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Spreading properties and complex dynamics for monostable reaction-diffusion equations

Introduction

We study in this paper the large-time behavior of the solutions of monostable reactiondiffusion equations of the type

∂ t u -∂ xx u = f (u), t > 0, x ∈ R, u(0, x) = u 0 (x)
for a.e. x ∈ R,

where the reaction term f : [0, 1] → R is a C 1 function such that f (0) = f (1) = 0, f (s) > 0 if s ∈ (0, 1), f ′ (0) > 0, (1.2) and u 0 is a measurable initial datum such that u 0 ≡ 0, u 0 ≡ 1 and 0 ≤ u 0 (x) ≤ 1 for almost every x ∈ R (the quantity u stands for a normalized density in the applications in population dynamics models, see e.g. [START_REF] Berestycki | Reaction-diffusion equations and propagation phenomena[END_REF][START_REF] Murray | Mathematical biology[END_REF][START_REF] Shigesada | Biological Invasions: Theory and Practice[END_REF]). Under these hypotheses, the Cauchy problem (1.1) is well-posed, the solution u is classical for t > 0, and u(t, x) ∈ (0, 1) for all t > 0, x ∈ R. This type of equation has first been investigated by Fisher [START_REF] Fisher | The advance of advantageous genes[END_REF] and Kolmogorov, Petrovski and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] in the 30's. Among other results, these authors proved that, in dimension 1, when f (s) = s(1 -s) and u 0 is the Heaviside function, that is u 0 (x) = 1 if x < 0 and 0 if x > 0, then

   min x≤ct u(t, x) → 1 as t → +∞ if c < c * , max x≥ct u(t, x) → 0 as t → +∞ if c > c * , (1.3) 
with c * = 2 in this case. Such properties are called spreading properties and the quantity c * is called the spreading speed associated with the initial datum u 0 . This result has been extended by Aronson and Weinberger [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF] in the 70's to multidimensional media and positive nonlinearities satisfying (1.2). In particular, it is proved in [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF] that, in dimension 1, formula (1.3) still holds when u 0 is the Heaviside function, for some positive real number c * which only depends on f .

Travelling fronts

For general functions f satisfying (1.2), this threshold c * also turns out to be the minimal speed of existence of travelling fronts solutions of equation (1.1). Namely, we say that a solution u of (1.1) is a travelling front if it can be written as

u(t, x) = U c (x -ct),
with U c (-∞) = 1, U c (+∞) = 0 and 0 < U c < 1 in R. In this case, we say that c is the speed of the travelling front solution u. It is well known [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF][START_REF] Hadeler | Travelling fronts in nonlinear diffusion equations[END_REF] that if f satisfies (1.2), then there exists a speed c * such that there exists a travelling front solution of (1.1) with speed c if and only if c ≥ c * . Furthermore, if f satisfies the now-called Fisher-KPP assumption, that is if 0 < f (s) ≤ f ′ (0)s for all s ∈ (0, 1), (1.4) then c * = 2 f ′ (0). For general functions f satisfying (1.2), one has c * ≥ 2 f ′ (0), see [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF][START_REF] Hadeler | Travelling fronts in nonlinear diffusion equations[END_REF]. Lastly, for each c ≥ c * , the profile U c associated with the travelling front of speed c is decreasing on R and unique up to translation and, if c > c * , there exists M > 0 such that U c (z) ∼ M e -λz as z → +∞, (1.5) where λ = (c -c 2 -4f ′ (0))/2 is the smallest root of the equation λ 2 -λc + f ′ (0) = 0. When c = c * > 2 f ′ (0), then U c * (z) ∼ M e -λz as z → +∞ for some M > 0, where λ is the largest root of λ 2 -λc * + f ′ (0) = 0. When c = c * = 2 f ′ (0), then U c * (z) ∼ (M z + M ′ ) e -λ * z as z → +∞, where λ * = f ′ (0) = c * /2 and either M > 0, or M = 0 and M ′ > 0. Notice here that the nondegeneracy of f at 0, that is the condition f ′ (0) > 0, guarantees the exponential behavior of the travelling fronts as they approach 0. Thus, the estimates of the spreading speeds, as defined below, are expected to be given in terms of the exponential decay rate of the initial condition. If f ′ (0) = 0, then the non-critical travelling fronts have in general an algebraic decay and the convergence to the travelling fronts depends on the algebraic decay rate of the initial condition and exponentially decaying initial conditions will then travel with the minimal speed (see [START_REF] Kay | Comparison theorems and variable speed waves for a scalar reaction-diffusion equation[END_REF][START_REF] Sherratt | Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation[END_REF] for some results in that direction).

