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ABSTRACT

Wireless sensor networks (WSN) have recently received an in-
creasing interest. They are now expected to be deployed for long
periods of time, thus requiring software updates. Updating the
software code automatically on a huge number of sensors is a chal-
lenging task, especially when all participating sensors are embed-
ded on mobile entities. In this paper, we investigate an approach
to automatically update software in mobile sensor-based applica-
tions when no localization mechanism is available. We leverage
the peer-to-peer cooperation paradigm to achieve a good trade-
off between reliability and scalability of code propagation. More
specifically, we present the design and evaluation of GCP (Gossip-
based Code Propagation), a distributed software update algorithm
for mobile wireless sensor networks. GCP relies on two different
mechanisms, piggybacking and forwarding control, to balance the
load among sensors without sacrificing on the propagation speed.
We compare GCP against traditional dissemination approaches.
Simulation results based on both synthetic and realistic work-
loads show that GCP achieves a good convergence speed while
balancing the load evenly between sensors.

1. INTRODUCTION

Context. Sensor devices have the properties of small size,
low cost, low power consumption. Combined in a network,
they allow to consider many new applications.

Sensor networks are extremely constrained due to their en-
ergy limitation. This implies a special attention to reduce
the number of messages exchanged and the computation
time [1, 11].

*Yann Busnel is the contact author: Campus Universitaire
de Beaulieu — F-35042 Rennes Cedex — France

e Conference name: Autonomics, October 28-30, Rome, Italy.
e Copyright 2007 ICST 978-963-9799-09-7

e Also available as Research Report INRIA-RR-6251, June 2007,
Rennes, France.

Eric Fleury
CITI/ INSA Lyon

Eric.Fleury@inria.fr

Anne-Marie Kermarrec
IRISA / INRIA Rennes

akermarr@irisa.fr

Problem statement. Sensors may be deployed in either
static or dynamic environments, usually for an expected long
period of time. While efficient solutions to software update
may be deployed in static WSNs, this is far more complex
when sensors are embedded on mobile entities such as peo-
ple for example.

In this paper, we consider only the code propagation service;
we do not consider how to dynamically install new code on
sensors. This issue has a lot in common with broadcast
and data dissemination [4, 6], with an additional main con-
straint. In data dissemination, new nodes can ignore every
message exchanged before it joins. In code dissemination
however, new nodes have to be able to obtain the software’s
latest version as soon as possible in order to be operational.

Applying P2P paradigm to mobile WSN. WSNs can be
consider as a distributed system where no entity is able to
reach the entire network as in wired internet-based systems
but only a small subset of neighbours. Consequently, we
believe it is possible to apply in this context of the peer-
to-peer (P2P) communication paradigm. In a P2P system,
each node may act both as a client and a server, and knows
only few other nodes. Each node is connected only to a
subset of participating nodes forming a logical overlay over
the physical one. Resources are aggregating and the load®
is evenly balanced between all peers in the system. Central
points of failures disappear as well as associated performance
bottlenecks [3, 14].

The aim of this work is to leverage the research in P2P sys-
tems to design solution for WSNs. If there are several simi-
larities between the two kinds of system, differences remain
between them which have a strong impact on the solution
design. In a sensor network, a node is able to communicate
only with a subset of the network within its communication
range. In addition, in a mobile WSN, the neighbourhood of
a node changes according to its mobility pattern. The other
difference is the multicast property of the wireless medium.
When a sensor node sends a message, every node in its di-
rect neighbourhood can receive this message while in a wired
network a message is received only by the nodes, which are
explicitly designated in the message.

The load is composed of forwarding messages, storing data,
etc.



Epi demic al gorithm. Epidemic or gossip-based communi-
cation is well-known to provide a simple scalable efficient
and reliable way to disseminate information [8]. Epidemic
protocols are based on continuous information exchange be-
tween nodes. Periodically, each node in the system chooses
randomly a node in its neighbourhood to exchange infor-
mation about itself or its neighbourhood. Introduced in
unstructured P2P overlay, gossip-based protocols can be
successfully applied in WSNs. Recently, several approaches
based on gossip have been proposed in this context [9, 10,
12, 13].

