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7 rue René Descartes, F-67 084 Strasbourg, France.

dubois@asci.fr, saidi@math.u-strasbg.fr.

Abstract

In this paper we present a numerical scheme for the resolution of matrix Ric-
cati equation, usualy used in control problems. The scheme is unconditionnaly
stable and the solution is definite positive at each time step of the resolution.
We prove the convergence in the scalar case and present several numerical ex-
periments for classical test cases.
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1) Introduction.

• We study the optimal control of a differential linear system

(1.1)
dy

dt
= Ay + B v ,

where the state variable y(•) belongs to IRn and the control variable v(•)
belongs to IRm , with n and m be given integers :

(1.2) y(t) ∈ IRn , v(t) ∈ IRm .

Matrix A is composed by n lines and n columns and matrix B contains n lines
and m columns. Both matrices A and B are fixed relatively to the evolution in
time. Ordinary differential equation (1.1) is associated with an initial condition

(1.3) y(0) = y0

with y0 be given in IRn. Morever the solution of system (1.1) (1.3) is parame-
trized by the function v(•) and instead of the short notation y(t), we can set
more precisely

(1.4) y(t) = y(t ; y0, v(•)) .
The control problem consists of finding the minimum u(t) of some quadratic
functional J(•) :
(1.5) J(u(•)) ≤ J(v(•)), ∀ v(•) .
The functional J(•) depends on the control variable function v(•), is additive
relatively to the time and represents the coast function. We set classically :

(1.6) J(v(•)) =
1

2

∫ T

0

(Qy(t), y(t))dt+
1

2

∫ T

0

(Rv(t), v(t))dt+
1

2
(Dy(T ), y(T )) .

Functional J(•) is parametrized by the horizon T > 0 , the symmetric semi-
definite positives n by n constant matrices Q and D :

(1.7) (Qy, y) ≥ 0, ∀ y ∈ IRn, y 6= 0 ,

(1.8) (Dy, y) ≥ 0, ∀ y ∈ IRn, y 6= 0 .

and the symmetric definite positive m by m constant matrix R :

(1.9) (Ru, u) > 0, ∀u ∈ IRm, u 6= 0 .

• Problem (1.1) (1.3) (1.5) (1.6) is a classical mathematical modeling of linear
quadratic loops for dynamical systems in automatics (see e.g. Athans, Falb
[AF66], Athans, Levine and Levis [ALL67], Kawakernaak-Sivan [KS72], Faurre
Robin [FR84], Lewis [Le86]). When control function v(•) is supposed to be
squarely integrable (v(•) ∈ L2(]0, T [, IRm)) then the control problem (1.1) (1.3)
(1.5) (1.6) has a unique solution u(t) (see for instance Lions [Li68]) :
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(1.10) u(t) ∈ L2(]0, T [, IRm) .

When there is no constraint on the control variable the minimum of functional
J(•) is characterized by the condition :

(1.11) dJ(u) •w = 0 , ∀w ∈ L2(]0, T [, IRm) ,

which is not obvious to derive because y(•) is a function of v(•). We introduce
the differential equation (1.1) as a constraint between y(•) and v(•) with the
associated Lagrange multiplayer p . We set :

(1.12) L(y, v; p) = J(v) −
∫ T

0

(

p,
dy

dt
− Ay − Bv

)

dt

and the variation of L(•) under an infinitesimal variation δy(•) , δv(•) and
δp(•) of the other variables can be conducted as follow :

δL =

∫ T

0

(Qy, δy) dt +

∫ T

0

(Rv, δv) dt + (Dy(T ), δy(T ))

−
∫ T

0

(δp,
dy

dt
−Ay −Bv) dt −

∫ T

0

(

p ,
dδy

dt
− Aδy − B δv) dt

=

∫ T

0

(Qy, δy) dt +

∫ T

0

(Rv, δv) dt +
(

Dy(T ), δy(T )
)

−
∫ T

0

(

δp,
dy

dt
− Ay − Bv

)

dt −
[

p δy
]T

0
+

∫ T

0

(dp

dt
, δy
)

dt

+

∫ T

0

(

Atp, δy
)

dt +

∫ T

0

(

Btp, δv
)

dt , and

(1.13)















δL =

∫ T

0

(dp

dt
+ Qy + Atp , δy

)

dt +

∫ T

0

(

Rv + Btp, δv
)

dt

−
∫ T

0

(

δp,
dy

dt
− Ay − Bv

)

dt +
(

Dy(T ) − p(T ), δy(T )
)

because δy(0) = 0 when the initial condition (1.3) is always satisfied by the
function (y + δy)(•) .

• The research of a minimum for J(•) (condition (1.11)) can be rewritten
under the form of research of a saddle point for Lagrangien L and we deduce
from (1.13) the evolution equation for the adjoint variable :

(1.14)
dp

dt
+ Atp + Qy = 0 ,

the final condition when t = T ,

(1.15) p(T ) = Dy(T )
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and the optimal command in terms of the adjoint state p(•) :

(1.16) Ru(t) + Bt p(t) = 0 .

We observe that the differential system (1.1) (1.14) joined with the initial condi-
tion (1.3) and the final condition (1.15) is coupled through the initial optimality
condition (1.16). In practice, we need a linear feedback function of the state
variable y(t) instead of the adjoint variable p(t) . Because adjoint state p(•)
linearily depends on state variable y(•) we set classically :

(1.17) p(T ) = X(T − t) y(t), 0 ≤ t ≤ T ,

with a symmetric n by n matrix X(•) , positive definite for t > 0 (see e.g.
[KS72] or [Le86]).

(1.18) X(t) is a symmetric n× n definite positive matrix, t > 0 .

The final condition (1.15) is realised for each value y(T ) , then we have the
following condition :

(1.19) X(0) = D ,

and introducing the representation (1.17) in the differential equation (1.14) and
(1.1) we obtain :

−dX

dt
(T−t) y(t) +X(T − t)

[

Ay(t) + Bu(t)
]

+ AtX(T−t) y(t) +Qy(t) = 0 .

We replace the control u(t) by its value obtained in relation (1.16) and we
deduce :

−dX

dt
(T−t) +X(T−t)

[

A+B(−R−1)BtX(T−t)
]

+AtX(T−t) +Qy(t) = 0 .

This last equation is realised for each state value y(t) . Replacing t by T − t
in this equation, we get :

(1.20)
dX

dt
−
(

XA + AtX
)

+ XBR−1BX − Q = 0 ,

which defines the Riccati equation associated with the control problem (1.1)
(1.3) (1.5) (1.6).

• In this paper we study the numerical approximation of differential system
(1.19) (1.20). Recall that datum matrices Q , D and K, with K defined ac-
cording to :

(1.21) K = BR−1 Bt ,

are n × n symmetric matrices, with Q and D semi-definite positive and K
positive definite ; datum matrix A is an n by n matrix without any other
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condition and the unknown matrix X(t) is symmetric. We have the following
property (see e.g. [Le86]).

Proposition 1. Positive definitness of the solution of Riccati equation.
Let K, Q, D,A be given n × n matrices with K, Q, D symmetric matrices,
Q and D positive matrices and K a definite positive matrix. Let X(•) be the
solution of the Riccati differential equation :

(1.22)
dX

dt
−
(

XA + AtX
)

+ XKX − Q = 0

with initial condition (1.19). Then X(t) is well defined for each t ≥ 0 , is
symmetric and for each t > 0 , X(t) is definite positive and tends to a definite
positive matrix X∞ as t tends to infinity :

(1.23) X(t) −→ X∞ if t −→ ∞ .

Matrix X∞ is the unique positive symmetric matrix which is solution of the
so-called algebraic Riccati equation :

(1.24) −(XA + AtX) + XKX − Q = 0 .

• As a consequence of this proposition it is usefull to simplify the feedback
command law (1.16) by the associated limit command obtained by taking t −→
∞ , that is :

(1.25) v(t) = −R−1 BtX∞ y(t) ,

and the differential system (1.1) (1.25) is asymptotically stable (see e.g. [Le86]).
The pratical computation of matrix X∞ with direct methods is not obvious
and we refer e.g to [La79] for a description of the state of the art. If we wish to
compute directly a numerical solution of instationnary Riccati equation (1.22),
classical methods for ordinary differential equations like e.g the forward Euler
method :

(1.26)
1

∆t
(Xj+1 − Xj) + Xj KXj − (At Xj + XjA) − Q = 0 ,

or Runge Kutta method as we will see in what follows fail to maintain positivity
of the iterate Xj+1 at the order (j + 1) :

(1.27) (Xj+1 x , x) > 0, ∀x ∈ IRn, x 6= 0 ,

even if Xj is positive definite if time step ∆t > 0 is not small enough, see e.g.
[Sa97]. Morever, the stability constraint (1.27) is not classical and there is at
our knowledge no simple way to determine a priori if time step ∆t is compatible
or not with condition (1.27).
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• In this paper, we propose a method for numerical integration for Riccati
equation (1.22) which maintains condition (1.27) for each time step ∆t > 0 . We
detail in second paragraph the simple case of scalar Riccati equation and prove
the convergence for this particular case ; under some constraints on parameters,
the scheme is monotonous and remains at the order one of precision, as suggested
by results of Dieci and Eirola [DE96]. We present the homographic scheme in
the general case in section 3 and establish its principal property : for each
time step and without explicit constraint on the time step ∆t, the numerical
scheme defines a symmetric positive definite matrix. We propose and present
four numerical test cases in section 4.