Definition of minimal and maximal spreading speeds for front-like initial data

Before stating our main results in the next section, we define in this section the notions of minimal and maximal spreading speeds for the solutions u of (1.1) with initial conditions u 0 : R → [0, 1] which are much more general than the Heaviside function. We state here some elementary comparisons between the spreading speeds and we recall the known standard examples for which the spreading speeds are well determined. It would have been natural to also consider heterogeneous reaction-diffusion equations as well as equations in higher dimensions. We chose to present our results in the homogeneous one-dimensional setting for problem (1.1) for the sake of simplicity of the presentation, and also because this one-dimensional homogeneous framework already captures new and interesting complex propagation phenomena at large time. However, in the appendix, we briefly mention some extensions of our main results to more general heterogeneous and higher-dimensional situations.

Coming back to problem (1.1), the initial data u 0 we consider are front-like, in the sense of the following definition. Definition 1.1 We say that a function u 0 ∈ L ∞ (R) is front-like if 0 ≤ u 0 (x) ≤ 1 for a.e. x ∈ R and there exist x -∈ R and δ > 0 such that u 0 (x) ≥ δ for a.e. x < x -and lim x→+∞ u 0 L ∞ (x,+∞) = 0.

The term front-like means that the values of u 0 (x) as x → ±∞ (up to a negligible set) are strictly ordered, although the front-like initial u 0 may not be nonincreasing on R even up to a set of zero measure. However, these very mild conditions still guarantee that u(t, x) → 0 as x → +∞ for every t > 0, from standard parabolic estimates and the maximum principle.

For such initial data, we still expect the solutions of the Cauchy problem (1.1) to spread, that is the stable state 1 to invade the unstable steady state 0. At first glance, we could think that a property like (1.3) still holds, where c * would in general be replaced with a quantity w > 0 which would depend on u 0 . A natural question, which is fundamental for the applications in biology or ecology, would then be to compute the speed w of this invasion. In fact, it turns out that some complex dynamics may occur in general. The mild conditions in Definition 1.1 give rise to a large variety of propagation phenomena at large time, some of them being of a completely new type. Thus, in order to quantify the spreading, we are led to introduce two natural quantities: the minimal and the maximal spreading speeds. Definition 1.2 For a given front-like function u 0 , we define the minimal and maximal spreading speeds w * (u 0 ) and w * (u 0 ) of the solution u of (1.1) as

w * (u 0 ) = sup c ∈ R, inf x≤ct u(t, x) → 1 as t → +∞ , w * (u 0 ) = inf c ∈ R, sup x≥ct u(t, x) → 0 as t → +∞ .
It immediately follows from Definition 1.2 that, for any given front-like function u

0 ,    inf x≤ct u(t, x) → 1 as t → +∞ for all c < w * (u 0 ), sup x≥ct u(t, x) → 0 as t → +∞ for all c > w * (u 0 ) if w * (u 0 ) is finite.
Actually, we will see below that w * (u 0 ) can never be -∞, but that w * (u 0 ), and w * (u 0 ), are sometimes equal to +∞.

Computation of the spreading speeds in the standard cases

Let us now give some general comparisons and a list of standard examples for which these quantities can be explicitly computed. First, when there is a real number A such that u 0 (x) = σ ∈ (0, 1] for a.e. x < A and u 0 (x) = 0 for a.e. x > A, it is then well known [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] that w * (u 0 ) = w * (u 0 ) = c * , where c * is the minimal speed of existence of travelling fronts solutions.

Using this fact and the parabolic maximum principle, as any front-like function is bounded from below by a space shift of the Heaviside function multiplied by some σ ∈ (0, 1], we get that

c * ≤ w * (u 0 ) ≤ w * (u 0 ) ≤ +∞ (1.6)
for any front-like initial datum u 0 .

In general, the spreading speeds are strictly larger than c * . For example, for any

speed c ≥ c * , if u(t, x) = U c (x -ct) is a travelling front solution of speed c, then w * (u(0, •)) = w * (U c ) = w * (u(0, •)) = w * (U c ) = c.

Set now

λ * = min λ > 0, λ 2 -λc * + f ′ (0) = 0 = c * -c * 2 -4f ′ (0) 2 , (1.7) 
which is a well defined real number since c * ≥ 2 f ′ (0), consider

u 0 (x) = min σ, θ e -λx for all x ∈ R (1.8)
with σ ∈ (0, 1], θ > 0 and λ ∈ (0, λ * ), and define

c λ = λ + f ′ (0) λ .
When f satisfies (1.2) and f ′ (s) ≤ f ′ (0) for all s ∈ [0, 1], it has been proved through probabilistic methods by McKean [START_REF] Mckean | Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov[END_REF] and through PDE's methods by Kametaka [20] that the solution u of (1.1) satisfies

sup x∈R u(t, x) -U c λ (x -c λ t + x 0 ) → 0 as t → +∞, (1.9) 
where U c λ is the travelling front profile with speed c λ , satisfying (1.5), and x 0 = -λ -1 ln(θ/M ). This property implies that [START_REF] Mckean | Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov[END_REF] and Kametaka [START_REF] Kametaka | On the nonlinear diffusion equation of Kolmogorov-Petrovski-Piskunov type[END_REF] proved a similar convergence, namely that sup

