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Abstract

Epistasis is the dependency of the effect of a mutation on the genetic background in which 

it occurs. Epistasis has been widely documented and implicated in the evolution of species 

barriers and the evolution of genetic architecture. Here we propose a simple model to formalize 

the idea that epistasis can also lead to co-evolutionary patterns in molecular evolution of 

interacting genes. This model epistasis is represented by the influence of one gene substitution on 

the fitness rank of the resident allele at another locus. We assume that increasing or decreasing 

fitness rank occur equally likely. In simulations we show that this form of epistasis leads to co-

evolution in the sense that the length of an adaptive walk between interacting loci is highly 

correlated. This effect is caused by episodes of elevated rate of evolution in both loci 

simultaneously. We find that the influence of epistasis on these measures of co-evolutionary 

dynamics is relatively robust to the details of the model. The main factor influencing the 

correlation in evolutionary rates is the probability that a substitution will have an epistatic effect, 

but the strength of epistasis or the asymmetry of the initial fitness ranks of the alleles have only a 

minor effect. We suggest that covariance in rates of evolution among loci could be used to detect 

epistasis among loci.  

Keywords 

Epistasis, coevolution, modularity, fitness landscapes, molecular evolution 
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Introduction

Epistasis or gene interaction is the dependency of mutation effects on the genetic 

background. Epistasis for fitness can lead to situations in which a mutation is advantageous only 

in the context of certain other alleles at other loci, while it is deleterious in other situations. This 

form of dependency has been implicated in causing “rugged” fitness landscapes which can make 

genetic adaptation difficult (Kauffman and Levin, 1987; Whitlock et al., 1995). These fitness 

landscapes have many local optima, i.e. locally optimal genotypes where it is impossible to reach 

higher fitness values without going through a “fitness valley.” Emphasis on “rugged” fitness 

landscapes forms the basis of Wright’s shifting balance theory of evolution (Wright, 1969). This 

intuition, however, as many ideas related to gene interaction, can be misleading. For one, fitness 

peaks are probably not generic features of epistatic fitness landscapes (Fontana and Schuster, 

1998; Gillespie, 1984; Reidys et al., 1997; Schuster et al., 1994; Whitlock et al., 1995). Instead 

models of gene interactions tend to have extensive ranges of equal fitness genotypes, also called 

neutral networks. Second, often epistatic fitness landscapes connect high fitness genotypes by 

shallow fitness ridges (Wagner et al., 1994) allowing the evolution of alternative high fitness 

genotypes without crossing a deep fitness valley (Gavrilets, 2004). Both theories, the shifting 

balance model as well as the model of neutral networks, however, assume that evolution of 

epistatic genes requires the random fixation of either neutral or slightly deleterious mutations. But 

even this intuition does not generally apply, as has been shown recently for the epistatic 

interactions among amino acid residues in a protein.  

DePristo and colleagues have shown that an adaptive mutation at the catalytic core of an 

enzyme regularly interacts with the fitness effects at other amino acid loci of the same protein 

(DePristo et al., 2005). The explanation for this observation is that an adaptive mutation at the 
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catalytic core of an enzyme has consequences for the stability of the protein, leading to adaptive 

pressures at other amino acid residues to compensate for the loss of stability. Note that there is 

epistasis among different amino acid loci in that the optimal amino acid at a position depends on 

the amino acid in the catalytic core. Similarly the evolution of novel affinities in glucocorticoid 

receptors requires the interaction between mutations that change the affinity of the protein and 

those that accommodate the adaptive mutations in terms of stability (Ortlund et al., 2007). The 

evolutionary dynamic, driven by environmental factors and epistatic interactions, only includes 

adaptive changes and has no need for random drift either along neutral networks or through 

fitness valleys. To our knowledge this form of epistatic dynamics has not been modeled before, as 

most of the theoretical work has focused on either the population genetic details of the shifting 

balance model or the structural features of neutral networks (Gavrilets, 2004).  

In this paper we present a simple model in which two loci undergo adaptive evolution by 

simple mutational hill climbing, but also interact by affecting each others fitness rank among 

alternative alleles. This model was originally motivated by the idea that genomes consist of 

modular networks of interacting genes (Schlosser, 2002, 2004). Given these modules of 

interacting genes it was hypothesized that the members of a gene network module should form a 

set of genes that tends to co-evolve because of their epistatic interactions (Schlosser, 2002). Some 

adaptive substitutions at one locus can induce selection pressures at other loci in the same 

network causing them to undergo adaptive evolution in turn, similar to the amino acids in an 

enzyme, as exemplified in the work of DePristo et al., (2005). This idea raises the possibility that 

functional modules may be detectable through co-evolutionary dynamics revealed by the 

comparison of genome sequences, similar to the detection of physically interacting residues in 

RNA and proteins (Fariselli et al., 2001; Gobel et al., 1994; Pang et al., 2005; Pazos et al., 1997; 

Taylor and Hatrick, 1994).
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Here we analyze the dynamical properties of this model asking how likely epistatic 

interactions leave a statistical signature in the pattern of gene substitutions. We show that 

epistasis leads to co-evolution among the loci and that the outcome is relatively robust against 

details of the model. We further show that the adaptive dynamics of non-epistatic and epistatic 

gene pairs can be distinguished based on their correlated pattern of adaptive substitutions with 

relatively high power if epistasis is prevalent.

The Model 

We consider a haploid genotype with two loci. Each locus has n possible allelic states. 

Alleles at a locus are represented by an integer that gives their fitness rank r in a given genetic 

background among the set of possible alleles at the locus. With n possible allelic states the rank 

r=n is the optimal allele in a genetic background, and r=1 the worst. The model represents the 

direct effects of mutations on the fitness rank of an allele as well as the epistatic effects on the 

other locus (Fig. 1).

We assume that in each generation there may be maximally a single mutation with a fixed 

predetermined probability m (mutation rate) and that this mutation may be in either locus A or B 

with equal probability. Hence we are simulating the limiting case of low overall mutation rate, in 

which the rate of evolution is determined by the availability of advantageous mutations rather 

than by selection on standing variation.

Mutations change the fitness rank according to a given distribution. If the fitness rank of the 

mutant allele is higher than that of the old allele, the new allele replaces the old one in the 

genome. That means we simulate instantaneous fixation of the new allele, assuming that the time 
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to fixation is short compared to the waiting time for the next mutation. If the mutant fitness is less 

than the original one, the mutation is discarded.  

The fitness rank of a new mutation can be determined by any probability distribution over 

the set of possible allelic states. Here we assume, for simplicity, that the probability of higher or 

lower fitness follows a uniform distribution. In this way the probability of an adaptive mutation 

(one that ranks higher in fitness than the original allele) decreases with the fitness rank of the 

allele and the rate of evolution slows down proportionally. The probability of an adaptive 

mutation is Pa =
n - r
n -1

, and for further reference we call n - r = n+ ,  i.e. the number of possible 

alleles with higher fitness rank than the given allele.  

Epistatic effects are represented in this model as influence of an allele substitution at one 

locus on the fitness rank of the current allele at an interacting locus according to some probability 

distribution. The prevalence of epistatic effects between the two loci is defined via a parameter E,

which determines the probability that mutations in one locus epistatically affect the fitness rank 

order at the other locus. The strength of epistatic effects, on the other hand is determined by the 

shape of the probability distribution that determines the change in fitness rank due to epistasis.  

In order to model the epistatic effects on the second locus after a substitution at the first 

locus we chose a distribution of epistatic effects that has the following characteristics. The 

epistatic effect will equally likely increase the fitness rank as well as decreasing it. This 

assumption is motivated by the empirical finding that epistasis among fitness effects has no 

preferred direction in E. coli (Elena and Lenski, 1997, 2001). Because there is a finite number of 

ranks in our models, this assumption has to be modified at the boundaries, i.e. when either 

maximal or minimal ranks are reached. At these boundaries we use the same distribution as if the 

rank of the allele were the second highest or second lowest allele, respectively and was equally 
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likely to increase or decrease (see below). In order to have a distribution which respects the finite 

size of the range of possible allelic states we chose a distribution which is based on a Beta 

distribution. The Beta distribution is defined on the unit interval between zero and one, and can 

thus be mapped onto any finite interval and discretized to yield defined probabilities for each 

allelic state.

