biological/biophysical phenomena and the corresponding value ranges for the112

rates. As reported in (Griffa et al., 2004) the actual implementation of the113

model makes use of sigmoidal functions for representing the rates dependence114

on nutrient concentration instead of Heaviside functions (i.e. thresholds).115

Nutrients diffuse from the nth shell to the adjacent ones at a rate ανn per116

unit area. Since cellular displacement and molecular diffusion between shells117

are proportional to the areas of the separating surfaces, the diffusion terms118

across the interface between the (n−1)-th and n-th shells will be proportional119

to n2/3. The model equations are then written directly in their time-discretized120

forms:121

c∗n = cn(1 − τδn + τρn) + τr2
0[n

2/3(μ+
n−1cn−1 − μ−

n cn) +

+(n + 1)2/3(μ−

n+1cn+1 − μ+
n cn)], (1)

d∗

n = dn + τδncn − τλndn, (2)

ν∗

n = νn − τγcn + ταr2
0

[
n2/3(νn−1 − νn) + (n + 1)2/3(νn+1 − νn)

]
, (3)

where τ is the time step and the asterisk means that the corresponding122

quantity must be evaluated at the time t + τ , instead of at the time t. In123

Eq.(2) dn is the number of dead cells in the nth shell; the last term, with a124

coefficient λn, has been added to account for possible disintegration of dead125

cells releasing intracellular fluid (Frieboes et al., 2006).126

Numerical simulations based on the above model show that, in agreement127

with experimental observations, in a first stage the spheroid is fully populated128
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by proliferating cells. Then, in the inside, cells become quiescent, i.e. alive but129

not proliferating, with a “wavefront” of proliferating cells which have greater130

probability of undergoing an outward migration due to the second type of131

movement mechanism implemented in the model, the one based on a smoothed132

cell density-per each shell threshold, as explained in Ref. (Griffa et al., 2004).133

This in silico mechanism corresponds to the biomechanical stress-mediated134

transport of cells towards regions with lower levels of cell density, packing and135

deformation, due to both passive (purely elastic) and cell-mediated responses136

(Vernon et al., 1992; Dembo and Wang, 1999; Gordon et al., 2003; Deisboeck137

et al., 2005) to mechanical deformations. Finally, at later times, a predomi-138

nantly necrotic core develops. According to the model implementation, when139

the total number of living-plus-dead cells in the n-th shell is larger than a140

given threshold, the probability per unit of time of migration towards the141

nearest neighbor shells arises, so that some cells leave that shell. The thresh-142

old value is a function of the cell mean radius and of r0. Thus, the mechanical143

stress-driven migration is essentially triggered by the unbalance between the144

volume of each shell and the one occupied by the living and dead cells. If145

the latter is too large, a higher level of packing and cell deformation occurs146

with mass transport as consequence. Different weights are assigned in com-147

puting the volume occupied by the living vs. dead cells, in order to account148

for their different deformation. Also, a rigid Heaviside function is replaced by149

a sigmoid. See Ref. (Griffa et al., 2004) for the mathematical details. Figure 2150

shows the radial distribution of viable cells within the simulated spheroid at151

three different time steps belonging respectively to the three cited stages of152

growth. The simulation aims at reproducing the typical layout of an MTS in153

terms of cell state spatial distribution.154
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3 A LINK TO PHENOMENOLOGY: MACROSCOPIC MODEL155

Both the discussion in the Introduction and Fig. 2 suggest the use of a three-156

layer macroscopic model for the tumor. Using the WBE model, as extended157

to tumors in Ref. (Guiot et al., 2003), we assume that a central core of dead158

cells (region Z0) is surrounded by a first layer Z1 of quiescent cells, and by an159

outer layer Z2 of active cells and neglect, as temporary, any mixing, i.e. the160

presence of cells in the “wrong” regions. We label the three cell species 0, 1,161

and 2 respectively, and call their corresponding masses mi (i = 0, 1, 2). It is162

important to remark that the central core Z0 and the two layers Z1 and Z2163

need not to be spherical, i.e. the macroscopic model may be used to describe164

not only MTS’s, but also almost any kind of pre-vascular in vivo solid cancers.165