2) Scalar Riccati equation.

• When the unknown is a scalar variable, we write Riccati equation under the
following form :

(2.1)
dx

dt
+ kx2 − 2ax − q = 0 ,

with

(2.2) k > 0, q ≥ 0 ,

and an initial condition :

(2.3) x(0) = d, d ≥ 0, a2 + q2 > 0 .

We approach the ordinary differential equation (2.1) with a finite difference
scheme of the type proposed by Baraille [Ba91] for hypersonic chemical cinetics
and independently with the “family method” proposed by Cariolle [Ca79] and
studied by Miellou [Mi84]. We suppose that time step ∆t is given strictly
positive. The idea that we have proposed in [Du93], [DS95] and [DS2k] is to
write the approximation xj+1 at time step (j + 1)∆t as a rational fraction of
xj with positive coefficients. We decompose first the real number a into positive
and negative parts :

(2.4) a = a+ − a− , a+ ≥ 0 , a− ≥ 0 , a+ a− = 0 ,

and factorise the product x2 into the very simple form :

(2.5) (x2)
j+1/2

= x
j
x
j+1

.

Definition 1. Numerical scheme in the scalar case.
For resolution of the scalar differential equation (2.1), we define our numerical
scheme by the following relation :

(2.6)
x
j+1

− x
j

∆t
+ k x

j
x
j+1

− 2a+ x
j

+ 2a− x
j+1

− q = 0 .
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• The scheme (2.6) is implicit because some equation has to be solved in order
to compute xj+1 whereas xj is supposed to be given. In the case of our scheme
this equation is linear and the solution xj+1 is directly obtained with scalar
scheme (2.6) by the homographic relation :

(2.7) xj+1 =

(

1 + 2a+ ∆t
)

xj + q∆t

k∆t xj + (1 + 2a− ∆t)
.

Proposition 2. Algebraic properties of the scalar homographic scheme.
Let (xj)j∈IN

be the sequence defined by initial condition :

(2.8) x0 = x(0) = d

and recurrence relation (2.7). Then sequence (xj)j∈IN
is globally defined and

remains positive for each time step.

(2.9) xj ≥ 0, ∀ j ∈ IN, ∀∆t > 0 .

• If ∆t > 0 is chosen such that :

(2.10) 1 + 2|a|∆t − k q∆t2 6= 0 ,

then (xj)j∈IN
converges towards the positive solution x∗ of the “algebraic Ric-

cati equation” :

(2.11) k x2 − 2ax − q = 0

and explicitly computed according to the relation

(2.12) x∗ =
1

k

(

a +
√

a2 + kq
)

.

• In the exceptional case where ∆t > 0 is chosen such that (2.10) is not

satisfied, then the sequence (xj)j∈IN
is equal to the constant

1 + 2a+ ∆t

k∆t
for

j ≥ 1 and the scheme (2.7) cannot be used for the approximation of Riccati
equation (2.1).

Proof of proposition 2.

• The proof of the relation (2.9) is a consequence of the fact that the recurrence
relation (2.7) defines an homographic function f :

(2.13) xj+1 = f(xj)

(2.14) f(x) =
αx + β

γx + δ

with positive coefficients α , β , γ , δ :
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(2.15) α = 1 + 2a+ ∆t , β = q∆t , γ = k∆t , δ = 1 + 2a− ∆t .

Because x0 = d ≥ 0 , it is then clear that xj ≥ 0 for each j ≥ 0 and relation
(2.9) is established. The homographic function f(•) is a constant scalar equal

to
α

γ
=

β

δ
when the determinant :

(2.16) ∆ = αδ − βγ

is equal to zero. It is the case when condition (2.10) is not realised. When (2.10)
holds, we have simply :

(2.17)
f ′(x)

f(x)
=

α δ − β γ

(γ x + δ) (αx + β)

and f is a bounded monotonic function on the interval ]0,∞[ . Let x∗ be the
positive solution of equation :

(2.18) f(x) = x .

It is elementary to observe that x∗ is given by the relation (2.12). Let x− be
defined by :

(2.19) x− = − q

k x∗
= x∗ − 2

√

a2 + kq

k
,

the other root of equation (2.18). We set :

(2.20) uj =
x∗ − xj

xj − x−

.

Then we have :

(2.21) uj+1 =

αx∗ + β

γ x∗ + δ
− αxj + β

γ xj + δ

α xj + β

γ xj + δ
− αx− + β

γ x− + δ

=
γ x− + δ

γ x∗ + δ

xj − x∗

x− − xj
,

if (2.10) holds. Replacing x− by its value given from (2.19) and using (2.21),
we obtain :

(2.22) uj+1 =
δ x∗ − β

αx∗ + β
uj .

The sequence (uj)j∈IN
is geometric and the ratio

uj+1

uj
has always an absolute

value less than 1. Effectively we have on one hand :

−
(

αx∗ + β
)

≤ δ x∗ − β

because α + δ = 2 (1 + |a|∆t) is strictly positive and x∗ is positive and
on the other hand :
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δ x∗ − β ≤ αx∗ + β

because (α − δ)x∗ + 2β = 2∆t (ax∗ + q) = ∆t (k(x∗)2 + q) which is a

positive number. The absolute value of
uj+1

uj
is not exactly equal to 1 because

x∗ > 0 and ax∗ + q = x∗ (k x∗ − a) = x∗
√

a2 + k q > 0 according to
(2.10). Then uj is converging to zero and xj toward x∗ that completes the
proof.

Theorem 1. Convergence of the scalar scheme.
We suppose that the data k, a, q of Riccati equation satisfy (2.2) and (2.10) and
that the datum d associated with the initial condition (2.3) is relatively closed
to x∗ , ie :

(2.23) − 1

k τ
+ η ≤ d− x∗ ≤ C ,

where C is some given strictly positive constant (C > 0) , x∗ calculated accord-
ing to relation (2.12) is the limit in time of the Riccati equation, τ is defined
from data k, a, q according to :

(2.24) τ =
1

2
√

a2 + kq
,

and η is some constant chosen such that

(2.25) 0 < η <
1

k τ
.

• We denote by x(t; d) the solution of differential equation (2.1) with initial
condition (2.3). Let (x

j
(∆t ; d

∆
))
(j∈IN)

be the solution of the numerical scheme

defined at the relation (2.7) and let d
∆

be the initial condition :

(2.26) x0(∆t ; d
∆
) = d

∆
.

We suppose that the numerical initial condition d
∆

> 0 satisfies a condition
analogous to (2.23) :

(2.27) − 1

k τ
+ η ≤ d

∆
− x∗ ≤ C ,

with C and η > 0 equal to the constant introduced in (2.23) and satisfying
(2.25) .

• Then the approximated value (xj(∆t ; d
∆
))
j∈IN

is arbitrarily closed to the

exact value x(j∆t ; d) for each j as ∆t −→ 0 and d
∆

−→ d . More precisely,
if a 6= 0 we have the following estimate for the error at time equal to j∆t :

(2.28) |x(j∆t ; d) − xj(∆t ; d
∆
) |≤ A (∆t+ |d − d

∆
|), ∀ j ∈ IN , 0 < ∆t ≤ B
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with constants A > 0, B > 0 , depending on data k, a, q, η but independent on
time step ∆t > 0 and iteration j .

• If a = 0 , the scheme is second order accurate in the following sense :

(2.29) |x(j∆t; d) − x
j
(∆t; d

∆
)| ≤ A (∆t2 + |d − d

∆
|), ∀ j ∈ IN , 0 < ∆t ≤ B

with constants A et B independent on time step ∆t and iteration j.

Remark.

• A direct application of the Lax theorem (see e.g. [La74]) for numerical
scheme associated to ordinary differential equations is not straightforward be-
cause both Riccati equation and the numerical scheme are nonlinear. Our proof
is based on the fact that this problem is algebrically relatively simple.

Lemma 1.
Let d

∆
be some discrete initial condition and x(t ; d

∆
) be the exact solution of

Riccati differential equation (2.1) associated to initial condition (2.26). We set

(2.30) y(t ; d
∆
) = x(t ; d

∆
) − x∗ .

Then we have

(2.31) y(t ; d
∆
) =

(d
∆

− x∗) e−t/τ

1 + k τ (d
∆

− x∗) (1 − e−t/τ )
.

Proof of Lemma 1.

• The real function IR ∋ t 7−→ y(t ; d
∆
) ∈ IR introduced in relation (2.30)

satisfies the equation
dy

dt
+ ky2 +

1

τ
y = 0 , that can be rewritten under

the form :
dy

k y2 +
y

τ

≡ τ
(dy

y
− k τ

1 + k τ y
dy
)

= −dt .