Briefly, we use a Beta distribution where the random variable x is the relative rank of the 

allele after epistasis has taken effect: x = r '-1
n -1

, with r being the rank before the epistatic effect 

and r’ after the epistatic effect. Note that x Í[0,1] , as assumed for the support of the Beta 

distribution. To determine the epistatic effect on an allele with a certain initial fitness rank r we 

choose a distribution with the median M equal to the relative rank of the original fitness rank: 

M =
r -1
n -1

.  This ensures that the epistatic effect will equally likely increases the fitness rank as 

well as decreasing it (Fig. 2).

To define the parameters of the epistatic effect distribution we use the following 

parametrization:  

p x( )= xa-1 1- x( )k-a-1

B a,k - a( )

where B(a,k-a) is the Beta function. The variance of the distribution is largely determined by the 

parameter k,

Var(x) =
a k - a( )
k 3 + k
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such that increasing k decreases the variance of x. The expected value of x is

E x( )= a
k

Hence we have two parameters, k and a. We choose to fix k as a way to determine the shape 

of the distribution (strength of the epistatic effect) of allelic effects for a given simulation. The 

distribution also depends on the fitness rank of the current allele, because r determines the 

median of the distribution (see above). Hence we need to determine the parameter a for a given 

fitness rank by solving the following integral equation

0.5 =
1

B(a,k - a)
xa-1 1- x( )k-a-1

dx
0

M

ñ

for a, with a fixed predetermined k and M =
r -1
n -1

. By definition M is the median of the 

distribution, equal to the relative rank of the allele before the epistatic effect. To our knowledge 

there is no analytical solution to this integral equation and we thus numerically solved this 

equation in our simulation to determine the distribution of epistatic effects.  

The method to determine the distribution of epistatic effects as outlined above works as 

long as the current rank of the allele is neither maximal,  r=n or minimal, r=1. In these cases the 

allele can either not increase or decrease in rank, respectively.  As explained above, in these cases 

we determine the distribution of epistatic effects under the assumption that the allele occupied the 
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second highest or second lowest rank, respectively and was equally likely to increase or decrease. 

In other terms, we either set M = 1-
1

n -1
if r=n, or if r=0 we set M =

1
n -1

.

Since this model is a highly stylized representation of evolutionary and genetic dynamics 

we summarize here the assumptions that are implicit in this model structure and discuss ways to 

make the model more realistic.  

¶ Strong Selection Weak Mutation:

o At any one time only one of the two loci is polymorphic 

o Selection happens much faster than the waiting time for mutations 

o Fixation probabilities of advantageous mutations do not vary among alleles. 

These assumptions allow us to ignore the details of population dynamics and make the 

evolutionary process a case of simple hill climbing. The last assumption can be changed by 

replacing the fitness ranks with actual fitness values and calculating the fixation probabilities 

from the fitness differences.  

¶ Rank Epistasis 

o We only consider cases where epistasis changes the fitness rank of an allele. 

This is a generalization of the more commonly used concept of sign epistasis 

in the two-allele case, where the sign of a fitness effect is reversed due to 

epistasis.

o The fitness rank of a mutant follows a uniform distribution over all 

alternative alleles at a locus. This assumption is the simplest which leads to a 

decreasing rate of advantageous mutations as the fitness rank of mutations 

increases. This assumption is easily replaced with the more realistic models 



Acc
ep

te
d m

an
usc

rip
t 

10

of gene substitution and fitness change based on extreme value theory (Orr, 

2002).

o We interpret the fitness rank effect of a mutation as representing the fitness 

of the haplotype containing both loci. This implies that the epistatic change 

in fitness rank of the allele at the second locus does not influence the 

fixation probability.  

An adaptive mutation at one locus can lead to fitness rank decreases at the second locus in 

two ways. It can release a constraint on the adaptation of the second locus, which means that 

alleles that become advantageous after the first mutation lead to a higher fitness than was possible 

before the first mutation. In this case the epistatic effect would not be associated with a 

deleterious pleiotropic effect and thus would not affect the selection coefficient of the mutation. 

Alternatively we can assume that the fitness rank at the second locus is influenced by deleterious 

pleiotropic effects of the first mutation, as it seems to be the case of the protein adaptation model 

by DePristo et al., (2005). In this case we have to assume that the fitness consequences of the 

pleiotropic effects are less than the direct fitness gain due to the first mutation, e.g. catalytic 

activity versus protein stability. To relax this assumption would also require abandoning fitness 

ranks and replace them with explicit real valued fitness values.  

¶ Sparse genotype space covering 

o We assume that in any simulated evolutionary process the number of 

realized genotypes is a tiny fraction of all possible genotypes.

This assumption is necessary to ensure topological consistency of the fitness landscape 

assumed in this model. Since genotype fitness values are not explicitly stated in the model, but 

are rather represented by a random field, as in the Nk model (Kauffman and Levin, 1987) it is 

certain that our model violates topological constraints of possible genotype fitness mappings. The 
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most important is the fact that epistatic effects are symmetrical, i.e. the epistatic effect of a 

substitution at one locus on the other locus is the same as the epistatic effect of the mutation at the 

second locus on the first (Wagner et al., 1998). This symmetry is a statement about pairs of 

alleles at two loci, but has also implications for our model. One of which is that it is impossible 

that one locus only has effects on the other but not vice versa. Some asymmetries in the 

probability of interaction are thinkable but imply that the two sets of alleles are also unequal. We 

decided to not pursue this possibility. We thus assume that the probability that a mutation at one 

locus has an epistatic effect on the second is equal to the inverse epistatic effect.

To analyze the effect of epistatic interactions between two loci on their evolutionary 

dynamics, we simulated evolutionary changes in the fitness ranks of two loci under the 

assumptions of the model described above for different parameters of epistatic prevalence E and 

epistatic strength k. The mutation rate was always 0.2 and the number of fitness ranks for each 

locus was 1000. Unless otherwise noted, the initial rank of each locus at the beginning of 

simulations was 500. However, in order to analyze whether differences in the initial ranks of the 

two loci affect the co-evolutionary dynamics of the process, we also explored cases, where one 

locus started at rank 1000 (i.e. maximal rank), while the other started at rank 500. For each set of 

parameter values, we analyzed 1000 replicate runs. Each run proceeded through 100,000 

iterations, when no further evolution occurred in the overwhelming majority of runs because the 

highest rank was reached for both loci even under assumptions of strong and prevalent epistasis. 

The model was realized in Mathematica 5.0 and is available upon request from the corresponding 

author.
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Results

Figures 3 and 4 show a number of typical runs depicting the evolution of fitness ranks of 

the alleles at the two loci. Figure 3 presents examples without any epistatic interactions and 

Figure 4 presents examples with prevalent epistasis. The patterns of rank evolution are evidently 

much different. In the absence of epistasis (Fig. 3), decreases of rank in any of the loci are 

impossible because only mutations, which increase fitness rank are fixed. In each of the three 

cases illustrated (Fig. 3A-C), each locus initially rapidly climbs up the ranks but the time interval 

between substitutions markedly increases as it approaches maximal rank because the probability 

for an advantageous mutation decreases. As expected from our assumption of independence, the 

time course of substitutions in the two loci is completely unrelated to each other.  

In the presence of epistasis (Fig. 4), a substitution in one locus may either raise or lower the 

fitness rank of the allele at the second locus due to positive or negative epistasis, respectively, 

allowing for the possibility of rank decreases. Three examples are illustrated. In the first example 

(Fig. 4A), negative epistatic effects in both loci lead to brief interruptions of the initial climb in 

ranks, e.g. at iteration t=304, where a substitution in locus A from rank 877 to 985 epistatically 

drives down the rank of B from 942 to 457. However, positive epistatic effects also occur and in 

this case they contribute to a more rapid achievement of near-maximal ranks in both loci than in 

typical cases without epistasis. This is the case with a substitution at t=648 in locus B from rank 

929 to 997, which epistatically brings A from 998 to 1000. Two further substitutions in B without 

negative epistatic effects on gene A eventually bring both loci to maximal rank but due to the 

very low probability for occurrence of advantageous mutations close to maximal rank this 

requires more than 7500 additional iterations. In fact in this model if a locus is near its maximal 

fitness rank an epistatic effect is more likely to increase fitness than a mutation, because the 
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probability of an adaptive mutation decreases with fitness rank, while the probability of increased 

fitness rank due to epistasis remains at 0.5.  