Since energy is transported to the tumor cells by the diffusing nutrients, we166

assume that it is proportional to the amount of the latter. Therefore, applying167

the law of energy conservation as in Ref. (Delsanto et al., 2004), we may write168

the energy balance for region Z2 as,169

B2dt = N2ξ2dt + εdN2 + χdN2 (4)170

where171

χ =

(
κPM

ζ

)
(5)

172

and N2 is the total number of cancer cells in Z2 at time t, P is the hydrostatic173

pressure on the spheroid wall, B2 is the net nutrient-associated energy inflow174

into Z2 during the interval dt, ζ is the mass density, assumed to be uniform,175

ξ2 is the metabolic rate for a single cancer cell, and ε is the energy required176

to create a new cell in a “soft” environment. If M is the mass of a single cell,177

m2 = MN2.178
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In Eq. (4) the last term on the right-hand-side is new with respect to Ref.179

(Delsanto et al., 2004), and represents the amount of energy required by the180

volumetric expansion. It includes not only the mechanical work done by the181

biologically growing system against its environment at pressure P , i.e. (from182

thermodynamics) PdV2, which is comparatively small (and would correspond183

to a value of κ = 1), but also the excess energy required to create new biological184

material in a stressed environment. Such excess energy is the result of complex185

biological processes and can be assumed (at least as a first approximation) to186

be proportional to the volume increase, dV2 = MdN2.187

Two plausible and complementary assumptions can be formulated regarding188

the pressure dependence, as a function of the constitutive laws of the matrix189

and tumor materials. In a recent paper (Guiot et al., 2006b), the interface pres-190

sure increases due to the tumor elastic growth, until a characteristic strength191

of the matrix is reached, the stress released and a new annular region of matrix192

colonized by the tumor. In this model a perfectly plastic constitutive law for193

the matrix is also assumed, corresponding to a strain flow at a given value194

P . For such a case the pressure P is expected to be constant, representing195

the yielding strength of the matrix material. Obviously these two assumptions196

represent limit conditions of a more complex reality, but the introduction of197

P represents an important novelty with respect to previous models (for which198

P = 0), due to the role of mechanical stress in triggering and controlling var-199

ious biomechanical and biophysical processes (Chaplain , 2006) both at the200

single cell level (remodulation of intracellular structures by the cell deforma-201

tion and consequent change in gene expression and protein synthesis (Ingber202

et al., 1995) and at the multicellular one (change of intercellular communica-203

tions via release of molecules, apoptosis and cell proliferation control via the204

change of cell adhesion (Shraiman , 2005; Hufnagel et al., 2007; Helmlinger205
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et al., 1997)).206

The left-hand-side of Eq. (4), B2dt, describes the energy necessary for the207

overall thermodynamic processes occurring within the cell population occupy-208

ing the region Z2. This energy, as previously stated, results from the balance209

of two different flows of nutrients molecules (the carriers of energy for every210

metabolic process): the total diffusive inflow towards the spheroid, which is211

proportional to a power p2 of its whole mass, according to the general law212

relating the mass of a biological system and the rate of energy inflow needed213

for maintenance and proliferation (West et al., 1999, 2001; Guiot et al., 2003),214

and the nutrient molecules flow towards the inner region Z1, which produces215

an energy leakage rate for the Z2 population, but an energy acquisition rate216

for the Z1 one proportional to the p1 power of its mass, according to the same217

law. Thus,218

B2 = B02(m0 + m1 + m2)
p2 − B01(m0 + m1)

p1, (6)219

where B01 and B02 are constants. The assumption that cellular feeding is220

controlled only by diffusive processes, i.e. that the tumor is in a pre-vascular221

stage, would imply that p1 = p2 = 2/3, because the inflow through the sur-222

face is proportional to the 2/3 power of the volume. By contrast WBE’s law223

assumes that resources are transported to the cells through a fractal hierar-224

chical branching network (West et al., 1999), which implies p = 3/4. In fact,225

the power law dependence of B on m has been recognized for a long time226

(Kleiber, 1932), but the value of the exponent and its ultimate meaning are227

still sources of controversy (Dodds et al., 2001; Makarieva et al., 2003). It has228