After integration, we have :

y(t ; d
∆
)

1 + k τ y(t, d
∆
)

=
y(0 ; d

∆
)

1 + k τ y(0, d
∆
)
e−t/τ ,

giving simply :

y(t ; d
∆
) =

(d
∆

− x∗) e−t/τ

1 + k τ (d
∆

− x∗) (1 − e−t/τ )

i.e. relation (2.31). Then Lemma 1 is established.
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Lemma 2.
Let d

∆
be some discrete initial condition associated to (2.26) and ǫ

j
the er-

ror between the exact solution x(j∆t ; d
∆
) of the differential equation and the

solution of the numerical scheme x
j
(∆t ; d

∆
) :

(2.32) ǫ
j

= x(j∆t ; d
∆
) − xj(∆t ; d

∆
) .

Let x∗ and x− defined in (2.12) and (2.19) be the two fixed points of the
homographic function f(•) introduced in (2.14) and (2.15). We set

(2.33) h(ξ) =
x∗ + x− ξ

1 + ξ
, ξ > −1

and we introduce on one hand the function t 7−→ z(t) relative to the exact
solution :

(2.34) z(t) =
x(t ; d

∆
) − x∗

x− − x(t, d
∆
)

and on the other hand a new sequence uj by the same algebraic relation :

(2.35) uj =
x
j
(∆t ; d

∆
) − x∗

x− − x
j
(∆t ; d

∆
)
.

Then we have the following estimate :

(2.36) |ǫ
j
| ≤ |h′

(

z(0)
)

| |uj − z(j∆t) | .

Proof of Lemma 2.

• We have constructed function h(•) in order to have h
(

z(θ)
)

= z
(

h(θ)
)

,
∀ θ ∈ IR . Then we have

x(t ; d
∆
) = h

(

z(t)
)

for each t > 0

xj(∆t , d
∆
) = h(uj) for each j ≥ 0 ,

with function z(•) introduced at relation (2.34) and sequence uj in (2.35). Then
ǫ
j
can be rewritten with the help of this functionh(•) and we have :

(2.37) ǫ
j

= h
(

z(j∆t)
)

− h(uj) ≤ sup
ξ ∈ [z(j∆t) , uj ]

|h′
(

z(ξ)
)

| |z(j∆t)− uj | .

• We note that due to (2.22), the sequence uj is a geometric converging one,
then we have : − |u0 | ≤ uj ≤ |u0 | for each j ≥ 0 . Moreover thanks to
relation (2.31) of Lemma 1, we have the following calculus :
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z(t) =
y(t ; d

∆
)

x− − x∗ − y(t ; d
∆
)

=

(d
∆

− x∗) e−t/τ

1 + k τ (d
∆

− x∗) (1 − e−t/τ )

− 1

k τ
−

(d
∆

− x∗) e−t/τ

1 + k τ (d
∆

− x∗) (1 − e−t/τ )

= −
k τ (d

∆
− x∗)

1 + k τ (d
∆

− x∗)
e−t/τ ,

thus satisfy clearly : − |z(0) | ≤ z(j∆t) ≤ |z(0) | , ∀ j ≥ 0 . We remark
also that :

−1 < z(0) = u0 = −
k τ (d

∆
− x∗)

1 + k τ (d
∆

− x∗)
.

• Morever, |h′(ξ)| is a decreasing function for ξ > −1. Then by the two points
finite difference Taylor formula and the above statements, we deduce from (2.37)
the estimate (2.36) and Lemma 2 is established.

Lemma 3.
Let τ be defined in (2.24). We introduce α and β according to the following
relations

(2.38) α =
1

2τ
− |a |

(2.39) β =
1

2τ
+ |a |

and when ∆t > 0 we define function ϕ(∆t) according to

(2.40) ϕ(∆t) = 1 +
τ

∆t
log
( 1 − α∆t

1 + β∆t

)

.

Then with notations introduced in Lemma 1 and the following one

(2.41) θj =
j∆t

τ
,

we have

(2.42) uj − z(j∆t) = −z(0) e−θj
[

1 − exp
(

θj ϕ(∆t)
)

]

.
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Proof of Lemma 3.

• We study the difference that majorate the right hand side of (2.37). From
relation (2.21), we know that sequence uj is geometric and more precisely :

uj =
(γ x− + δ

γ x∗ + δ

)j

z(0)

with γ and δ computed in (2.15) γ = k∆t , δ = 1 + 2a− ∆t . We have
from equation (2.11) and defintion (2.24) of variable τ :

γ x− + δ

γ x∗ + δ
=

k∆t 1
k

(

a − 1

2τ

)

+ 1 + 2a−∆t

k∆t 1
k

(

a +
1

2τ

)

+ 1 + 2a− ∆t

=
∆t
(

a+ − a− − 1

2τ

)

+ 1 + 2a−∆t

∆t
(

a+ − a− +
1

2τ

)

+ 1 + 2a− ∆t

=
1 + ∆t

(

|a | − 1

2τ

)

1 + ∆t
(

|a | + 1

2τ

)

=
1 − α∆t

1 + β∆t
.

We can now write :

uj − z(j∆t) = −z(0)

[

e−j∆t/τ −
(1 − α∆t

1 + β∆t

)j
]

= −z(0) e−j∆t/τ
[

1 − exp
(

θj + j log
(1 − α∆t

1 + β∆t

))

]

= −z(0) e−θj
[

1 − exp
(

θj

(

1 +
τ

∆t
log
(1 − α∆t

1 + β∆t

)))

]

.

and relation (2.42) is proven. Lemma 3 is established.

Lemma 4.
Let ϕ(•) be defined by relation (2.40). We suppose that time step ∆t satisfies
the condition

(2.43) 0 < ∆t ≤ τ

2
.

Then we have
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(2.44) ϕ(∆t) − τ
[β2 − α2

2
∆t − 1

3
(α3 + β3)∆t2

]

≤ 1

2
(α4 + β4) τ ∆t3 .

Proof of Lemma 4.

• We have the following elementary calculus :

1 − ξ + ξ2 − ξ3 ≤ 1

1 + ξ
≤ 1 − ξ + ξ2 − ξ3 + ξ4 if |ξ |< 1

and we deduce after integration :

−ξ4

4
≤
[

log(1 + ξ) −
(

ξ − ξ2

2
+

ξ3

3

)

]

≤ −ξ4

4
+

ξ5

5
≤ ξ4

2
if |ξ |< 1

2
.

Then we have

(2.45) log(1 + ξ) −
(

ξ − ξ2

2
+

ξ3

3

)

≤ 1

2
|ξ|4 if |ξ| ≤ 1

2

and we use this estimation with ξ = −α∆t and ξ = β∆t. We remark that

|a | ≤ 1

2 τ
then β ≤ 1

τ
and we deduce that when condition (2.43) is satisfied,

we have

∆t ≤ τ

2
≤ 1

2β
≤ 1

2α
, then α∆t ≤ 1

2
and β∆t ≤ 1

2
.

We deduce from (2.45)

log
(1 − α∆t

1 + β∆t

)

−
[

(−α − β)∆t +
β2 − α2

2
∆t2 +

1

3
(−α3 − β3)∆t3

]

≤

≤ 1

2
(α4 + β4)∆t4 .

• As a consequence of the previous inequality, multiplying the above expression

by
τ

∆t
, we obtain :

ϕ(∆t) − 1 − τ

∆t

[

(−α − β)∆t +
β2 − α2

2
∆t2 +

1

3
(−α3 − β3)∆t3

]

≤

≤ 1

2
(α4 + β4) τ ∆t3 ,

and due to the fact that (−α − β) τ = −1 we have since τ ≤ 1

β
≤ 1

α
,

ϕ(∆t) −
[ β2 − α2

2
τ ∆t − 1

3
(α3 + β3) τ ∆t2

]

≤ 1

2
(α4 + β4) τ ∆t3 .

and relation (2.44) is proven. Lemma 4 is established.
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Lemma 5.
We suppose that a 6= 0. If time step ∆t satisfy

(2.46) 0 < ∆t ≤ inf
( τ

2
, |a | τ2

)

,

we have

(2.47) ϕ(∆t)− |a | ∆t ≤ 7

12
|a | ∆t .

Proof of Lemma 5.

• If a 6= 0, we observe that : β2 − α2 =
2|a|
τ

> 0 , and inequality (2.46)

suppose that ∆t has been chosen such that ∆t ≤ | a | τ2 . Due to previous
computations, we have the following set of estimations :
[ β2 − α2

2
τ ∆t − ϕ(∆t)

]

≤
(1

3

(

α3 + β3
)

∆t +
1

2

(

α4 + β4
)

∆t2
)

τ ∆t

=

[

∆t

3

( 1

4τ3
+

3a2

τ

)

+
∆t2

2

( 1

8τ4
+

3a2

τ2
+ 2a4

)

]

τ ∆t

≤
( ∆t

3τ3
+

∆t2

2τ4

)

τ ∆t

because |a | ≤ 1

2τ
due to (2.24)

≤ ∆t2

τ2

(

1

3
+

1

2
|a| τ

)

≤ ∆t2

τ2

(

1

3
+

1

4

)

=
7

12

∆t2

τ2

≤ 7

12
|a | ∆t

and relation (2.47) is proven.