The second and third examples in Figure 4 are representative for many cases, where after an 

initial climb to near-maximal ranks in both loci long periods of stasis are interrupted by brief 

episodes of co-evolutionary bursts. In the second example (Fig. 4B), a substitution in locus B 

(from rank 994 to 997) epistatically brings gene A from rank 866 to 992 at t=343 followed by a 

relatively quiescent period in both loci until t=8597, when a substitution in gene A (from rank 

999 to 1000) initiates the first co-evolutionary burst by bringing B epistatically down from rank 

1000 to 920. This low rank in gene B enhances the probability for advantageous mutations in 

gene B resulting in a more rapid succession of substitutions in B and a correspondingly elevated 

frequency of negative epistatic effects on gene A. A substitution in gene B from rank 977 to 980 

at t= 9092 pulls down A from rank 999 to 656 inducing the same changes of probability in the 

other locus. A brief episode of rapid substitutions in both loci (24 substitutions in 2015 iterations) 

with positive and negative epistatic effects follows until the burst ends at t=10612 with a 

substitution in A from rank 982 to 999, which raises the rank of B from 905 to 1000 by positive 

epistasis. This initiates another long period of stasis until a second co-evolutionary burst at t= 

29699 after 7 substitutions in 557 iterations culminates in the convergence of both loci to 

maximal ranks at t=30256. The third example (Fig. 4C) shows another case with an initial climb 

followed by stasis interrupted by two co-evolutionary bursts. The first more protracted burst is 

initiated between t=4500 and t=12795 by a substitution in gene B (from rank 988 to 994), which 

epistatically pulls down the rank of A from 1000 to 584. A second co-evolutionary burst occurs 

between t=20447 and 22730 after a substitution in gene A from rank 998 to 999 epistatically 

decreases the rank of B from 1000 to 914.  
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Comparing the cases with (Fig. 4A-C) and without (Fig. 3A-C) epistatic effects reveals a 

much larger disparity of evolutionary trajectories between different runs in the presence of 

epistasis. Nevertheless, the evolutionary trajectories of the A and B locus in a single run are 

strikingly similar in the case of epistasis indicating a high tendency of both loci to co-evolve 

while showing no obvious correlation in the absence of epistasis. Despite the differences between 

runs in case of epistasis, co-evolutionary bursts are typically initiated by a substitution with 

negative epistatic effect in situations, where both loci have near-maximal rank. Positive epistasis, 

on the other hand often plays a role during termination of such co-evolutionary episodes. 

We next compared the distribution of substitutions per locus until convergence under 

assumptions of prevalent and strong epistasis (E=1, k= 2.1) with the distribution of substitutions 

under assumption of no epistasis (E=0) (Table 1, Fig. 5). The mean and median of the distribution 

are significantly higher in runs with prevalent epistasis than in runs without epistasis (15.2 and 12 

versus 6.7 and 7, respectively), the standard deviation is much higher (11.3 versus 2.2), and the 

distribution is much more skewed towards higher substitution numbers. The differences in mean 

and median reflect the delay of convergence in the presence of epistatic interactions due to the 

possibility of negative epistatic interactions and their promotion of bursts of rapidly alternating 

substitutions at both loci. The higher standard deviation and skew in cases with epistatic 

interactions reflects the fact that the number and duration of such co-evolutionary bursts is highly 

sensitive to the stochastic influences of both actual mutational and epistatic effects. While the 

total number of substitutions until convergence are completely uncorrelated between the two loci 

A and B of a single run in the absence of epistasis (Fig. 6A), they are strongly positively 

correlated (r=0.868) in cases with strong and prevalent epistasis (Fig. 6B). This correlation 

reflects the fact that negative epistatic effects of a substitution in one locus on the other locus 

increase the probability of another substitution at the other locus and, consequently, also increase 
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the probability for substitutions with negative epistatic effects on the first locus, leading to a 

correlation of substitution frequencies by positive feedback.  

We also compared the distribution of total duration of runs until convergence and of total 

substitution rate (number of substitutions until convergence/duration of run) under assumptions 

of prevalent and strong epistasis (E=1, k= 2.1) with replicate runs under assumption of no 

epistasis (E=0) (Table 2). While convergence on maximal ranks occurs on average slightly later 

in runs with epistasis than in runs without epistasis (19416 vs. 15262 time steps, respectively), 

this difference is at most marginally significant (Mann-Whitney test: P =0.0596). The total 

substitution rate, however, is significantly higher (Mann-Whitney test: P=0.000) under 

assumption of epistasis than without epistasis (16.73 vs. 7.98 substitutions/5000 time steps, 

respectively) (Table 3, Fig. 7A). 

To better understand how substitution rates are distributed under epistatic and non-epistatic 

conditions, we first subdivided each run into relatively long time windows of 5000 iterations and 

counted the total number of substitutions in each time window, which allowed us to determine the 

rate of substitution for each time window (Table 4, Fig. 7B). The last time window was 

discarded, whenever it was shorter than 5000 time steps. This implies that runs, which were 

shorter than 5000 time steps did not enter into the calculations and a number of substitutions at 

the end of each run had to be discarded (consequently, the average values of rates calculated for 

time windows differ notably from the total substitution rates). 

Under both epistatic and non-epistatic conditions the substitution rates in time windows of 

5000 steps show a first peak at 0-2 substitutions/5000 time steps reflecting the long periods of 

stasis when loci have reached near-maximal ranks. Under non-epistatic conditions there is a 

second peak centered around 10-16 substitutions/5000 time steps, which is due to the initial climb 

to near-maximal ranks as confirmed by the disappearance of this peak, when the initial two time 
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windows are omitted from the analysis (not shown). Under epistatic conditions, there is a more 

even distribution of rates: there are fewer time windows that have either very few or around 10-

16 substitutions/5000 time steps than under non-epistatic conditions, but more time windows that 

have rates in between or larger than 16 substitutions/1000 time steps. This is probably due to the 

fact that on the one hand positive epistatic effects may decrease the rate of substitutions in the 

initial climb to near-maximal rank, while on the other hand negative epistatic effects may 

increase rates by increasing the probability for additional substitutions, when loci occupy near-

maximal ranks (Fig. 7B). This may result either in merely brief interruptions of convergence or 

may initiate co-evolutionary bursts of highly variable duration and density of substitutions, the 

variability being due to the stochasticity of actual mutational and epistatic effects. Taken together 

this suggests that while epistasis strongly affects substitution rates, positive and negative effects 

on substitution rates may partly compensate for each other.  

One of the most striking differences between simulations with and without epistasis is the 

occurrence of bursts of rapidly alternating substitutions in both loci (co-evolutionary bursts) 

under the former condition. To quantify the degree to which substitutions in the two loci are 

temporally clustered, we analyzed the distribution of waiting times between those substitutions at 

one locus that were followed by a substitution at the other locus (alternating substitutions). 

Average waiting times are significantly (Mann-Whitney test: P=0.000) shorter under epistatic 

conditions than under non-epistatic conditions (Table 5).

We next tested, whether the occurrence of co-evolutionary bursts of substitutions in both 

loci under epistatic conditions is reflected in correlations between the rates of substitution in 

locus A and B in different time windows of the same run. We, therefore, subdivided each run into 

shorter time windows of 500 iterations and determined the substitution rate of each locus for each 

time window. The last time window was discarded, whenever it was shorter than 500 time steps. 
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We then determined the correlation between substitution rates in locus A and B for each run. 