been recently pointed out that our model (and in particular a careful moni-229

toring of the p exponent) may enable us to predict the progression of a tumor230

(Guiot et al., 2006a; Carpinteri and Pugno, 2005; Guiot et al., 2006b).231
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On heuristically justified grounds, we can also apply the same formulation232

to describe cell evolution in Z0 and Z1, using the same approach and the same233

type of rules which connect the energy rate consumed by a cell population to234

its total mass through a power law. By extending the definition of B02 and ξ2235

to the other two regions and using Eqs. 4 and 6, the subsequent equation for236

the temporal evolution of the masses of each cell population is obtained:237

dmi

dt
= ai

⎛
⎝ i∑

j=0

mj

⎞
⎠

pi

− ai−1

⎛
⎝i−1∑

j=0

mj

⎞
⎠

pi−1

− bimi, (7)
238

where mi is the total mass of the i-th population, for i = 0, 1, 2, and239

ai =
MB0i

ε + κPM/ζ
, (8)

240

bi =
ξi

ε + κPM/ζ
, (9)

241

with a−1 = 0. The growth of the tumor mass in each region is proportional242

to the difference between the net energy input (first term minus second term243

in Eq. 7 and the amount of energy used for cell maintenance (third term).244

Equations (7) to (9) define a consistent phenomenological model whose pa-245

rameters may be evaluated from the results of macroscopic experiments. They246

belong to a class, called U2, of a recently proposed classification scheme for247

phenomenological universalities in growth problems (Castorina et al., 2006).248

U2 includes, as special cases, the WBE, the logistic and all the other previ-249

ously proposed growth models. The introduction of the expansion term in Eq.250

(4) leads to a reduction in the size of most of the coefficients, a fact whose251

consequences will be explored later. The outer shell coefficients a2 and b2 can252

be obtained from experimental observations of the whole spheroid (Condat253

and Menchón, 2006). As indicated in the Appendix, the coefficients a0 and b0254

can be obtained form observations of the necrotic core.255
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If we assume that necrotic cells do not consume energy ξ0 = 0. Then b0 = 0256

and Eq. (7) for m0 can be straightforwardly solved, yielding,257

m0(t) =
[
(m̃)1−p0 + a0(1 − p0)(t − t0)

]1/(1−p0)
(10)258

where p0 �= 1 and m̃ is the mass at time t0. If we choose t0 as the time of259

onset of the necrotic core, m̃ = 0. At long times the necrotic mass increases260

as a power law; in particular, if p0 = 2/3, m0(t) ∼ t3. For p0 = 1, there is ex-261

ponential growth at all times. Since a0 is expected to decrease with increasing262

pressure, the necrotic core (and the rest of the tumor) will grow more slowly263

under conditions of higher pressure. A tumor steady state can be obtained264

from Eqs. (7) only if b0 �= 0.265

4 THE BRIDGE: INTERMEDIATE MODEL266

To formulate an auxiliary model that allows us to bridge the gap between the267

mesoscopic and macroscopic descriptions, we start by rewriting the equation268

describing the evolution of the number of cancer cells in the nth mesoscopic269

shell as a first order differential equation that explicitly exhibits the cell fluxes.270

Assuming that the time step τ is very small, we write,271

c∗n − cn ≈ τ
dcn

dt
(11)

272

The mesoscopic Eq.(1) then becomes273

dcn

dt
= βncn + Φn−1 − Ψn−1 + Ψn − Φn, (12)

274

where Φn and Ψn stand for the outward and inward cell flows, respectively275

Φn =(n + 1)2/3r2
0μ

+
n cn, (13)

Ψn =(n + 1)2/3r2
0μ

−

n+1cn+1, (14)