Lemma 6.
We suppose that a = 0. If time step ∆t satisfy condition (2.43), we have

(2.48) ϕ(∆t) +
1

12 τ2
∆t2 ≤ 1

32 τ2
∆t2

Proof of Lemma 6.

• If a = 0, then β = α =
1

2 τ
and we have simply :

1

3
(α3 + β3) τ ∆t2 =

2

3

( 1

2 τ

)3

τ ∆t2 =
1

12 τ2
∆t2
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1

2
(α4 + β4) τ ∆t3 =

( 1

2 τ

)4

τ ∆t3 =
1

16 τ3
∆t3 ≤ 1

32 τ2
∆t2 due to the

relation (2.43). Then the relation (2.48) is a direct of previous estimation (2.44)
established in Lemma 4. That completes the proof of Lemma 6.

Lemma 7.
We suppose that function t 7−→ z(t) is defined at relation (2.34) and that the
numerical initial condition d∆ satisfies hypothesis (2.27). We denote by h(•)
the expression introduced in (2.33). Then we have

(2.49) |z(0) | ≤ 1

η
min

(

C ,
1

k τ
− η
)

(2.50) |h′
(

z(0)
)

| ≤ k τ
(

min
(

C ,
1

k τ
− η
))2

.

Proof of Lemma 7.

• We have, due to relation (2.27) : −C ≤ x∗ − d
∆

≤ 1

k τ
− η .

Then following (2.19) and (2.24) we deduce :

−C − 1

k τ
≤ x∗ − 1

k τ
− d

∆
= x− − d

∆
≤ −η and in consequence

(2.51)
1

|x− − d∆ | ≤ 1

η
.

From relation (2.34) we have z(0) =
d∆ − x∗

x− − d∆
and inequality (2.49) is a

direct consequence of (2.51) and of hypothesis (2.27). We derive now the ex-
pression (2.33) relatively to variable ξ and we have easily :

|h′(z(0)) | ≤ |x− − x∗ |
(1 + z(0))2

=
|x− − d∆ |2
|x− − x∗ | ≤ k τ

(

min
(

C ,
1

k τ
− η
))2

due to the above expression of z(0) and relation (2.51). The estimation (2.50)
is established and Lemma 7 is proven.

Proof of Theorem 1.

• We cut the expression inside the absolute value of left hand side of (2.28)
into two parts. The first one is the error for the continuous solution of the
ordinary differential equation when changing initial data and the second one is
to the error ǫ

j
between the solution of the ordinary differential equation and

the discrete solution given by the scheme for the same initial condition :
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|x(j∆t ; d) − xj(∆t ; d
∆
) | ≤ |x(j∆t ; d) − x(j∆t ; d

∆
) | + |ǫ

j
|

and due to definition (2.30),

(2.52) |x(j∆t ; d) − xj(∆t ; d
∆
) | ≤ |y(j∆t ; d) − y(j∆t ; d

∆
) | + |ǫ

j
| .

• We first study the term | y(j∆t ; d) − y(j∆t ; d
∆
) | in right hand side of

(2.52). We first minorate the absolute value of the denominator of the right
hand side of (2.31). Under the hypothesis (2.27), we have :

1 + k τ (d
∆

− x∗) (1 − e−t/τ ) ≥ 1 if d
∆

− x∗ > 0 ,

and in the other case when d
∆
− x∗ ≤ 0 then |d

∆
− x∗| ≤ 1

kτ
− η due to

(2.27) and we have in consequence

1 + k τ (d
∆
− x∗) (1 − e−t/τ ) ≥ 1− (1−k τ η) = k τ η > 0 if d

∆
− x∗ ≤ 0 .

Therefore the denominator of right hand side of (2.31) is always strictly positive
and is in all cases minorated by k τ η :

1 + k τ (d
∆

− x∗) (1 − e−t/τ ) ≥ k τ η ∀ t > 0 .

In consequence of (2.33) and previous algebra, y(t ; d) and y(t ; d
∆
) are well

defined for each t such that 0 ≤ t < ∞ and we have :

x(j∆t ; d) − x(j∆t ; d
∆
) = y(j∆t ; d) − y(j∆t ; d

∆
)

=
(d − d

∆
) e−t/τ

(

1 + k τ (d − x∗) (1 − e−t/τ )
) (

1 + k τ (d
∆

− x∗) (1 − e−t/τ )
)

,

then :

(2.53) |x(j∆t, d) − x(j∆t, d
∆
) | ≤

(

1

kτη

)2

|d − d
∆
|

and the estimation of the first term introduced in (2.52) is then controlled .

• We now study the error ǫ
j
. Due to lemmas 2 and 3 and in particular

relations (2.36) and (2.42), we have

(2.54) |ǫ
j
| ≤ |z(0) | |h′

(

z(0)
)

| e−θj 1 − exp
(

θj ϕ(∆t)
)

.

(i) If a = 0, then ϕ(∆t) is negative due to relation (2.48) and θj =
j∆t

τ
remains positive. We deduce that in this case

1 − exp
(

θj ϕ(∆t)
)

≤ 1 − exp
(

θj ϕ(∆t)
)

≤ |θj ϕ(∆t) | = θj |ϕ(∆t) |
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and in consequence of (2.54) and (2.48),

|ǫ
j
| ≤ |z(0) | |h′

(

z(0)
)

|
(

e−θj θj

) ( 1

12
+

1

32

) ∆t2

τ2

≤ 11

96
|z(0) | |h′

(

z(0)
)

| sup
θ ≥ 0

(

θ e−θ
) ∆t2

τ2

≤ 11

96

1

η
min

(

C ,
1

k τ
− η
)

k τ
(

min
(

C ,
1

k τ
− η
))2 1

e

∆t2

τ2

≤ 11

96 e

k

τη

(

min
(

C ,
1

k τ
− η
))3

∆t2

and relation (2.29) is established with

(2.55) A = inf

(

( 1

kτη

)2

,
11

96 e

k

τη

(

min
(

C ,
1

k τ
− η
))3

)

(2.56) B =
τ

2
.

(ii) If a 6= 0, then ϕ(∆t) is positive due to relation (2.47) if ∆t satisfies
condition (2.46). We suppose moreover that time step satisfies also the condition

(2.57) ∆t ≤ 6

19

1

|a |
and due to (2.47), we have

(2.58) ϕ(∆t) ≤
(

1 +
7

12

)

|a | ∆t ≤ 1

2
.

In order to majorate the expression e−θj 1 − exp
(

θj ϕ(∆t)
)

we distinguish

between two cases. On one hand, when θj ϕ(∆t) ≤ 1 , we have by convexity of
the exponential function over the interval [0, 1] :

0 ≤ e θj ϕ(∆t) − 1 ≤ (e− 1) θj ϕ(∆t) and we deduce

e−θj 1 − exp
(

θj ϕ(∆t)
)

≤ (e− 1)
[

θj e
−θj

]

ϕ(∆t) ≤ 19

12

e− 1

e
|a | ∆t .

The previous inequality and estimation (2.54) show that under hypotheses (2.46)
and (2.57) concerning the time step, we have

|ǫ
j
| ≤ 19

12

e− 1

e

1

η
min

(

C ,
1

k τ
− η
)

k τ
(

min
(

C ,
1

k τ
− η
))2

|a | ∆t

≤ 19

12

e− 1

e

|a | k τ
η

(

min
(

C ,
1

k τ
− η
))3

∆t due to (2.49) and (2.50)
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≤ 19

24

e− 1

e

k

η

(

min
(

C ,
1

k τ
− η
))3

∆t due to (2.24)

and

(2.59) |ǫ
j
| ≤ 19

12

1

e

k

η

(

min
(

C ,
1

k τ
− η
))3

∆t when θj ϕ(∆t) ≤ 1 .

On the other hand when θj ϕ(∆t) ≥ 1 , we have :

e−θj 1 − exp
(

θj ϕ(∆t)
)

=

= e−θj/2 e θj
(

ϕ(∆t)− 1/2
)

1 − exp
(

−θj ϕ(∆t)
)

≤ e−θj/2 1 − exp
(

−θj ϕ(∆t)
)

due to (2.58)

≤ e−θj/2 θj ϕ(∆t) because θj and ϕ(∆t) are both positive

≤ 2 sup
θ ≥ 0

(

θ e−θ
)

ϕ(∆t) ≤ 19

12

2

e
|a | ∆t

thanks to relation (2.58). Following inequality (2.54), we obtain in this second
case

|ǫ
j
| ≤ k τ

η

(

min
(

C ,
1

k τ
− η
))3 19

6 e
|a | ∆t

(2.60) |ǫ
j
| ≤ 19

12 e

k

η

(

min
(

C ,
1

k τ
− η
))3

∆t when θj ϕ(∆t) ≥ 1

and relation (2.29) is proved for this case with

(2.61) A = inf

(

( 1

kτη

)2

,
19

12 e

k

η

(

min
(

C ,
1

k τ
− η
))3

)

(2.62) B = inf

(

τ

2
, |a | τ2 , 6

19

1

|a |

)

which ends the proof of Theorem 1.