Contribution. The contribution of this paper is to apply
the epidemic approach to achieve efficient and reliable soft-
ware dissemination in mobile WSNs. We introduce a greedy
protocol (GCP: Gossip-based Code Propagation) balancing
the dissemination load without increasing diffusion time.
GCP relies on piggy-backing to save up energy and forward-
ing control to balance the load among the nodes.

2. GCP: INTRODUCING CONTROL IN
FLOODING FOR MOBILE WSNS

In mobile wireless sensor networks, routing and broadcasting
is a challenging task due to the network dynamicity. To the
best of our knowledge, existing approaches do not deal with
persistent diffusion (cf. [2]).

2.1 System model

In the following, we consider a distributed system consist-
ing of a finite set of mobile sensor nodes, which are not
aware of their geographic location. The network may not
be connected at any time as at a time ¢, a node can only
communicate with nodes in its communication range. How-
ever, we consider that over application duration, there is an
infinite number of paths between two nodes. In order to dis-
cover its neighbourhood, each node broadcasts locally Hello
messages, called beacon.

2.2 GCPdesign

Flooding paradigm is a simple way to disseminate infor-
mation. Used commonly in the network area, it consists
in forwarding to everyone known new received information.
Rather than applying classical flooding algorithms having
ideal speed propagation at the price of a high-energy con-
sumption, GCP is inspired from the flooding paradigm en-
hanced through Piggy-Backing and Forwarding Control.

Piggy-Backing mechanism. In order to avoid unnecessary
software transmissions, nodes have to be aware of the soft-
ware versions hold by their neighbours. To this end, each
node simply piggybacks its own version number into beacon
messages.

Forwarding Control mechanism. In order to balance the
load among nodes and increase the overall lifetime of a sys-
tem, each node sends its current software version a limited
number of times. To this end, each node owns a given num-
ber of tokens, which value is a system parameter. Sending
a software update is worth a token. When a node has spent

all its tokens, it is no longer allowed to send this version of
the software. The number of tokens is associated to each
version. Upon receiving a new version of the software, the
number of tokens is set to the default initial value. This
mimics the behaviour of an epidemic protocol, where each
node sends a predefined number of time a message (typically
log(N), N being the size of the system) [8]. Likewise, the
default value of the number of tokens can be set according
to the order of magnitude of WSN size.

2.3 GCPalgorithm

Figure 1.a represents the three possible different cases and
the GCP behaviour.

Step 1, each node in the transmission range of a receives the
beacon (In Figure 1.a: nodes b, ¢ and d; node e is out of
range). A beacon message received by node b is processed
as follows:

2a. If b owns the same version as a (ve = vp) due to the
piggybacking mechanism or token;, = 0 due to the for-
warding control mechanism, then no action is required.

2b. If b owns a more recent version than a (ve < vp) due
to the piggybacking mechanism, and, if b still holds
some tokens (tokeny, > 0) due to the forwarding con-
trol mechanism, it sends its version to a thus consum-
ing a token (tokeny--). Note that if other nodes, within
the transmission range, holding an older version than
b’s, they leverage the software update and update their
own version (“free update”).

2c. If a owns a version newer than b (v, > vp) due to the
piggybacking mechanism, the node b sends immedi-
ately a beacon message in order to request a software
update from a while @ is still in its radio range.

24 Alternative algorithms

In order to assess the efficiency of GCP, we compare it
against three other protocols, directly derived from wired
networks. We briefly present those protocols in this section.

The Flooding Protocol (FP) Each time a node receives
a beacon from another one, it sends its own version of
the software, whether the node needs it or not. This
algorithm obviously leads to load unbalance and does
not take into account energy consumption. This algo-
rithm is presented here because it provides ideal soft-
ware propagation speed.

The Forwarding Control Protocol (FCP) This algo-
rithm is an enhancement of the flooding protocol, using
the forwarding control mechanism.

The Piggy-Backing Protocol (PBP) This last algo-
rithm is an enhancement of the flooding protocol, us-
ing the piggybacking mechanism.

Thereafter, we introduce a formalized version of these pro-
tocols.

e version and version, represent respectively the local
and the remote version number of the software;

e software and software, represent respectively the lo-
cal and the remote binary of the software;
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Figure 1: Gossip-based Code propagation algorithm

e token represents the remaining number of tokens avail-
able on the local node;

e initial NumberO fTokens represents the initial num-
ber of tokens available on the local node.