13
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where βn = ρn − δn is the difference between the reproduction and death276

rates, except in Z0 where βn = −λn.277

Next we regroup the shells with n ≤ n0, n0 < n ≤ n1 and n1 < n ≤ n2 = N278

in the three regions, Z0, Z1 and Z2, respectively. Although the equation de-279

scribing the nutrient evolution in the mesoscopic model (Eq. 3) is not explic-280

itly considered, the role of the nutrient distribution is clear: since the nutrient281

comes from outside and is progressively consumed (or stored for later con-282

sumption) by the viable cells inside, the above stratification is a reasonable283

approximation (Mueller-Klieser, 2000). Of course, due to the randomness in-284

herent to the involved processes, we would expect a smoother distribution in285

the experimental data.286

In order to set the model in a form adequate for the comparison, we proceed287

as follows:288

1. At each discretization step we will conceptually separate the description289

of growth into two stages. In the first stage cells multiply, migrate and die, but290

the volumes of the various zones are kept constant. In the second stage, the291

zone radii are allowed to vary in order to restore cell concentration uniformity.292

Therefore the rescaled zone volumes “recapture” the cells that left each zone293

during the first step; this corresponds to a loss of mass −dmi for the zone Zi.294

2. Since we are solely interested in the number of cells inside each region,295

we can sum over the contributions of all its shells. Internal migrations in each296

region do not affect the number of cells therein and are therefore irrelevant.297

The only migration terms that matter are those across the region boundaries,298

that is to the shells n = n0, n1 and n2 = N .299

3. By definition, all cells are included in the MTS; thus, no cells can enter300

from the outside: Ψn2
= 0. We will disregard the centripetal migrations Ψn0

301

and Ψn1
since they would amount to including active cells in Z1 or quiescent302
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ones in Z0 (which is forbidden by our definition of the regions). Operationally,303

this implies setting the transport coefficients μ−

ni
= 0 at the region edges.304

Alternatively, we may redefine Φ̄n as the net balance Φn − Ψn.305

4. As a coarse grain approximation, the rates δn, ρn and λn may be rea-306

sonably equated in each region to their asymptotic values or to 0 as a conse-307

quence of the sigmoidal functions implementing their dependence from nutri-308

ent concentrations. This corresponds to selecting very steep sigmoidal func-309

tions (Griffa et al., 2004). It follows that δn = ρn = 0 in the first (necrotic)310

region, since dead cells cannot die or reproduce; we also fix λn = λ in the311

same region. In Z1 we set δn = δ and ρn = 0, while in Z2 we write δn = 0 and312

ρn = ρ, with both ρ and δ being the asymptotic values of the corresponding313

variables.314

With the above assumptions, we can use the set of Eqs. (12) to obtain315

equations for the total numbers of cells c̄i =
∑

cj in their respective regions316

Zi (i = 0, 1, 2). Summing Eqs. (12) over n for all the shells included in each of317

the three regions Zi, we obtain318

dc̄2

dt
= ρc̄2 + Φ̄n1

− Φ̄n2
, (15)

319

dc̄1

dt
= −δc̄1 + Φ̄n0

− Φ̄n1
, (16)

320

dc̄0

dt
= −Φ̄n0

− λc̄0, (17)
321

The outward cell flux from the outermost shell of each region Zi (i = 0, 1, 2)322

across the surface separating it from the next region (the matrix in the case323

i = 2) can be renamed as Φ̄i: Φ̄0=Φ̄n0
, Φ̄1=Φ̄n1

and Φ̄2=Φ̄n2
, where n2=N .324

In Eq. (16) δc̄1 is the total dying cell rate. Since cells in the necrotic core325

may only be reabsorbed, the only contributions to cell variation in Z0 are326

given by the flux −Φ̄0 and the absorption −λc̄0.327
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Next we evaluate the fluxes Φ̄i. The factor r2
0(n+1)2/3 in Eqs. (13) and (14),328

for n = ni (i = 0, 1, 2), corresponds to the square of the external radius, R2
i , of329

the corresponding zone, Zi. Because migrations to other regions start only from330

the outermost shell in each region, the fluxes will be proportional to ημi (i =331

0, 1, 2), where μi ≡ μ+
ni

is the local mobility and η = cni
is the mean number332

of cells in the ni-th isovolumetric shell. We keep η approximately constant333

because of the migration mechanism based on the mechanical stress-driven334

mass transport. In fact the outer shell of each zone is subject to an outwards335

chemotaxis-based cell migration due to the gradient in the concentration of336

nutrients (Dorie et al., 1982, 1986; McElwain and Pettet, 1993) (which tends337

to increase local cell density), but also to the mechanical opposition of the338

external cells (or the extracellular matrix in the case of the proliferant rim Z2).339