3) Matrix Riccati equation.

• In order to define a numerical scheme to solve the Riccati differential equa-
tion (1.22) with initial condition (1.19) we first introduce a real number µ, which

is chosen positive and such that the real matrix
[

µI − (A + At)
]

is definite
positive :

(3.1) µ > 0 ,
1

2
(µx , x) − (Ax , x) > 0 , ∀x 6= 0 .
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Then we define a definite positive matrix M wich depends on strictly positive
scalar µ and matrix A :

(3.2) M =
1

2
µ I − A .

The numerical scheme is then defined in analogy with relation (2.6). We have
the following decomposition :

(3.3) A = A+ − A− ,

with

(3.4) A+ = µI , A− = M, µ > 0, M positive definite .

Taking as an explicit part the positive contribution A+ of the decomposition
(3.3) of matrix A and in the implicit part the negative contribution A− = M
of the decomposition (3.3), we get the following harmonic scheme :

(3.5)







1

∆t
(Xj+1 − Xj) +

1

2
(XjKXj+1 + Xj+1KXj)+

+ (MtXj+1 + Xj+1M) = µXj + Q .

The numerical solution Xj+1 given by the scheme at time step (j+1)∆t is then
defined as a solution of Lyapunov matrix equation with matrix X as unknown :

(3.6) Stj X + X Sj = Yj .

with :

(3.7) Sj =
1

2
I +

∆t

2
KXj + ∆tM ,

and :

(3.8) Yj = Xj + µ∆tXj + ∆tQ .

We note that Sj is a (non necessarily symmetric) positive matrix and that Yj is
a symmetric definite positive matrix if it is the case for Xj . In all cases, matrix
Yj is a symmetric positive matrix.

Definition 2. Symmetric matrices.
Let n be an integer greater or equal to 1. We define by Sn(IR), (respectively
S+
n (IR) , S+∗

n (IR) ) the linear space (respectively the closed cone, the open cone)
of symmetric-matrices (respectively symmetric positive and symmetric definite
positive matrices) ; we have

(3.9) (x , Sy) = (Sx, y) , ∀x, y ∈ IRn , ∀S ∈ Sn(IR) ,

(3.10) (x , Sx) ≥ 0 , ∀x ∈ IRn , ∀S ∈ S+
n (IR) ,

(3.11) (x , Sx) > 0 , ∀x ∈ IRn , x 6= 0 , ∀S ∈ S+∗
n (IR) .
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The following inclusions S+∗
n (IR) ⊂ S+

n (IR) ⊂ Sn(IR) are natural.

Proposition 3. Property of the Lyapunov equation.
• Let S be a matrix which is not necessary symmetric, such that the associated
quadratic form: IRn ∋ x 7−→ (x, Sx) ∈ IR, is strictly positive :

(3.12) S + St ∈ S+∗
n (IR) .

Then the application ϕ
S

defined by :

(3.13) Sn(IR) ∋ X 7−→ ϕ
S
(X) = StX + X S ∈ Sn(IR) ,

is a one to one bijective application on the space Sn(IR) of real symmetric
matrices of order n.

• Morever, if matrix ϕ
S
(X) is positive (respectively definite positive) then

the matrix X is also positive (respectively definite positive) :
(

ϕ
S
(X) ∈ S+

n (IR) =⇒ X ∈ S+
n (IR)

)

and
(

ϕ
S
(X) ∈ S+∗

n (IR) =⇒ X ∈ S+∗
n (IR)

)

.

Proof of proposition 3.
• We first observe that ϕ

S
is a linear map. In the case where S is a symmetric

matrix, we can immediatly deduce from (3.12) that S is definite positive. Let
X be a matrix such that :

(3.14) ϕ
S
(X) = 0 .

We prove that X = 0, ie that kerϕ
S

= {0} . Let x be an eigenvector of
matrix S associated to eigenvalue λ :

(3.15) S x = λx , x 6= 0 .

We deduce from relations (3.14) and (3.15) and the fact that matrix S is sup-
posed to be symmetric the equality

(3.16) S(Xx) = −λ (Xx) .

According to the previous hypothesis the negative scalar −λ cannot be an eigen-
value of S , then the vector (X x) must be equal to zero. This is true for each
eigenvalue of matrix S, wich prove the property in this case, because ϕ

S
is also

an endomorphism from Sn(IR) to Sn(IR) .

• In the case where S is not symmetric we suppose first that S is composed
into blocks of Jordan type. We first study the case where S = Λ is composed
of exactly one Jordan block associated to eigenvalue λ :
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(3.17) Λ =













λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λ 1
0 0 · · · 0 λ













and according to the hypothesis (3.12), we have :

(3.18) Reλ > 0 .

Let Xi,j be an element of the matrix X , we have from the following relation :

(3.19) (ΛtX + XΛ)i,j = 2λXi,j + Xi−1,j + Xi,j−1 if i ≥ 2 and j ≥ 2 ,

and :

(3.20) (ΛtX + XΛ)1,1 = 2λX1,1

(3.21) (ΛtX + XΛ)1,j = 2λX1,j + X1,j−1 j ≥ 2 .

Because λ 6= 0, X1,1 = 0 from (3.20), then X1,j = 0 if j ≥ 2 from (3.21).
By induction, Xi,j = 0 taking into account (3.13).

• When matrix S is composed by a family of Jordan blocks of the previous
type, i.e. S = Λ = (diag Λj) where 1 ≤ j ≤ p and Λj is a Jordan block of
the type (3.17) and of order nj

(3.22) Λ =













Λ1 0 0 · · · 0
0 Λ2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 Λp−1 0
0 0 · · · 0 Λp













,

we decompose the matrix X into blocks Xi,j of order ni × nj :

(3.23) X =













X1,1 X1,2 X1,3 · · · X1,p

X2,1 X2,2 X2,3 · · · X2,p

...
. . .

. . .
. . .

...
Xp−1,1 · · · · · · Xp−1,p−1 Xp−1,p

Xp,1 Xp,2 · · · Xp,p−1 Xp,p













.

Then the block number (i, j) of the expression StX +X S is equal to Λti Xi,j +
Xi,j Λj and for i 6= j we have to prove that the nondiagonal matrix Xi,j is
identically null.

• We establish that if Λ is a Jordan block of order n of the type (3.17)
satisfying inequality (3.18), if M is a second Jordan block of order m of the
previous type,
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(3.24) M =













µ 1 0 · · · 0
0 µ 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 µ 1
0 0 · · · 0 µ













such that an inequality analogous to (3.18) is valid :

(3.25) Reµ > 0 .

and if X is a real matrix of order n×m chosen such that

(3.26) ΛtX + XM = 0 ,

then matrix X is identically equal to zero. As in relations (3.19)-(3.21), we
have :

(3.27) (ΛtX + XM)1,1 = λX1,1 + µX1,1

(3.28) (ΛtX + XM)1,j = λX1,j + µX1,j + X1,j−1 j ≥ 2

(3.29) (ΛtX + XM)i,1 = λXi,1 + µXi,1 + Xi−1,1 i ≥ 2

(3.30) (ΛtX + XM)i,j = λXi,j + µXi,j + Xi−1,j + Xi,j−1 i , j ≥ 2 .

Then due to (3.18), (3.25) and (3.27) we have X1,1 = 0. By induction on j and
according to relation (3.28) we have X1,j = 0. By induction on i and due to
relation (3.29) we have analogously Xi,1 = 0. Finally relation (3.30) prove by
induction that Xi,j = 0 when i and j ≥ 2, and matrix X is identically null.

• When matrix S = Λ = (diag Λj) is composed by a family of Jordan blocks
of the previous type, the nondiagonal blocks Xi,j of decomposition (3.23) are
null due to the previous point. Moreover, the diagonal matrices Xi,i are also
identically null due to the property established at relations (3.17) to (3.21).
Then the proposition is established when matrix S = Λ is composed by Jordan
blocks as in relation (3.22).

• In the general case where real matrix S satisfy relation (3.14) there exists
always a complex matrix Q such that :

(3.31) S = Q−1 ΛQ ,

where matrix Λ has a bloc Jordan form given e.g. by the right hand side of the
relation (3.22). We have also the following elementary calculus :

ϕ
S
(X) = StX + X S

= Qt ΛtQ−tX + X Q−1 ΛQ

= Qt Λt (Q−tXQ−1)Q + Qt (Q−tXQ−1) ΛQ

= Qt (Λt Y + Y Λ)Q
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with Y = Q−tXQ−1 . Because the matrix Q is inversible and ϕ
S
(X) is equal

to zero, the matrix (Λt Y + Y Λ) is equal to zero. Matrix Λ is a diagonal bloc
Jordan form, and from the previous points we deduce that Y is equal to zero,
then X = 0 and the proof of first assertion of proposition 3 is established in
the general case.