The GCP algorithm is presented in Figure 1.b. PBP has the
same pseudo code without lines 2, 5 in RECEIVEBEACON and
without line 5 in RECEIVESOFTWARE. FCP has the same
pseudo code without lines 1, 6, 7 and 8 in RECEIVEBEACON.
A theoretical analysis is provided in [2].

3. SIMULATION RESULTS
3.1 System settings

We assume that nodes can communicate only by 1-hop
broadcast with nodes in their transmission range, with no
collision. For a node S, we distinguish two ranges of trans-
mission, r and R, where 0 < r < R and Ss(r) C Ss(R)?.
r represents the radius where the transmission range is uni-
form, and thus messages sent by nodes separated by less
than r are always received. The second range R represents
the radius at which transmission range may be not uniform.
No nodes separated by more than R can receive each other
transmission. Thus, nodes separated by a distance between
r and R may or not receive each other transmitted mes-
sages according to the Equation 1. In Equation 1, Ppin
is the transmission’s lower bound probability parameter for
two nodes separated by R. We consider that sensor nodes
have equal communication ranges. Nodes have a transmis-
sion probability defined as follows:

1 ifd<r

P — g:;l,(g:g_5),H°Tmm ifr<d<R (1)
ifd> R

In simulation, the transmission ranges are set as follows:

r = 3m, R = 5m and a minimum transmission probability
inside R, Ppin = 0.3.
We consider mobile sensors. In order to compare our re-
sults with other ones in the literature, we choose, for the
synthetic workload, the widely used random way point mo-
bility model [7].

28s (z) is the sphere notation with center S and radius z.

3.2 Simulation setup

Simulator. In order to evaluate GCP, we developed SeN-
Sim, a software implemented for mobile wireless sensor-
based applications’ simulation. SeNSim is a Java-based soft-
ware, which allows the creation of mobile wireless sensor
networks and analyses information dissemination under dif-
ferent mobility and failures scenarios. The simulator also
allows the evaluation of the characteristics related to this
protocol under different mobility, failures, and stimulus sce-
narios.

Workloads. We evaluate different scenarios with the same
set of workloads for comparison purposes. By running dif-
ferent algorithms on a same persistent trace, we obtain a
fair comparison between solutions introduced in Section 2.

We conducted experiments on various clustering scenarios
(8 synthetic and one realistic). For space reason, we do not
detail all of them in this paper and focus on the following.
Complete results are available in [2]. In order to evaluate the
performance of GCP with a realistic movement behaviour,
we used the mit/reality data set [5] from CRAWDAD. This
data set provides captured communication, proximity, loca-
tion and activity information from 100 subjects at MIT over
the course of the 2004-2005 academic year. The time is dis-
cretized in millisecond. Simulations run for 50,000 ms. A
new version is sent to a sensor picked up at random after 1
s of simulation.

Each sensor node:

e is initially randomly placed inside its defined area for
synthetic workloads;

e sends a beacon periodically every 100 ms;

e is mobile, following a Random Way Point strat-
egy for synthetic workloads, with a maximum pause
time of 100ms, each movement duration between 100
and 500ms, with a speed included between 0.8m.s~!
(2.88km.h™1) and 2m.s™' (7.2km.h™") (equivalent to
human walking speed). The defined area bounds every
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Figure 2: Convergence speed for the largest clus-
tered scenario

movement. The border rules are defined as each node
bounces back according to the bisector of incidence
angle.

e has a number of tokens, for each code propagation,
according to simulation configuration describes below.

In order to compare the efficiency of the four algorithms, we
compared them along the following metrics:

Code propagation speed We observe the number of no-
des owning the newest version of the software during
all the simulations.

Load balancing At the simulation termination, we extract
from each node the number of times it has sent the
software.

Results are depicted in Section 3.3 for the studied scenario
and algorithms.

3.3 Results

Convergence speed. Figures 2, 3 and 4 present the results
according to time, for three scenarios ordered as 9 cluster
scenario, 9 socializing cluster scenario (i.e. with some free
moving nodes) and the MIT campus realistic workload sce-
nario.

Each synthetic scenario has approximately the same prop-
agation behaviour as the 9 socializing cluster scenario (cf.
Figure 3). Due to the space constraints, we have represented
the results for only two synthetic scenarios. The 9 cluster
scenario is presented here to illustrate the fact that GCP
outperforms the FCP algorithm.