The intermediate increase of cell density is then compensated by the stress-340

driven migration (invasion in the case of the proliferative rim), in order not to341

increase the cell density above its maximum allowed value (Deisboeck et al.,342

2005). The constant cell density assumption in the formulation of the IM is343

in agreement with many experimental observations ( (Freyer and Sutherland,344

1986b, 1985, 1980)), although other recent investigations (Nirmala et al., 2001)345

show that it may slightly vary in time and space due to the local heterogeneities346

at smaller scales within the MTS. The fluxes can be written as,347

Φ̄i = μicni
R2

i = μiη

⎛
⎝ 3

4πζ

i∑
j=0

mj

⎞
⎠

2/3

. (18)
348

Next, we correlate Eqs. (7) for the mass variations with Eqs.(15-17) for the349

variations in cell numbers. Using the two-stages model at each discretization350

step, as discussed before, from mi = Mc̄i, it follows351

dc̄i

dt
= −

1

M

dmi

dt
(19)

352
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Now we can combine Eqs. (15) to (19) to write the equations for the mass353

variations in each of the three zones:354

dm2

dt
= −ρm2 − σμ1(m0 + m1)

2/3 + σμ2(m0 + m1 + m2)
2/3, (20)

dm1

dt
= −δm1 − σμ0m

2/3
0 + σμ1(m0 + m1)

2/3, (21)

and355

dm0

dt
= −λm0 + σμ0m

2/3
0 , (22)

356

where357

σ = Mη
(

4π

3
ζ
)
−2/3

. (23)
358

By comparing Eqs. (7) with Eqs. (20)-(22), we find that both models coin-359

cide if the following parameter identification is performed:360

a0 = σμ0, a1 = σμ1, a2 = σμ2, (24)

b0 = −λ, b1 = −δ, b2 = ρ (25)

and361

p0 = p1 = p2 = 2/3 (26)362

We have thus related the parameters corresponding to the mesoscopic and363

macroscopic formulations. That pi = 2/3 was to be expected by the con-364

struction of the mesoscopic model, but the other relations provide us with365

information about the dependence of the mesoscopic parameters on pressure.366

For instance, the interzone migration fluxes must decrease with increasing367

pressure,368

μi =
MB0i

σ
(
ε + κPM

ζ

) . (27)
369
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This is reasonable, because migration is hindered by the increased cell con-370

centration. The reproduction rate is decreased by the same factor:371

ρ =
ξ2

ε + κPM
ζ

, (28)
372

which is also consistent with predictions put forward on the basis of exper-373

imental data (Helmlinger et al., 1997). Since it is not a priori clear what the374

dependence of b0 and b1 on P should be, we cannot draw general conclusions375

on the mesoscopic coefficients λ and δ. However, if we assume that the depen-376

dence of b1 on P is the same as that of b2, then we can conclude that the death377

rate is decreased by increasing pressure, a somewhat surprising result, which378

however, agrees with the results of Helmlinger and co-workers, who observed379

that solid mechanical stress decreases the apoptotic rate (Helmlinger et al.,380

1997). This decrease in the apoptotic rate is likely to be due to increased381

packing and concomitantly enhanced cell-cell interactions, which trigger the382

suppression of apoptotic cell death. Moreover, δ > 0 implies b1 < 0, that is,383

the proliferating - to - quiescent bulk transformation is faster than the quies-384

cent - to - dead bulk transformation. Similarly, λ > 0 implies that the bulk385

dying rate must be larger than the reabsorption rate.386

5 CONCLUSIONS387

Through the introduction of an intermediate model, we have proved the388

consistency of two very different models for heterogeneous MTS growth: a389

macroscopic model, based on the ontogenetic growth model of West, Brown390

and Enquist, and a mesoscopic one, based on the coarse-graining of the cell391

system. Besides its intrinsic importance as a bridging tool, this unification392

helps us to establish a correspondence between hard-to-measure microscopic393
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parameters and their more accessible macroscopic counterparts (see e.g. Fig.394