• We suppose now that the matrix ϕ
S
(X) is symmetric and positive, that is :

ϕ
S
(X) ∈ S+

n (IR). Let x be an eigenvector of matrix X associated to the real
eigenvalue λ :

(3.32) X x = λx , x 6= 0 .

From the definition of application ϕ
S
, we have the following relation :

(3.33) (x , ϕ
S
(X)x ) = 2λ (x, Sx )

and from hypothesis on ϕ
S
(X) the left hand side of relation (3.33) is positive.

The expression (x, Sx) is also strictly positive since relation (3.8) holds. We
deduce that the number λ is positive because X ∈ Sn(IR) has an orthogonal
decomposition in eigenvector spaces.

• If matrix ϕ
S
(X) is symmetric and positive definite (ϕ

S
(X) ∈ S+∗

n (IR)),
we introduce eigenvector x of matrix X as previously (relation (3.32)). Then
relation (3.33) remains true and the left hand side of this relation is strictly
positive. Then the eigenvalue λ of matrix X is strictly positive and proposition
3 is proven.

• The numerical scheme has been writen as an equation of unknown X =
Xj+1 that takes the form :

(3.34) ϕ
Sj
(X) = Yj .

with ϕ
Sj

given by a relation of the type (3.13) with the help of matrix Sj

defined in (3.7) and Yj in (3.8). Then we have the following proposition.

Proposition 4.
Homographic scheme computes a definite positive matrix.

• The matrix Xj defined by numerical scheme (3.5) with the initial condition

(3.35) X0 = 0

is positive for each time step ∆t > 0 :
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(3.36) Xj ∈ S+
n (IR), ∀ j ≥ 0.

• If there exists some integer m such that Xm belongs to the open cone
S+∗
n (IR) , then matrix Xm+j belongs to the open cone S+∗

n (IR) for each j :

(3.37)
(

∃m ∈ IN, Xm ∈ S+∗
n (IR)

)

=⇒
(

∀ j ≥ 0, Xm+j ∈ S+∗
n (IR)

)

.

Proof of proposition 4.

• First we have Y0 = ∆tQ and S0 = 1
2I + ∆tM, then X1 is a symmetric

positive matrix (X ∈ S+
n (IR)) according to proposition 3 since matrix S0 is

symmetric positive and M has been chosen such that

(3.38) M + Mt is positive definite.

The end of the first point follows by induction.

• If real symmetric positive definite matrix Xj+1 is given, relation (3.8) clearly
indicates that matrix Yj is symmetric positive definite and matrix Sj intro-
duced at relation (3.7) has a symmetric part which is positive definite if we
verify that the following matrix

(3.39) KXj + Xj K

is positive. But this property is a consequence of the following. On one hand,
matrix K is positive definite and map X 7−→ KX + XK transforms the
closed cone of positive symmetric matrices onto himself. On the other hand,
matrix Xj is symmetric positive definite then KXj + Xj K ∈ S+∗

n (IR) due
to proposition 3. Proposition 4 is established.

• We have defined a numerical scheme for solving in a approximate way the
Riccati equation (1.20) with the help of relation (3.5) and the initial condition

(3.40) X0 = 0

naturally associated with initial condition (1.19). Recall that time step ∆t is
not limited by any stability condition : matrix Xj is allways symmetric posi-
tive and positive definite if matrix Q is symmetric positive definite. Moreover
the equation (3.5) that allows the computation of Xj+1 from data is a lin-
ear equation whose unknown is a symmetric matrix. But Xj+1 is a nonlinear
(homographic !) function of previous iteration matrix Xj .

• We now study the convergence of the iterate matrix Xj as long as discrete
time j∆t tends to infinity. We know from Proposition 1 that the solution of the
differential Riccati equation tends to the solution of stationary Riccati equation :

(3.41) X∞KX∞ − (AtX∞ + X∞A) − Q = 0 .
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We first study the monotonicity of our numerical scheme. Recall first that if A
and B are two real symmetric matrices, the condition

(3.42) A ≤ B

and respectively the condition

(3.43) A < B

means that matrix B −A is positive
(

B −A ∈ S+
n (IR)

)

(3.44) (x , (B −A)x
)

≥ 0 , ∀x ∈ IRn ,

and respectively that matrix B −A is positive definite
(

B −A ∈ S+∗
n (IR)

)

:

(3.45) (x , (B −A)x
)

> 0 , ∀x ∈ IRn .

Proposition 5. Monotonicity.
• Under the two conditions :

(3.46) Q is a definite positive symmetric matrix

(3.47)
1

2

(

KX∞ +X∞K
)

<
(

µ +
1

∆t

)

I ,

the scheme (3.5) is monotone and we have more precisely :

(3.48)
(

0 ≤ Xj ≤ X∞

)

=⇒
(

0 ≤ Xj ≤ Xj+1 ≤ X∞

)

.

Proof of proposition 5.

• We know from Lewis [Le86] that for symmetric definite positive matrix K
and symmetric positive matrix Q, the algebraic Riccati equation (3.41) has
a unique symmetric positive solution X∞. Moreover, matrix X∞ is positive
definite if matrix Q is positive definite.

• We first establish that matrix Θ ≡ X∞ −Xj+1 is positive if the left hand
side of implication (3.48) is satisfied. We substract relation (3.41) from numerical
scheme (3.5), observe that

Xj KXj+1 − X∞ KX∞ = Xj K (Xj+1 −X∞) + (Xj −X∞)KX∞

= (Xj −X∞)KX∞ − Xj K Θ

and that

Xj+1 KXj − X∞ KX∞ = (Xj+1 −X∞)KXj + X∞ K (Xj −X∞)

= X∞ K (Xj − X∞) − ΘK Xj

then we obtain the following equation for Θ :





Homographic scheme for Riccati equation

(3.49)



















ϕ
Σ1

(Θ) ≡ 1

∆t
Θ +

1

2

(

Xj K Θ+ΘK Xj

)

+ (Mt Θ + ΘM) =

=
1

∆t

(

X∞ −Xj

)

+ µ
(

X∞ −Xj

)

+
1

2

[

(Xj −X∞)KX∞

+X∞ K (Xj −X∞)
]

≡ ϕ
Σ2

(X∞ −Xj)

with

Σ1 =
1

2∆t
I +

1

2
KXj + M

Σ2 =
1

2

(

µ+
1

∆t

)

− 1

2
KX∞ .

The matrix Σ1 admits a positive definite symmetric part Σ1 + Σt1 because it is
the case for matrix I. Moreover, since matrix X∞ −Xj is symmetric positive

by hypothesis, it is sufficient to establish that the symmetric matrix Σ2 + Σt2
is positive definite and to apply the proposition 3. This last property is exactly
expressed by hypothesis (3.47) and the first point is proven.

• We consider now the matrix S∞ defined by :

(3.50) S∞ =
1

2
(X∞ K + KX∞) − (At + A) .

The matrix S∞ is symmetric and we have the following calculus :

S∞ =
1

2

[

(X∞ KX∞)X−1
∞ + X−1

∞ (X∞ KX∞)
]

−
[

X−1
∞ (X∞ A) + (AtX∞)X−1

∞

]

(3.51) S∞ = ϕ
Σ3

(

X−1
∞

)

with Σ3 =
1

2
X∞ KX∞ − AtX∞ . Then due to relation ( 3.41) we

have Σ3 + Σt3 = Q > 0 due to hypothesis (3.46). Then the propostion
3 joined with (3.51) and the fact that matrix X−1

∞ is symmetric positive definite
establish that matrix S∞ is symmetric definite positive.

• We establish that under the same hypothesis (3.48), the matrix Z ≡ Xj+1−
Xj is positive. We start from the numerical scheme (3.5) and replace matrix Q
by its value obtained from relation (3.41). It comes :

ϕ
Σ1

(Z) ≡ 1

∆t
Z +

1

2
(Xj K Z + Z K Xj) + (Mt Z + ZM) =

= µXj + Q − Xj KXj − (MtXj + Xj M)
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= AtXj + Xj A + Q −Xj KXj

= X∞ KX∞ − Xj KXj −
[

At (X∞ − Xj) + (X∞ − Xj)A
]

=
1

2

[

X∞ K (X∞ − Xj) + (X∞ − Xj)KX∞ + Xj K (X∞ − Xj)+

+ (X∞ − Xj)KXj

]

−
[

At (X∞ − Xj) + (X∞ − Xj)A
]

= ϕ
Σ4

(

X∞ − Xj

)

with Σ4 =
1

2
(KX∞ + KXj) − A .

The matrix Σ4 + Σt4 =
1

2
(XjK + KXj) + S∞ is positive definite due

to the previous point ; in consequence matrix ϕ
Σ4

(

X∞ − Xj

)

is symmetric

positive. The end of the proof is a consequence of propositon 3 and of the fact

that the matrix Σ1 =
1

2
I +

1

2
KXj + M has clearly a symmetric part

Σ1 + Σt1 which is positive definite.