Because correlations can only be meaningfully calculated if a sufficient number of data points are 

available, only runs that covered at least 20 time windows were included in the analysis. We also 

excluded the first time window of each run from the analysis because our simulations started at 

rank 500 of 1000 and this allowed rapid initial accumulation of substitutions in both loci for both 

the epistatic and non-epistatic case, which misleadingly suggest relatively high correlations for 

the non-epistatic case. The distribution of correlations between substitution rates in A and B 

under conditions of strong and prevalent epistasis and under non-epistatic conditions are 

compared in Figure 8A. The average correlation of substitution rates is much higher under 

epistatic conditions (see also Table 6). However, there is some overlap of the distributions under 

epistatic and non-epistatic conditions. The cumulative density functions reveal that while 95 % of 

the non-epistatic runs have correlations below 0.639,  this is also true for 60% of runs under 

epistatic conditions indicating that around 40% of the runs with co-evolution of both loci due to 

epistasis can be detected allowing for a 5% type I error. This means that it would be difficult to 

detect epistatic interaction in real data sets based on the correlation of number of substitutions. 

However, the overlap of the distributions decreases (Table 6, Fig. 8B) and the power to detect co-

evolution due to epistasis increases correspondingly, if more time windows at the beginning of 

each run are excluded further reducing artifactual correlations due to the initial conditions (high 

substitution rates in both loci due to their initially low rank assignments). After exclusion of the 

first four time windows,  for example, already around 80% of runs with co-evolving loci due to 

epistasis can be detected with a 5% type I error (Fig. 8B). 

In order to analyze the effect of the strength of epistatic interactions, we next compared the 

total number and rates of substitutions per locus until convergence to maximal ranks in 1000 

replicate runs for conditions with prevalent epistasis (E=1), but with varying strength of epistatic 
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effects. We varied the strength of epistatic effects by changing the shape parameter k of the Beta 

distribution used to determine epistatic changes in fitness rank. Increasing k decreases the 

variance of epistatic effects (Fig. 2A) and thus the average epistatic effect – the average change in 

rank after epistasis  (Fig. 2B). Surprisingly, however, decreasing epistatic strength from k=2.1 to 

k=6.1 had only a minor effect on the mean, median and standard deviation of the distribution of 

substitutions until convergence (Table 1). Moreover, the correlations between total number of 

substitutions until convergence at the two loci of a single run are uniformly high across the range 

of k tested (ranging from r=0.840 at k=6.1 to r = 0.868 at k=2.1) (Table 1, Fig. 9A). Similarly, 

the average correlations between the substitution rates of both loci in different time windows of 

same run remain relatively constant for different k (ranging from r=0.470 at k=6.1 to r= 0.574 at 

k=2.1) (Table 6, Fig. 9B). This indicates that changing the strength of epistatic interactions within 

the range of k tested has only a minor effect on the co-evolutionary dynamics of the two loci and 

that the co-evolutionary dynamics is robust to details in the distribution of epistatic effects.  

 Varying the prevalence or probability of epistasis E, in contrast, strongly affects the 

probability of the loci to co-evolve. Comparing the total numbers of substitutions per locus until 

convergence to maximal ranks in 1000 replicate runs with E  ranging from 0 to 1 we find a strong 

effect on the mean, median and standard deviation of the number of substitutions, which are 

gradually increasing with increasing values of E (Table 1). Similarly, the correlations between 

total number of substitutions until convergence at the two loci of a single run increase with 

increasing E (from r =0.004 for E=0 to r =0.868 for E=1) (Table 1, Fig. 9C). Likewise, the 

average correlation between substitution rates of both loci in different time windows of same run 

increase with increasing E (from r =0.168 for E=0 to r =0.574 for E=1) (Table 6, Fig. 9D). 

Finally, we investigated how sensitive the co-evolutionary dynamics of our model is to 

variations in the initial rank assignments for both loci. While all simulations reported so far 
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started with symmetrical initial conditions, in which both loci occupied an intermediate rank of 

500, we now analyze cases with highly asymmetrical initial conditions, in which locus A starts at 

its maximal rank 1000, while locus B starts from an intermediate rank of 500 (Table 7, Fig. 10). 

The distributions of total number of substitutions until convergence in both loci as well as the 

correlations between the total number of substitutions at the two loci of a single run are largely 

unaffected by this alteration in initial conditions (Fig. 10 A, B). However, the average number of 

substitutions under asymmetric conditions is lower for locus A than for locus B. With declining 

prevalence of epistasis E, the distribution of substitutions in locus A deviates increasingly from 

locus B and shifts towards zero because the probabilities for its escape from maximal rank due to 

epistasis decrease (Fig. 10 C,D). As a corollary of this shift of the distribution towards zero with 

declining E, the correlation between total number of substitutions appears to be increasingly 

elevated under asymmetric compared to symmetric initial conditions (Fig. 10B). The elevated 

correlations under asymmetric conditions should, therefore, not be taken as an indicator of 

increasing co-evolution probabilities between the two loci. 

Discussion

Different species co-evolve, when the fitness, i.e. the propensity for survival and 

reproduction, of at least one of the species depends on particular properties or behaviors of the 

other (as in the case of mimicry or of flower-pollinator interactions). However, co-evolution 

should even be more important and prevalent between different components of the same 

organism. Organisms are complex systems, which require proper integration and cooperation 

among many components to perform their functions. Because the fitness effect of any heritable 
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variation of a component (e.g. a mutation at a particular gene locus) depends on whether this 

functional integrity is preserved, it will depend on those other components (loci) with which it 

closely cooperates in performing a certain function (Schlosser 2002). Fitness interdependence 

between the two loci will be reflected in a certain probability of epistatic effects. That is, the 

fitness effect of a substitution in locus A may differ depending on which allele is present at locus 

B.

Co-evolution has been inferred from correlations in the rate of evolution, but only recently 

co-evolution has been formally demonstrated experimentally (for a review see Fraser, 2006). For 

instance the genes fem-e and tra-2 are transcription factor genes in the sex determination pathway 

of nematodes. The protein products of these genes directly interact and their amino acid 

sequences evolve quickly as shown by a comparison of three Caenorhabditis species. In all three 

species these genes are essential for sex determination but the protein-protein interaction is only 

possible among proteins from the same species (Haag  et al., 2002). Similarly co-evolution has 

been demonstrated in two yeast species among the cyclin Pcl5 and its substrate, the transcription 

factor Gcn4 (Gildor et al., 2005). While it is still not clear what drives the rapid co-evolution 

among those genes, it seems unlikely that they depend on random drift. Finally it has been 

demonstrated that genes in functional modules of yeast in fact do have more similar rates of 

evolution than genes from different modules (Chen and Dokholyan, 2006). Hence it seems that 

there is a need to understand in greater detail the co-evolutionary dynamics among epistatically 

interacting genes.

The model we present here analyzes how fitness interdependence between two loci due to 

fitness epistasis affects their evolutionary dynamics. Our focus in this model is on long-scale 

evolutionary trajectories and we neglect population-dynamics assuming instead instant selective 

fixation of any advantageous mutation. This is similar to Gillespie’s SSWM model, where 

SSWM stands for Strong Selection Weak Mutation (Gillespie, 1991). Importantly, our model 



Acc
ep

te
d m

an
usc

rip
t 

21

assumes that only one of the two loci is polymorphic at any given time. Thus, in contrast to many 

previous models of epistasis (Goodnight, 1988, 1995; Hansen and Wagner, 2001; Kauffman and 

Levin, 1987; Stadler, 1996; Stadler et al., 2000), our model does not consider epistasis among 

several simultaneously polymorphic loci. Instead, it investigates how evolution at one locus 

depends on the outcome of previous substitutions at another locus. Specifically we model 

epistasis as the effect of one substitution on the fitness rank of alleles at another locus.  

The model is a random field model, i.e. instead of defining the fitness values of each 

genotype directly it only makes assumptions about the statistical distribution of effects. It is thus 

in spirit similar to the Nk model of Kauffman and Levin (1987). The main difference of our 

approach is that we use a random model to determine epistatic effects rather than genotypic 

fitness directly. The advantage is that the statistical properties of the epistatic interactions are very 

clear and explicitly stated, but this comes at a price. The disadvantage is that this random model 

is not guaranteed to respect the topological constraints of fitness landscapes, the main one is the 

symmetry of AxA epistatic effects, i.e. that the epistatic effect of locus A on B is the same as the 

epistatic effect of B on A (Wagner et al., 1998). This problem only plays a role, however, if the 

number of genotypes sampled in any simulation approaches the size of the genotype space. That 

is to say, that any small sample of epistatic effects can always be embedded in a larger fitness 

landscape without violating the symmetry conditions of fitness landscapes.  