3).395

The correspondence between the two models is remarkable, since they stem396

from completely different approaches, as stated in the Introduction. It is im-397

portant to note that:398

1. The IM model in its present form is not self-standing, i.e. it cannot by399

itself be used for actual simulations, since it implicitly depends on the evolving400

nutrient distribution (provided by the Eq. (3) in the mesoscopic model).401

2. The consumption rate of nutrients due to the metabolism, which is ex-402

plicit in the mesoscopic model is only implicit in the IM, via the “ignored”403

Eq. 3. Thus the metabolism parameters bi correspond to the “cell activity”404

parameters in βi in the IM.405

3. According to Eqs. (20) to (22), the parameters pi are all equal to 2/3,406

which indicates that feeding must be diffusion-controlled to ensure consistency407

between the models. However, the values of the parameters pi depend on the408

nature of nutrient transport. For instance, MTS internal vascularization is409

likely to change their values.410

The present treatment lends itself to suggest, through simulations and math-411

ematical analysis, the relevance of the effects of different tumor microenviron-412

ments, some of which are easier to study in vitro or by implanting MTS in413

model laboratory animals (Oudar, 2000). For example, we could extend it to414

the case of underfeeding (Delsanto et al., 2004; Griffa and Scalerandi, 2005)415

and to the development of angiogenesis. In the latter case, it would be useful416

to find a connection between the various extant mesoscopic model (Dodds417

et al., 2001; Byrne and Chaplain, 1995; Byrne et al., 2006), and the simple418

predictions about the dependence of the growth rate on the instantaneous419

mass furnished by the macroscopic approach (Menchón and Condat, 2007).420
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One could also explicitly consider the presence of growth inhibitors or consider421

the role of the necrotic mass in regulating the number of viable quiescent cells422

at the interface between the Z0 and Z1 regions. It is well known that necrotic423

death is closely related to the release of cytotoxic intra-cellular substances in424

the extra-cellular microenvironment (Greenspan, 1974; Freyer, 1988; Groebe425

and Mueller-Klieser, 1996). This process deserves to be considered with care.426

To conclude, we have used the simplest possible form for the dependence of427

the extra term in the WBE equation on the pressure. Our results could be428

easily generalized to more complicated cases by replacing κP in Eq. (4) with429

a suitable positive, monotonically increasing function F (P ). This would not430

introduce any qualitative changes in the results obtained here. Finally, we431

must remark that in our model the growth process is controlled by nutrient432

consumption and the possible influence of growth promoters/inhibitors is ne-433

glected. We also have neglected part of the cell-cell interactions and cell-cycle434

details (Jiang et al., 2005).435
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FIGURE CAPTIONS444

Fig.1: Schematic representation of the basic cellular processes in the n-th445

MTS shell as a function of the number of available nutrient units νn. The three446

lines below the νn axis imply that cellular death occurs only for νn < QD,447

migration for νn < QM and cell reproduction for νn > QR, respectively.448

Correspondingly, the three parameters δn, μn and ρn are different from zero449

(and equal to δ,μ and ρ) only for νn < QM , νn < QM and νn > QR,450

respectively.451

Fig. 2: The three stages of development of a MTS, as obtained from a452

mesoscopic simulation at three successive times. In the first stage all cells are453

proliferating. In the second one a region of quiescent cells emerges and soon454

occupies most of the interior. In the third one a necrotic core develops, which,455

however, includes some viable cells in the process of dying (especially at its456

rim). The mesoscopic parameters for the simulations are μ = 0.003, ρ = 0.025,457

δ = 0.01, σ = 1.7 in the nonzero zone defined in Fig.1.458

Fig. 3: Comparison between the results of a macroscopic (dashed line) and a459

mesoscopic (full dots) simulation with the experimental data (empty squares,460

ref. (Freyer and Sutherland, 1986a)) referring to a MTS made of EMT6/Ro461

mouse mammary carcinoma cells grown in a culture medium. The parameters462

for the macroscopic simulations are: a1 = 0.15, a2 = 0.48, a3 = 0.59, b0 =463

−0.012, b1 = 0.0016, b2 = 0.037; the mesoscopic parameters are the same as464

in Fig.2.465
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