Proposition 6. Convergence when discrete time tends to infinity.
We suppose that the data K, A , Q of Riccati equation (1.20) and parameters µ
and ∆t of harmonic scheme (3.5) satisfy the conditions (3.1), (3.46) and (3.47).
Let Xj and X∞ be the solution of scheme (3.5) at discrete time j∆t and
the symmetric definite positive matrix solution of the so-called algebraic Riccati
equation (3.41). Then Xj tends to X∞ when j tends to infinity :

(3.52) Xj −→ X∞ .

Proof of proposition 6.
• Let Ek be the Grassmannian manifold composed by all the linear subspaces
of space IRn with dimension exactly equal to k :

(3.53) Ek =
{

W, W subspace of IRn, dimW = k
}

.

Then we have the classical characterization of the ko eigenvalue of symmetric
matrix A with the so-called inf-sup condition (see e.g. Lascaux and Théodor
[LT86]) :

(3.54) µk = inf
W∈Ek

sup
v∈W

(Av , v)

(v , v)
.

Let λk
j be the ko eigenvalue of matrix Xj , λk

∞ the ko eigenvalue µk (µ1 ≤
µ2 ≤ · · · ≤ µn) of matrix X∞ and W a fixed subspace of IRn of dimension
exactly equal to k. We deduce from inequality (3.48) of Proposition 5 :
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(Xj v , v)

(v , v)
≤ (Xj+1 v , v)

(v , v)
≤ (X∞ v , v)

(v , v)
, ∀ v 6= 0 , v ∈ W.

Then when subspace W is arbitrarily given in set Ek we have :

sup
v∈W

[

(Xj v , v)

(v , v)

]

≤ sup
v∈W

[

(Xj+1 v , v)

(v , v)

]

≤ sup
v∈W

[

(X∞ v , v)

(v , v)

]

, ∀W ∈Ek

and taking the infimum bound of previous line as subspace W belongs to Grass-
mannian manifold Ek we deduce, thanks to (3.54)

(3.55) λk
j ≤ λk

j+1 ≤ λk
∞ .

By monotonicity, eigenvalue λk
j is converging towards some scaler µk as j tends

to infinity :

(3.56) λk
j −→ µk as j −→ ∞ , 1 ≤ k ≤ n .

• Consider now the unitary eigenvector vkj of matrix Xj associated with

eigenvalue λk
j :

(3.57) Xj v
k
j = λk

j v
k
j , ‖ vkj ‖= 1 , 1 ≤ k ≤ n , j ≥ 0 .

Because Xj is a symmetric matrix, the family of eigenvectors
(

vkj
)

1≤k≤n
is

orthonormal and defines an orthogonal operator ρj of space IRn defined as
acting on the canonical basis

(

ej
)

1≤k≤n
of space IRn by the conditions

(3.58) ρj • ek = vkj , 1 ≤ k ≤ n , j ≥ 0 .

Rotation ρj belongs to the compact group O(n) of orthogonal linear transfor-
mations of space IRn . Then after extraction of a convergent subsequence ρ′j of

the initial sequence
(

ρj
)

j≥0
we know that there exists an orthogonal mapping

ρ∞ ∈ O(n) such that

(3.59) ρ′j −→ ρ∞ as j −→ +∞ .

We introduce the family
(

wk
∞

)

1≤k≤n
of vectors in IRn by the conditions

(3.60) wk
∞ = ρ∞ • ek , 1 ≤ k ≤ n .

It constitutes an orthogonal basis of space IRn and for each integer k (1 ≤ k ≤
n), the extracted sequence of vectors v′kj is converging towards vector wk

∞ :

(3.61) v′kj −→ wk
∞ , 1 ≤ k ≤ n , j −→ +∞ .

• We introduce the symmetric positive definite operator Y∞ by the conditions

(3.62) Y∞ •wk
∞ = µk wk

∞ , 1 ≤ k ≤ n .

We study now the convergence of the subsequence of matrices X ′
j towards Y∞.

We first remark that the sequence of matrices
(

Xj

)

j≥0
is bounded in space

Sn(IR) :
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(3.63) ‖ Xj ‖ ≤ λn
∞ , ∀ j ∈ IN

and we have also the following set of identities :
(

Xj − Y∞

)

wk
∞ = Xj (w

k
∞ − vkj ) − λk

∞wk
∞ + λk

j v
k
j

= Xj (w
k
∞ − vkj ) − λk

∞ (wk
∞ − vkj ) + (λk

j − λk
∞) vkj .

So we deduce, due also to (3.63) and (3.57) :

(3.64) ‖
(

Xj − Y∞

)

wk
∞ ‖≤ λn

∞ ‖ wk
∞ − vkj ‖ +λk

∞ ‖ wk
∞ − vkj ‖ + |

λk
j − λk

∞ |
and according of the convergence (3.61) of subsequences vkj and (3.56) of se-

quences λk
j as index j tends to infinity, we get from estimation (3.64) :

(3.65) X ′
j − Y∞ −→ 0 , j −→ +∞ .

• Due to the definition (3.5) of the numerical scheme, sub-sequence X ′
j nec-

essarily converges to the unique positive definite matrix X∞ of the algebraic
Riccati equation and in consequence we have necessarily

(3.66) Y∞ = X∞ .

We deduce that for any arbitrary subsequence of the family
(

Xj

)

j≥0
there exists

an extracted sub-subsequence converging towards X∞ as j tends to infinity.
Then the entire family

(

Xj

)

j≥0
converges towards X∞ as j tends to infinity

and the property is established.

4) Numerical experiments.

4.1) Square root function.

• The first example studied is the resolution of the equation :

(4.1)
dX

dt
+ X2 − Q = 0, X(0) = 0

with n = 2, A = 0, K = I and matrix Q equal to

(4.2) Q =
1

2

(

1 −1
1 1

) (

1 0
0 100

) (

1 1
−1 1

)

.

• We have tested our numerical scheme for fixed value ∆t = 1/100 and
different values of parameter µ : µ = 0.1, 10−6, 10+6. For small values of
parameter µ, the behaviour of the scheme does not change between µ = 0.1
and µ = 10−6. Figures 1 to 4 show the evolution with time of the eigenvalues
of matrix Xj and the convergence is achieved to the square root of matrix Q.
For large value of parameter µ (µ = 10+6), we loose completely consistency of
the scheme (see figures 5 and 6).
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Figures 1 and 2. Square root function test.
Two first eigenvalues of numerical solution (µ = 0.1).

Figures 3 and 4. Square root function test.
Two first eigenvalues of numerical solution (µ = 10−6).

Figures 5 and 6. Square root function test.
Two first eigenvalues of numerical solution (µ = 10+6).
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4.2) Harmonic oscillator.

• The second exemple is the classical harmonic oscillator. Dynamical system
y(t) is governed by the second order differential equation with command v(t) :

(4.3)
d2y(t)

dt2
+ 2 δ

dy(t)

dt
+ ω2 y(t) = b v(t) .

This equation is written as a first order system of differential equations :

(4.4) Y =

(

y(t)
dy(t)
dt

)

,
dY

dt
=

(

0 1
−ω2 −2 δ

)

Y (t) +

(

0
b v(t)

)

.

The parameters R, Q, ω, δ and b of the ordinary differential equation (4.4) and
the cost function (1.6) are given by :

(4.5) R =

(

α 0
0 α

)

, Q =

(

1
2 0
0 1

2

)

, ω =
√
250 , δ = 0 , b = 1 .

Figures 7 and 8. Harmonic oscillator.
Two first eigenvalues of numerical solution ( µ = 0.1, α = 0.01, ∆t = 0.01).

• In this case, we have tested the stability of the scheme for fixed value of
parameter µ (µ = 0.1) and different values of time step ∆t. We have chosen
three sets of parameters : α = ∆t = 1/100 (reference experiment, figures 7
and 8), α = 10−6 , ∆t = 1/100 (very small value for α , figures 9 and 10) and
α = 1/100 , ∆t = 100 (too large value for time step, figures 11 and 12). Note that
for the last set of parameters, classical explicit schemes fail to give any answer.
As in previous test case, we have represented the two eigenvalues of discrete
matrix solution Xj as time is increasing. On reference experiment (figures 7
and 8), we have convergence of the solution to the solution of algebraic Riccati
equation. If control parameter α is chosen too small, the first eigenvalue of
Riccati matrix oscillates during the first time steps but reach finally the correct
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values of limit matrix, the solution of algebraic Riccati equation. If time step is
too large, we still have stability but we loose also monotonicity. Nevertheless,
convergence is achieved as in previous case.

Figures 9 and 10. Harmonic oscillator.
Two first eigenvalues of numerical solution ( µ = 0.1, α = 10−6, ∆t = 0.01).

Figures 11 and 12. Harmonic oscillator.
Two first eigenvalues of numerical solution ( µ = 0.1, α = 0.01, ∆t = 100).