Even though this model uses a statistical approach in describing epistatic interactions it is a 

model based on “physiological” epistasis (sensu Cheverud and Routman, 1995), as it determines 

the fitness values of genotypes. In this model epistasis thus does not refer to epistatic variance 

components, or what has been called “statistical epistasis”. In fact according to the assumptions 

of the model there is no statistical epistasis at all, since we assume that only one locus is 

polymorphic at any time and the effect of this locus is by definition additive. That is so because 
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there can only be an epistatic variance component if at least two loci are polymorphic at the same 

time.  

Another question important to the interpretation of this model is whether the parameters of 

the model have a clear biological and operational meaning. Often epistasis is introduced into 

mathematical models as un-interpreted nonlinearities (e.g. in Wagner et al., 1994, Gavrilets and 

de Jong, 1993 and others), an approach that has been criticized (Wagner et al., 1998; Hansen and 

Wagner, 2001). In this model epistasis is described by two factors: the probability of an 

interaction E and the distribution of fitness rank changes if an epistatic effect occurs. Both 

parameters have a straightforward operational interpretation, even though it is difficult to estimate 

them in reality. For instance, in the case of amino acids in a protein the probability of interaction 

E can be estimated as the fraction of amino acids substitutions at one position that lead to a 

change in fitness rank at another amino acid position. This estimation assumes that all amino 

acids have the same probability to replace any other amino acid, but that can be modified by 

taking into account the structure of the genetic code and the nucleotide mutation rates. In general 

the parameter E may depend on the current amino acid at a position, however. We found that the 

probability of interaction has a major influence on the behavior of the model, in particular on the 

correlation between the number of substitutions at the two loci. 

In our model the epistatic effect on locus B of a mutation at locus A is modeled by a Beta 

distribution on the relative fitness rank of alleles at locus B. Of course there is no guarantee that 

in reality this distribution will resemble a Beta distribution. This choice was dictated by 

mathematical convenience, as the Beta distribution is the generic family of probability density 

functions on the unit interval.  So the real question is whether describing an epistatic effect with a 

probability distribution has an operational interpretation. Let us focus on a specific allele b at 

locus B and create a series of mutations at locus A. For each mutation we determine the change in 
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fitness rank at of b due to epistasis with the change on locus A. Given the original fitness rank of 

b the fitness rank changes will define a frequency distribution. It is this frequency distribution 

that is represented by a Beta distribution in our model. This is in principle an operational 

definition of our parameters but measuring these parameters clearly requires a large amount of 

data. Only with very efficient methods of site directed mutagenesis and fitness evaluation this 

data can be produced, but recent advances in high throughput technology suggest that data of 

sufficient quality to estimate these parameters might be obtainable in the near future. In our 

simulations we found that the shape of the Beta distribution does not affect the model dynamics 

much and we thus infer that the model is robust against assumptions about the exact distribution 

of epistatic effects.  

Comparison, in our model, between evolutionary trajectories of epistatically interacting loci 

with those of non-epistatic loci suggests that epistasis between two loci should lead to co-

evolution, as recently demonstrated in yeast interaction networks (Chen and Dokholyan, 2006). 

As measures of co-evolution we determined the correlation of total number of substitutions until 

reaching maximal rank between two loci of the same run as well as the average correlation 

between substitution rates of both loci in different time windows of the same run. While 

substitution numbers between the two loci are completely uncorrelated in the absence of epistasis, 

they are strongly correlated in the presence of epistasis (Fig. 6). Moreover, substitution rates of 

both loci in different time windows of the same run are correlated much more frequently in the 

presence of epistasis, indicating that the temporal pattern of substitutions in two epistatically 

interacting loci tends to be similar (Fig. 8). 

One of the most distinctive effects of epistasis in our model is that it does not lead to a 

temporally homogeneous elevation of substitution rates in both loci but rather promotes co-

evolutionary bursts – periods of elevated substitution rates in both loci which alternate with long 
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periods with few or no substitutions (Fig. 4). These co-evolutionary bursts are probably due to 

positive feedback by negative epistatic effects: by increasing probabilities for substitution at one 

locus they increase the probabilities that the rank of the other locus is decreased by negative 

epistatic effects raising the probabilities for substitution at that locus as well.  

The latter feature of our model contrasts with the prevalent model of correlated evolution, 

in which it is assumed that the first step is a slightly deleterious mutation that gets fixed by 

random drift and then is compensated by selection on a compensatory mutation (Stephan, 1996). 

In this model one slowly fixing mutation is followed by a selected substitution. In contrast, in our 

model all the substitutions are adaptive and bursts of substitutions are caused by the epistatic 

effects of an adaptive change leading to what has been called epistatic selection.

These co-evolutionary bursts reflect the biologically plausible situation, where gene 

substitutions in the wake of an environmental change at one locus may actually decrease the level 

of co-adaptation of both loci and thus induce selection for compensatory change at the other 

locus. For example, a mutation of a receptor may be advantageous (i.e increase haplotype fitness) 

because it increases its ability to faithfully activate an intracellular second messenger (e.g. by 

increasing its affinity to the latter) even though as a side effect (e.g. due to allosteric effects) it 

slightly compromises the receptors ligand-binding capacity. As a consequence, substitutions in 

the ligand would now be favored that restore high-affinity ligand binding to the modified receptor 

(e.g. because they fit better in its allosterically modified ligand-binding site) even though they 

may have been unfavorable prior to the receptor modification.  

Correlated evolution of sequences has been documented quite often and has been used to 

detect physically interacting nucleotide and amino acid residues (Fariselli et al., 2001; Gobel et 

al., 1994; Pang et al., 2005; Pazos et al., 1997; Taylor and Hatrick, 1994). Correlated amino acid 

substitutions, however, are not limited to directly interacting amino acid residues, as recently 
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been shown by Buck and Atchley (2005) in the case of Serpin proteins. In addition there is ample 

evidence for the occurrence of sign epistasis where an allele substitution is deleterious in a 

particular genetic background but is advantageous after substitutions have occurred in the genetic 

background  (i.e. either in other domains of the same gene or in different genes). This is known as 

Dobzhansky-Muller (DM) incompatibility (reviewed in Welch, 2004). Originally introduced to 

explain the origin of reproductive isolation due to rendering alleles deleterious after confronting 

them with a different genetic background in hybrids (Orr, 1995; Orr and Turelli, 2001), recent 

empirical studies suggest a positive role of DM incompatibilities in evolution, because they allow 

selection for alleles which are deleterious in one genetic background after substitutions have 

occurred in the genetic background (“compensatory substitutions” in the genetic background 

allow for “compensated pathogenic deviations”) (e.g. Peixoto et al., 1998; Liu et al., 2001; 

Kondrashov et al., 2002; Kulathinal et al., 2004; DePristo et al., 2005; Poelwijk et al., 2007). 

A particularly informative approach to the study of epistatic selection is the comparison of 

protein sequences with substitutions that are known to be pathogenic in a particular species. 

About 10% of all amino acid substitutions among species involve known pathogenic mutations, 

so-called Compensated Pathogenic Deviations (CPD). Surprisingly this fraction is independent of 

the phylogenetic distance of the comparison as well as the group of organisms compared 

(mammals: Kondrashov et al. 2002; insects: Kulathinal et al., 2004). These results suggest, that 

the compensatory substitutions are driven by selection and that the probability of epistasis is 

relatively independent of the specific examples investigated. We suggest that this fact is 

consistent with the assumption in our model that the probability of epistasis E is not highly 

sensitive to the specific situation we are considering or the allele at a locus.  

The studies of Kondrashov (2002) and Kulathinal (2004) further suggest that epistatic 

selection is a regular component of molecular evolution but they do not identify the other 
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interaction partners. The evolution of the other interaction partners needs to be documented in 

order to answer the question whether the interacting genes experience co-evolutionary bursts or 

not.