For the two algorithms with token rules (Forwarding control
mechanism), we have plotted the results obtained by using
k tokens a node, where k is respectively equal to 2, 3 and
5. We do not represent results for more than 5 tokens as in
most cases, GCP tends to approach the ideal reference by us-
ing only 5 tokens (Each synthetic simulation system counts
around 2,000 sensors, so for all k& ~ log(2000) = 3.3 [g]).

Regardless of the number of tokens chosen, in each sce-
nario, GCP outperforms FCP as far as propagation speed is
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concerned. Taking flooding algorithm as a reference (ideal
case), Figure 2 shows different inflection points, due to the
software transmission from a cluster to another. This is
clearly denoted in this figure: when almost half of the sen-
sor nodes have received the software’s newest version, there
is a period during which the newest version is moving from
one cluster to another.

Figure 4 presents the propagation speed for the realistic sce-
nario. We observe that FCP algorithm is not efficient in this
scenario. In real life, some people are together most of the
time. As nodes used FCP algorithm, they are not aware of
the remote nodes’ version, and may spend all their tokens
for the same node. GCP with a small number of tokens (2
and 3 here for instance) remains better than FCP with a
large number of tokens. With only 5 tokens per node, GCP
is almost as efficient as the flooding algorithm with respect
to propagation speed.

For each scenario, PBP is significantly slower than the flood-
ing one and is always equivalent to GCP with 5 tokens per
node. Simulation results show the propagation speed effi-
ciency of GCP according to the FCP algorithm for the same
number of tokens and to the flooding algorithm as ideal
reference. We have measured as well the network load bal-
ancing, presented in the next subsection.

Load Balanci Ng. For each simulation, Figure 5 presents
the results for the 9 socializing cluster scenario. For each
number of message sent (represents by the X-axes), the num-
ber of nodes, which have sent exactly this number of time
its software, is represented. As the flooding consumes much
more messages than the three other algorithms (PBP, FCP
and GCP), the network load with flooding is represented in
the upper-right corner of Figure 5.

For each scenario, the benefit of GCP or FCP over the flood-
ing algorithm is clear. When considering the number of
software binary sent, the two other algorithms save between
82 % and 93 % of messages for FCP and more than 98 %
for GCP for a 50 seconds simulation only. The number of
software sent message increases linearly with time in the
flooding algorithm.
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Figure 5 shows the benefits of GCP over PBP and FCP:
as FCP is not aware of the remote node’s version, the lo-
cal node sends its own version as long as it still possesses
tokens. That implies the number of software sending mes-
sages with FCP algorithm is almost constant, corresponding
of two times the number of tokens owned by each node (k to-
kens for the first version plus k tokens for the newer version:
in these simulations, the software is updated only once).
With GCP and PBP, the current local version number is
sent in the beacon message (Piggy-backing mechanism). So,
nodes do not send the first version. They only send the
newest version, and only if the beacon sender does not own
the latest version. The total number of software sending in
the network is almost equivalent to the number of partici-
pating nodes. Moreover, as every node in the transmission
range of a sending node receives the sending version, freely
for the sender, the network load benefits using GCP is de-
creased all the more. Comparing GCP with 5 tokens a node
and PBP (same propagation speed), we observe that almost
5 % of the nodes have sent the software more that 5 times,
as opposed to GCP where nodes have consumed at most 5
tokens.

We do not represent the load extracted from simulation on
the realistic trace because it shares the same aspect as the
synthetic ones.

4. CONCLUSION

In this paper, we have proposed a software update algo-
rithm for mobile wireless sensor networks. To the best of
our knowledge, tackling code propagation in mobile WSN
has not been done before. Leveraging epidemic protocols
introduced in P2P systems, the Gossip-based Code Propaga-
tion algorithm tends to outperform classical dissemination
algorithms, imposing a small overhead, adding little extra
information on sensor nodes and in beacon messages.

We have exposed the benefit of GCP on several simula-
tion scenarios, compared to three other dissemination al-
gorithms: one ideal in speed convergence but with a large
number of software sending and, therefore, very high power
consumption, another one based on forwarding control and
a last one based on piggy-backing message. GCP outper-
forms each of these algorithms. It can disseminate the new
software with almost the same propagation speed than the
ideal one while balancing the load evenly between sensors.
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