4.3) String of high speed vehicles.

• This example has been considered by Athans, Levine and Levis [ALL67] in
modelling position and velocity control for a string of high speed vehicles. Let
N be some integer and

(4.6) n = 2N − 1

be the order of the given matrices AN , KN and QN . The matrices AN KN

and QN admit the following structure :
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(4.7) AN =

















a11 a12 0 0 · · · 0
0 a22 a23 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 a

N−2N−2
a
N−2N−1

0
0 · · · 0 a

N−1N−1
−1

0 · · · · · · 0 0 −1

















,

(4.8) KN = diag
(

1 , 0 , 1 , 0 , · · · , 1 , 0 , 1 , 0 , · · · 1 , 0 , 1
)

(4.9) QN = diag
(

10 , 0 , 10 , 0 , · · · , 10 , 0 , 10 , 0 , · · · 10 , 0 , 10
)

.

The unknown positive definite matrix XN satisfies the algebraic Riccati equa-
tion

(4.10) XN KN XN −
(

AtN XN + XN AN

)

− QN = 0 .

The solution of this equation is detailed on ’figure’ 13 with 10 significative dec-
imals. The first six decimals are absolutly identical to the ones published by
Laub [La79].

columns 1 to 3 :
+1.3630206938E + 00 +2.6172154724E + 00 −7.0542734123E − 01
+2.6172154724E + 00 +7.5925521955E + 00 −1.6803557707E + 00
−7.0542734123E − 01 −1.6803557707E + 00 +1.7747816032E + 00
+9.3685970173E − 01 +1.4752196951E + 00 +2.1577096313E + 00
−2.9366643189E − 01 −4.5950584109E − 01 −6.0913599887E − 01
+4.7735386064E − 01 +6.6514730720E − 01 +6.7071749345E − 01
−1.9737508953E − 01 −2.6614220828E − 01 −2.6284317351E − 01
+2.1121165236E − 01 +2.8065373289E − 01 +2.6614220828E − 01
−1.6655183115E − 01 −2.1121165236E − 01 −1.9737508953E − 01

columns 4 to 6 :
+9.3685970173E − 01 −2.9366643189E − 01 +4.7735386064E − 01
+1.4752196951E + 00 −4.5950584109E − 01 +6.6514730720E − 01
+2.1577096313E + 00 −6.0913599887E − 01 +6.7071749345E − 01
+8.2576995027E + 00 −1.9464979789E + 00 +1.7558734280E + 00
−1.9464979789E + 00 +1.8056048615E + 00 +1.9464979789E + 00
+1.7558734280E + 00 +1.9464979789E + 00 +8.2576995027E + 00
−6.7071749345E − 01 −6.0913599887E − 01 −2.1577096313E + 00
+6.6514730720E − 01 +4.5950584109E − 01 +1.4752196951E + 00
−4.7735386064E − 01 −2.9366643189E − 01 −9.3685970173E − 01
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columns 7 to 9 :
−1.9737508953E − 01 +2.1121165236E − 01 −1.6655183115E − 01
−2.6614220828E − 01 +2.8065373289E − 01 −2.1121165236E − 01
−2.6284317351E − 01 +2.6614220828E − 01 −1.9737508953E − 01
−6.7071749345E − 01 +6.6514730720E − 01 −4.7735386064E − 01
−6.0913599887E − 01 +4.5950584109E − 01 −2.9366643189E − 01
−2.1577096313E + 00 +1.4752196951E + 00 −9.3685970173E − 01
+1.7747816032E + 00 +1.6803557707E + 00 −7.0542734123E − 01
+1.6803557707E + 00 +7.5925521955E + 00 −2.6172154724E + 00
−7.0542734123E − 01 −2.6172154724E + 00 +1.3630206938E + 00

Figures 13. String of high speed vehicles. Matrix X is 9 by 9.
Numerical solution of stationary Riccati equation (4.10).

The parameters µ = 0.1 and ∆t = 0.1 have been used in homographic scheme.

4.4) Control of the wave equation.

• The fourth example is the control of the wave equation in one space dimen-
sion

(4.11)
∂2y

∂t2
− c2

∂2y

∂x2
=

m
∑

i=1

γi(x)ui(t) , x ∈] 0 , L[

with homogeneous Dirichlet boundary conditions

(4.12) y(t, 0) = y(t, L) = 0 .

For solving problem (4.11)-(4.12), we use a spectral decomposition on the eigen-
modes Φj(x) that are solution of the stationay problem :

(4.13) − ∂2 Φj(x)

∂x2
= λj Φj(x) , x ∈] 0 , L[

(4.14) Φj(0) = Φj(L) = 0

and are classically explicited by

(4.15) Φj(x) =
√
2 sin

(jπx

L

)

, x ∈] 0 , L[

(4.16) λj =
j2 π2

L2
, j = 1, 2, 3 · · ·

• In practice we restrict to an approximation with the N first modes :

(4.17) y(t, x) =
N
∑

j=1

yj(t)Φj(x) , t ≥ 0 , x ∈] 0 , L[ ,
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and with such a spectral approximation, problem (4.11)-(4.12) is projected with
L2 scalar product < • , • >

(4.18) < u , v > =
1

L

∫ L

0

u(t) v(t) dt

and the discrete formulation stands as

(4.19)
d2yj
dt2

+ c2 λ2
j yj(t) =

m
∑

i=1

ui(t) < γi(•) , Φj(•) > , 1 ≤ j ≤ N .

We reduce this discrete differential system to a first order one by setting

(4.20) Y (t) =
(

y1 , y2 , · · · , yN ,
dy1
dt

,
dy2
dt

, · · · , dyN
dt

)t
∈ IR2N

(4.21) U(t) =
(

u1(t) , u2(t) , · · · , um(t)
)t

∈ IRn

(4.22) Λ = c2 diag
(

λ1 , · · · , λN

)

(4.23) Cj i = < γi(•) , Φj(•) > , 1 ≤ i ≤ n , 1 ≤ j ≤ N

and system (4.19) can be re-written as

(4.24)
d

dt
Y (t) =

(

0 I
−Λ 0

)

Y (t) +

(

0
C

)

U(t) .

The matrices R and Q associated to the definition of the cost function J(•)
(relation (1.6) are of order n and 2N respectively. We have chosen the follo-
wing simple form parameterized by α = 1 and β = 10 in this particular test
case :

(4.25) R = diag
(

α , · · · , α
)

(4.26) Q = diag
(

β , · · · , β
)

.

• We have tested the scheme for matrices of order n = 2N = 10 and for time
step ∆t = 0.01 and a parameter µ = 0.001. We represent on Figures 14 to 23
the ten different eigenvalues of Riccati matrix X(t) and for these parameters
the scheme is stable as for as the explicit two stages Runge-Kutta scheme is
unstable.





Homographic scheme for Riccati equation

Figures 14 and 15. Wave control test.
Two first eigenvalues of numerical solution.

Figures 16 and 17. Wave control test.
Third and fourth eigenvalues of numerical solution.

Figures 18 and 19. Wave control test. Fifth and sixth eigenvalues.
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Figures 20 and 21. Wave control test. Seventh and eighth eigenvalues.

Figures 22 and 23. Wave control test. Ninth and tenth eigenvalues.

5) Conclusion.

• We have proposed an harmonic scheme for the resolution of the matrix
Riccati equation. The scheme is implicit, unconditionnaly stable, needs to use
one scalar parameter and to solve a linear system of equations for each time
step. This scheme is convergent in the scalar case. In the matrix case, harmonic
scheme has good monotonicity properties and discrete solution tends to the
positive solution of algebraic Ricatti equation as discrete time tends to infinity.
We have computed first test cases of matrix square root, harmonic ocsillator,
string of vehicles and discretized wave equation where classical explicit schemes
fail to give a definite positive discrete solution. Our first numerical experiments
show stability and robustness when various parameters have large variations.
We plan to develop this work in two directions : first prove the convergence of
the harmonic scheme in the case of Ricatti matrix equation and second construct
a multistep version in order to achieve second order accuracy.
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[DS2k] F. Dubois, A. Säıdi. Unconditionally stable scheme for Riccati equation,
in Control of systems governed by partial differential equations, F. Conrad
and M. Tucsnak Editors, ESAIM: Proceedings, vol. 8, p. 39-52, 2000.

[FR84] P. Faurre, M. Robin. Eléments d’automatique, Dunod, Paris, 1984.

[KS72] H. Kawakernaak, R. Sivan. Linear optimal control systems, Wiley, 1972.

[La74] J.D. Lambert. Computational methods in ordinary differential equations,
J. Wiley & Sons, 1974.

[La79] A.J. Laub. A Schur Method for Solving Algebraic Riccati Equations,
IEEE Trans. Aut. Control, vol.AC-24, p. 913-921, 1979.

[Le86] F.L. Lewis. Optimal Control, J. Wiley-Interscience, New York, 1986.

[Li68] J.L. Lions. Contrôle optimal des systèmes gouvernés par des équations
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