Our model differs from other models of correlated or compensatory evolution by assuming 

only adaptive substitutions and epistatic selection. To investigate whether co-evolutionary bursts 

exist requires the simultaneous analysis of genes known to interact. As mentioned above true co-

evolutionary dynamics has been experimentally demonstrated only in a few cases (reviewed in 

Fraser 2006). Most recently, the molecular evolution of multiple interacting proteins was 

addressed by Presgraves and Stephan (2007) who investigated the evolution of six proteins from 

the nuclear pore complex (NPC).  

 The NPC came to the attention of evolutionary geneticist when it was shown that Nup96,

a component of the nuclear pore sub-complex Nup107, participates in the epistatic interactions 

that cause hybrid incompatibility between Drosophila melanogaster and D. simulans (Presgraves 

et al., 2003). Presgraves and Stephan (2007) investigated Nup96 and five other NPC proteins 

(two other proteins from the sub-complex Nup107 and three nucleoporins) that are known to 

interact and found that all of them experienced an excess of non-synonymous substitutions in the 

relatively recent past. A lineage specific analysis of nucleotide substitutions showed that much of 

the differences arose by co-evolutionary bursts among most if not all these interacting proteins. 

The extend and rate of evolution detected by Presgraves and Stephan is much higher than 

expected by external selection alone, given that only 5 to 10% of the genes in the Drosophila

genome show evidence of adaptive evolution, while in this case all 6 genes of this system do. The 

rate and pattern of sequence evolution seems to suggest that bursts of substitutions are driven 

entirely by selection, rather than a mode in which pairs of substitutions co-evolve though a 

combination of genetic drift and epistatic selection, i.e. where one mutation drifts to fixation 
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followed by epistatic selection on the compensatory mutation. It will be interesting to see more 

detailed studies about the evolution of interacting genes to assess whether co-evolutionary bursts, 

as predicted by our model, are a regular feature of genomic evolution.  

Our present model only addresses epistatic effects between two loci, but it can be easily 

extended to multiple loci (M. Rorick, unpublished). In the multilocus case, different loci may or 

may not be linked by pairwise epistatic effects. Thus, the distribution of epistatic effects is 

determined by an interaction matrix, which defines for substitutions at each locus the prevalence 

E and strength k of epistatic effects at each of the other loci. The multilocus model will allow us 

to explore the role of modularity for co-evolutionary dynamics. From the results reported here for 

the two-locus-model we expect that a modular distribution of probabilities for epistatic 

interactions (e.g. when there are high epistatic interaction probabilities among loci A, B, C  and 

among loci D, E, F but not between the two groups) should be reflected in a pattern of dissociated 

co-evolution (Schlosser, 2002, 2004) among loci: loci belonging to the same module should tend 

to co-evolve, whereas loci belonging to different modules should evolve independently. While 

this prediction is relatively trivial in case of strict modularity (with prevalent epistasis within 

modules and no epistasis between them), it will be interesting to explore co-evolutionary 

dynamics after modularity has been relaxed by various degrees (e.g. by allowing some degree of 

epistasis between modules, for instance few links with relatively high epistatic interaction 

probabilities or many links with low epistatic interaction probabilities).  

Acknowledgments

This work was supported by grant SCHL 450/6-1 of the German Science Foundation to G. 

Schlosser.



Acc
ep

te
d m

an
usc

rip
t 

28

References

Buck, M. J., Atchley, W.R., 2005. Networks of coevolving sites in structural and functional 

domains of serpin proteins. Mol. Biol. Evol. 22, 1627-1634. 

Chen, Y., Dokholyan, N. V., 2006. The coordinated evolution of yeast proteins is constrained by 

functional modularity. Trends Genet. 22, 416-419. 

Cheverud, J., Routman, E., 1995. Epistasis and its contribution to genetic variance components. 

Genetics 130, 1455-1461.

DePristo, M. A., Weinreich, D. M., Hartl, D. L., 2005. Missense meanderings in sequence space: 

a biophysical view of protein evolution. Nature Rev. Genet. 6, 678-687. 

Elena, S. F., Lenski, R. E., 1997. Test of synergistic interactions among deleterious mutations in 

bacteria. Nature 390, 395-398. 

Elena, S. F., Lenski, R. E., 2001. Epistasis between new mutations and genetic background and a 

test of genetic canalization. Evolution 55, 1746-1752. 

Fariselli, P., Olmea, O., Valencia, A., Casadio, R., 2001. Prediction of contact maps with neural 

networks and correlated mutations. Protein Eng. 14, 835-843. 

Fontana, W., Schuster, P., 1998. Shaping space: the possible and the attainable in RNA genotype-

phenotype mapping. J. Theor. Biol. 194, 491-515. 

Fraser, H. B. 2006. Coevolution, modularity and human disease. Curr.Opin.Genet.Dev. 16, 637-

644.

Gavrilets, S., de Jong, G., 1993. Pleiotropic models of polygenic variation, stabilizing selection, 

and epistasis. Genetics 134, 609-625.

Gavrilets, S., 2004. Fitness landscapes and the origin of species. Princeton University Press, 

Princeton and Oxford. 



Acc
ep

te
d m

an
usc

rip
t 

29

Gildor, T., Shemer, R., Atir-Lande, A., Kornitzer, D., 2005. Coevolution of cyclin Pcl5 and its 

substrate Gcn4. Eukaryot.Cell 4, 310-318. 

Gillespie, J. H., 1984. Molecular evolution over the mutational loandscape. Evolution 38, 1116-

1129.

Gillespie, J. H., 1991. The causes of molecular evolution. Oxford University Press, New York. 

Gobel, U., Sander, C., Schneider, R., Valencia, A., 1994. Correlated mutations and residue 

contacts in proteins. Proteins 18, 309-317. 

Goodnight, C. J., 1988. Epistasis and the effect of founder events on the additive genetic 

variance. Evolution 42, 441-454. 

Goodnight, C. J., 1995. Epistasis and the increase in additive genetic variance: implications for 

phase 1 of Wright's shifting-balance process. Evolution 49, 502-511. 

Haag, E. S., Wang, S., Kimble J., 2002. Rapid coevolution of the nematode sex-determining 

genes fem-3 and tra-2. Curr.Biol. 12, 2035-2041. 

Hansen, T. F., Wagner, G. P., 2001. Modeling genetic architecture: a multilinear theory of gene 

interaction. Theor. Pop. Biol. 59, 61-86. 

Kauffman, S. A., Levin, S., 1987. Towards a general theory of adaptive walks on rugged 

landscapes. J. Theor. Biol. 128, 11-45. 

Kondrashov, A. S., Sunyaev, S., Kondrashov, F. A., 2002. Dobzhansky-Muller incompatibilities 

in protein evolution. Proc. Natl. Acad. Sci. USA 99, 14878-14883. 

Kulathinal, R. J., Bettencourt, B. R., Hartl, D. L., 2004. Compensated deleterious mutations in 

insect genomes. Science 306, 1553-1554. 

Liu, J. C., Makova, K. D., Adkins, R. M., Gibson, S., Li, W. H., 2001. Episodic evolution of 

growth hormone in primates and emergence of the species specificity of human growth 

hormone receptor. Mol. Biol. Evol. 18, 945-953. 



Acc
ep

te
d m

an
usc

rip
t 

30

Orr, H. A., Turelli, M., 2001. The evolution of postzygotic isolation: accumulating Dobzhansky-

Muller incompatibilities. Evolution Int. J. Org. Evolution 55, 1085-1094. 

Orr, H. A., 1995. The population genetics of speciation: the evolution of hybrid incompatibilities. 

Genetics 139, 1805-1813. 

Orr, H. A., 2002. The population genetics of adaptation: the adaptation of DNA sequences. 

Evolution 56, 1317-1330.

Ortlund, E. A., Bridgham, J. T., Redinbo, M. R., Thornton J. W., 2007. Crystal structure of an 

ancient protein: Evolution by Conformational Epistasis. Science doi: 

10.1126/science.1142819.

Pang, P. S., Jankowsky, E., Wadley, L. M., Pyle, A. M., 2005. Prediction of functional tertiary 

interactions and intermolecular interfaces from primary sequence data. J. Exp. Zool. Part 

B (Mol. Dev. Evol.) 304B, 50-63. 

Pazos, F., Helmer-Citterich, M., Ausiello, G., Valencia, A., 1997. Correlated mutations contain 

information about protein-protein interaction. J. Mol. Biol. 271, 511-523 

Peixoto, A. A., Hennessy, J. M., Townson, I., Hasan, G., Rosbash, M., Costa, R., Kyriacou, C. P., 

1998. Molecular coevolution within a Drosophila clock gene. Proc. Natl. Acad. Sci. USA 

95, 4475-4480. 

Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D., Yeates, T. O., 1999. Assigning 

protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. 

Natl. Acad. Sci. USA 96, 4285-4288. 

Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M., Tans, S. J., 2007. Empirical fitness landscapes 

reveal accessible evolutionary paths. Nature 445, 383-386. 

Presgraves, D. C., 2003. A fine-scale genetic analysis of hybrid incompatibilities in Drosophila.

Genetics 163, 955-972. 



Acc
ep

te
d m

an
usc

rip
t 

31

Presgraves, D. C., Stephan, W., 2007. Pervasive adaptive evolution among interactors of the 

Drosophila hybrid inviability gene, Nup96. Mol. Biol. Evol. 24, 306-314. 

Reidys, C., Stadler, P. F., Schuster, P., 1997. Generic properties of combinatory maps - neutral 

networks of RNA secondary structure. Bull. Math. Biol. 59, 339-397. 

Schlosser, G., 2002. Modularity and the units of evolution. Theory Biosci. 121, 1-80. 

Schlosser, G., 2004. The role of modules in development and evolution, in: Schlosser,G., 

Wagner,G.P. (Eds.), Modularity in development and evolution, University of Chicago 

Press, Chicago, pp. 519-582. 

 Schuster, P., Fontana, W., Stadler, P. F., Hofacker, I., 1994. From sequences to shapes and back: 

a case study in RNA secondary structure. Proc. Roy. Soc. (London) B 255, 279-284. 

Stadler, P. F., 1996. Landscapes and their correlation functions. J Math Chem 20: 1-45. 

Stadler, P. F., Seitz, R., Wagner, G. P., 2000. Population dependent Fourier decomposition of 

fitness landscapes over recombination spaces: evolvability of complex characters. Bull. 

Math. Biol. 62, 399-428. 

Stephan, W., 1996. The rate of compensatory evolution. Genetics 144, 419-426. 

Taylor, W. R., Hatrick, K., 1994 Compensating changes in protein multiple sequence alignments. 

Protein Eng. 7, 341-348. 

Wagner, A., Wagner, G. P., Similion, P., 1994. Epistasis can facilitate the evolution of 

reproductive isolation by peak shifts: a two-locus two-allele model. Genetics 138, 533-

545.

Wagner, G. P., Laubichler, M.D., Bagheri-Chaichian, H., 1998. Genetic measurement theory of 

epistatic effects. Genetica 102/103, 569-580. 

Welch, J. J., 2004. Accumulating Dobzhansky-Muller incompatibilities: reconciling theory and 

data. Evolution Int. J. Org. Evolution 58, 1145-1156. 



Acc
ep

te
d m

an
usc

rip
t 

32

Whitlock, M. C., Phillips, P. C., Moore, F. B.-G., Tonsor, S. J., 1995. Multiple fitness peaks and 

epistasis. Ann. Rev. Ecol. System. 26, 601-629. 

Wright, S., 1969. Evolution and the Genetics of Populations Volume 2: The Theory of Gene 

Frequencies. University of Chicago Press, Chicago, IL. 



Acc
ep

te
d m

an
usc

rip
t 

33

Tables

Table 1 : number of substitutions per locus until convergence to maximal fitness ranks.  

E k Mean  Median Std.dev. Skewness Kurtosis Correl.AB N(runs) 
0 n/a 6.74 7 2.20 0.35 0.02 0.004 1000 
1 2.1 15.23 12 11.33 1.55 3.34 0.868 995 
1 3.1 14.49 12 10.51 1.47 2.68 0.859 992 
1 4.1 13.24 10 9.87 1.88 6.46 0.852 995 
1 5.1 13.31 11 9.80 1.78 4.76 0.852 995 
1 6.1 13.02 10 9.48 1.71 4.30 0.840 995 
0.8 2.1 12.17 10 8.82 1.66 4.07 0.823 998 
0.6 2.1 10.03 8 7.13 1.87 5.37 0.759 1000 
0.4 2.1 8.64 8 4.94 1.08 1.40 0.558 1000 
0.2 2.1 7.40 7 3.62 1.06 2.36 0.248 998 
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Table 2: total duration until convergence to maximal fitness ranks.

E k Mean  Median Std.dev. Skewness Kurtosis N(runs) 
0 n/a 15262 12375 11241 1.44 2.62 1000 
1 2.1 19416 13339 18561 1.61 2.62 995 

Table 3 rate of substitutions (Subst./5000 time steps) until convergence to maximal fitness ranks

E k Mean  Median Std.dev. Skewness Kurtosis N(runs) 
0 n/a 7.98 5.31 9.415 6.34 65.20 1000 
1 2.1 16.73 9.74 22.14 4.47 28.42 995 

Table 4: rate of substitutions (Subst./5000 time steps) in time windows of 5000 time steps

E k Mean  Median Std.dev. Skewness Kurtosis N (time 
windows)

0 n/a 4.18 1.0 10.10 0.95 -0.64 2562 
1 2.1 7.40 2.0 2.02 1.73 3.17 3407 

Table 5: waiting time between substitutions at different loci per run

 E k Mean  Median Std.dev. Skewness Kurtosis N(runs) 
Average
waiting
times/run 

0 n/a 1187.3 706.2 1416.1 2.68 9.56 1000 

 1 2.1 409.6 165.1 890.4 7.87 94.73 993 
Median
of
waiting
times/run 

0 n/a 266.2 111.3 547.4 8.86 130.79 1000 

 1 2.1 100.5 31.0 481.7 13.53 204.28 993 



Acc
ep

te
d m

an
usc

rip
t 

35

Table 6: Correlations between substitution rates (Subst./500 time steps) in locus A and B in 
different time windows (500 time steps) of same run

E k time 
windows
excluded

Mean Median Std.dev. N(runs) 

0 n/a 1 0.168 -0.020 0.286 527 
  2 0.088 -0.037 0.252 461 
  4 0.029 -0.040 0.202 283 
1 2.1 1 0.574 0.643 0.262 552 
  2 0.569 0.633 0.261 530 
  4 0.558 0.641 0.271 504 
1 3.1 1 0.565 0.606 0.234 541 
1 4.1 1 0.535 0.586 0.262 548 
1 5.1 1 0.494 0.524 0.248 580 
1 6.1 1 0.470 0.506 0.258 570 
0.8 2.1 1 0.530 0.586 0.277 506 
0.6 2.1 1 0.444 0.469 0.281 463 
0.4 2.1 1 0.365 0.395 0.295 470 
0.2 2.1 1 0.247 0.486 0.300 467 
0.5 2.1 1 0.404 0.432 0.294 432 
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Figure legends 

Fig. 1 Overview of model. Each locus comprises n alleles, which all differ in fitness 

ranks.  Fitness ranks of alleles can be ordered on a scale ranging from r=1 to r=n (black 

bars). Mutation of one locus – for example the A locus as illustrated here - produces an 

allele of either lower or higher rank but only adaptive mutations to alleles of higher rank 

are fixed and result in the substitution of the old allele (black circle) of rank rA by the new 

allele (grey circle) of rank rA’. A substitution in the first locus has epistatic effects on the 

second locus – B in the case illustrated – with a certain probability E. Epistatic effects 

result in a displacement of the fitness rank of the current allele of the second locus (black 

circle) without substitution. We assume that negative epistatic effects (shifts to lower 

ranks as illustrated here) and positive epistatic effects (shifts to higher ranks) are equally 

likely and follow a distribution, whose variance and expected value are largely 

determined by a parameter k (see text for further explanation). 

Fig. 2 Distributions of epistatic effects. Ranks have been renormalized to the interval 

from 0 (minimal rank) to 1 (maximal rank). A: Diagrams depict different probability 

density functions (y axis) of ranks after epistatic effect (x axis) for three exemplary cases 

of current ranks (i.e. ranks before epistatic effect) r (r= 0.5, r=0.7 and r= 0.9). Each 

diagram shows probability density functions for three different values of k illustrating 

that the variance increases with decreasing k. Note that per assumption of our model the 

current rank in each case is the median of the probability density function, that is 

increases or decreases in rank due to epistatic effects are equally likely. B:  While the 
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probability of positive and negative epistatic effects remains the same with increasing r,

average epistatic effects (i.e., the difference between mean rank after epistasis E(r’) and 

current rank r) are negative for r>0.5.  This is due to the fact that negative epistatic 

effects become on average larger and positive epistatic effects on average smaller with 

increasing r (see A).

Fig. 3 Evolution of ranks and substitution events in two loci without epistatic 

interactions. Three exemplary runs are illustrated (A, B, C). Each example shows (from 

top to bottom): changes of ranks in locus A, substitution events in locus A (1 indicates 

that a substitution took place, 0 that no substitution took place), changes of ranks in locus 

B, substitution events in locus B. Only the uppermost ranks (900-1000) are shown. 

Evolutionary trajectories of ranks and substitution events are only shown up to the point 

when both loci converge onto maximal rank thus preventing further evolution. Note that 

in the absence of epistasis ranks can only increase. The trajectories of the two loci in a 

single run are not similar. 

Fig. 4 Evolution of ranks and substitution events in two loci with prevalent and strong 

epistatic interactions (E=1, k=2.1). Three exemplary runs are illustrated (A, B, C). Each 

example shows (from top to bottom): changes of ranks in locus A, substitution events in 

locus A (1 indicates that a substitution took place, 0 that no substitution took place), 

changes of ranks in locus B, substitution events in locus B. Again, only the uppermost 

ranks (900-1000) are shown. Evolutionary trajectories of ranks and substitution events 

are only shown up to the point when both loci converge onto maximal rank thus 

preventing further evolution. Note that in the presence of epistasis ranks can increase or 



Acc
ep

te
d m

an
usc

rip
t 

decrease. The trajectories of the two loci in a single run are similar and are characterized 

by simultaneous coevolutionary bursts. Beginning and end of each burst is indicated by 

arrows and arrowheads, respectively. For the beginning of each run, only the end of the 

initial climb of ranks is marked with an arrowhead. In the rank diagrams beginning and 

end of each burst is indicated for both loci, but in substitution diagrams only the 

substitution in the locus, which in fact initiates or terminates a particular coevolutionary 

burst is labeled with arrows and arrowheads, respectively. See text for details. 

Fig. 5 Distribution of total number of substitutions until reaching maximal rank per locus 

in runs without epistasis (hatched line) or with prevalent and strong epistatic interactions 

(solid line; E=1, k=2.1). Note the higher average number of substitutions and higher 

variance in epistatic runs compared to non-epistatic runs. Diagrams are based on 995 runs 

in the epistatic case and 1000 runs in the nonepistatic case (because both loci are 

considered separately, this results in 1990 run-values for the epistatic case and 2000 run-

values for the non-epistatic case). 

Fig. 6: Scatterplots of total number of substitutions until reaching maximal rank in locus 

A vs. locus B in runs without epistasis (A) or with prevalent and strong epistatic 

interactions (E=1, k=2.1) (B). Note that total substitution numbers are highly correlated 

between the two loci in case of epistasis (r =0.868) but are uncorrelated in absence of 

epistasis (r =0.004). Diagrams are based on 995 runs in the epistatic case and 1000 runs 

in the nonepistatic case. 
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Fig. 7 Distribution of rates of substitutions in both loci until reaching maximal rank in 

runs without epistasis or with prevalent and strong epistatic interactions (E=1, k=2.1).

Diagrams are based on 995 runs in the epistatic case and 1000 runs in the nonepistatic 

case. A: Total rates of substitution (plotted as natural logarithm of total number of 

substitutions in both loci/duration of run until both loci have reached maximal rank) are 

on average slightly higher for the epistatic case. B: Number of substitutions in both loci 

per time window of 5000 iterations (terminal time windows in which maximal ranks were 

reached in less than 5000 iterations were not included in the analysis). Both distributions 

show a peak at 0-2 substitutions/5000 time steps reflecting long periods of stasis when 

loci have reached near-maximal rank. Non-epistatic runs show a second peak centered 

around 10-16 substitutions/5000 time steps, which is due to the initial climb to near-

maximal ranks. Epistatic runs show a more even distribution of rates due to positive 

(arrow 1) and negative epistatic effects (arrows 2,3) as discussed in more detail in the 

text.

Fig. 8: Distribution of correlations between substitution rates (Subst./500 time steps) in 

locus A and B in different time windows of the same run for runs without epistasis or 

with prevalent and strong epistatic interactions (E=1, k=2.1). Each time window was 500 

time steps long. Because correlations can only be meaningfully calculated if a sufficient 

number of datapoints are available, only runs that covered at least 20 time windows in 

total were included in the analysis. In order to avoid artefacts, the first time window (A)

or the first four time windows (B) were excluded from the analysis. Upper panels: 

Distribution of correlations between substitution rates. Lower panels: Cumulative density 
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functions of upper panels. Grey lines indicate the corresponding normal distribution 

approximations. The 95% percentiles (based on the normal distribution approximations) 

are indicated. 

Fig. 9: Effect of strength and prevalence of epistasis on coevolution of two loci. 

Coevolution is measured either by the correlation between total number of substitutions 

until reaching maximal rank in locus A vs. locus B of the same run (A,C) or by the mean 

correlations between rates of substitutions in locus A vs. locus B in different time 

windows (of 500 time steps) of the same run (B,D; bars indicate standard error of mean). 

As in Figure 8A only runs that covered at least 20 time windows were included in the 

analysis and the first time window was discarded. A,B: Strength of epistasis: All 

simulations had prevalent epistasis (E=1) but varied regarding strength of epistasis k.

Varying the strength of epistasis has little effect on the coevolution of loci. C,D:

Prevalence of epistasis: All simulations had strong epistatic effects (k=2.1) but varied 

with respect to prevalence of epistasis E (i.e. the probability that a substitution in one 

locus has epistatic effects on the other locus). The probability of both loci to coevolve is 

strongly dependent on the prevalence of epistasis. 

Fig. 10: Effect of differences in initial ranks on coevolution of two loci. Initial conditions 

were either highly asymmetrical with locus A starting from maximal rank 1000 and locus 

B from an intermediate rank of 500 or symmetrical with both loci starting at an 

intermediate rank of 500. A,B: Correlations between total number of substitutions until 

reaching maximal rank in locus A vs. locus B of the same run under different conditions 
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of epistatic strength k (A) or prevalence E (B). Simulations with asymmetrical initial 

conditions (grey squares) do not differ greatly from simulations starting with symmetrical 

initial conditions (black circles). However, with decreasing prevalence of epistasis, 

correlations get increasingly higher for the asymmetric initial conditions. C,D: Detailed 

comparison between symmetrical and asymmetrical initial conditions for E= 1 (C) and 

E= 0.2 (D). Upper panels: Distribution of total number of substitutions until reaching 

maximal rank per locus in runs with symmetrical (hatched black line) or asymmetrical 

(solid black line) initial conditions. For the asymmetrical conditions, the distribution of 

substitutions in locus A and locus B are also plotted individually (light and dark grey 

lines, respectively). Note that with decreasing prevalence of E, the distribution for locus 

A shifts towards zero or very small substitution numbers reflecting decreasing 

probabilities for escape from maximal rank due to epistasis. Middle and lower panels: 

Scatterplots of total number of substitutions until reaching maximal rank in locus A vs. 

locus B in runs with symmetrical (middle panel) and asymmetrical (lower panel) initial 

conditions.
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Fig. 6 
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Fig. 10 