w * (u 0 ) = w * (u 0 ) = c λ = λ + f ′ (0) λ . (1.10) When λ ≥ λ * in (1.8), McKean
x∈R u(t, x) -U c * (x -c * t + m(t)) → 0 as t → +∞, (1.11) 
where m(t)/t → 0 as t → +∞. This implies (1.3) and leads to w * (u 0 ) = w * (u 0 ) = c * . These limits (1.9) and (1.11) have been extended by Uchiyama [START_REF] Uchiyama | The behavior of solutions of some semilinear diffusion equation for large time[END_REF] to general monostable functions f fulfilling (1.2) and to front-like initial data satisfying lim x→+∞ u 0 (x+x 0 )/u 0 (x) = e -λx 0 for all x 0 ∈ R (see also [START_REF] Ebert | Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts[END_REF][START_REF] Larson | Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type[END_REF][START_REF] Moet | A note on the asymptotic behaviour of solutions of the KPP equation[END_REF][START_REF] Rothe | Convergence to pushed fronts[END_REF][START_REF] Sattinger | Stability of waves of nonlinear parabolic systems[END_REF] for further results and more precise convergence estimates).

On the other hand, Bramson [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] and Lau [START_REF] Lau | On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF] investigated spreading properties for more general front-like initial data, using respectively probabilistic and PDE tools, when f satisfies (1.2) and f ′ (s) ≤ f ′ (0) for all s ∈ [0, 1]. They proved that if u 0 is a front-like initial datum such that there exist h > 0 and 0

< λ < λ * = f ′ (0) such that lim x→+∞ 1 x ln (1+h)x x u 0 (y)dy = -λ, (1.12) then w * (u 0 ) = w * (u 0 ) = c λ = λ + f ′ (0)/λ.
This result is more general than the one of Uchiyama [START_REF] Uchiyama | The behavior of solutions of some semilinear diffusion equation for large time[END_REF], but it requires the nonlinearity f to satisfy f ′ (s) ≤ f ′ (0) for all s ∈ [0, 1]. This property simplifies the analysis since it is known that the linearization near u = 0 does govern the global dynamics of the equation in this case. However, we believe that Bramson's and Lau's results could be extended from the KPP framework to that of (1.2), using comparison with KPP nonlinearities. As will be seen in the Section 3, we will use in this paper other assumptions and tools, which still guarantee the uniqueness of the spreading speeds in the general monostable case (1.2). Furthermore, we also show that complex dynamics may occur in general.

Lastly, if u 0 is front-like and u 0 (x) e εx → +∞ as x → +∞ for all ε > 0, (1.13) then it follows from the maximum principle and (1.10) that w * (u 0 ) ≥ ε+f ′ (0)/ε for all ε > 0, whence w * (u 0 ) = w * (u 0 ) = +∞. In this case, together with the Fisher-KPP assumption (1.4), Hamel and Roques [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF] also computed the position of the level sets of the function u(t, •) as t → +∞, according to the precise asymptotic behavior of u 0 (x) as x → +∞.

To sum up, the spreading speeds w * (u 0 ) and w * (u 0 ) are explicitly known when the frontlike initial data u 0 are exponentially decaying near +∞, or when they fulfill (1.12) under the additional condition that f satisfies f ′ (s) ≤ f ′ (0) for all s ∈ [0, 1]. It is important to notice that, in all aforementioned examples, one has w * (u 0 ) = w * (u 0 ). This leads to the following natural questions, that we investigate in the present paper:

• is it possible to compute w * (u 0 ) and w * (u 0 ) for more general initial conditions, given a nonlinearity f satisfying (1.2) only ?

• is it always true that w * (u 0 ) = w * (u 0 ) ?

Remark 1.3 Throughout the paper, the initial conditions u 0 are assumed to be front-like in the sense of Definition 1.1. Obviously, when 0 ≤ u 0 ≤ 1, u 0 ≡ 0 and u 0 (x) → 0 as x → ±∞, then left and right minimal and maximal spreading speeds could be defined and similar results as the ones stated in the next section could be obtained. One of the reasons lies on the fact that u(t, x) → 1 as t → +∞ locally uniformly in x ∈ R (as a matter of fact, min |x|≤ct u(t, x) → 1 as t → +∞ for all c ∈ [0, c * ), see [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF]). Thus, the spreading properties to the left and to the right only depend on the behavior of the tails of u 0 at ±∞.

Main results

We first consider the class of front-like functions u 0 such that

u 0 (x) = O e -Λ(x)x as x → +∞ with lim x→+∞ Λ(x) = λ ∈ [0, +∞]. (2.14) 
We first look for some conditions on u 0 which guarantee that w * (u 0 ) = w * (u 0 ) = c λ . In other words, we want to know whether u satisfies the same spreading property as the solution associated with the initial datum x → min(σ, θ e -λx ), for some σ ∈ (0, 1] and θ > 0.

If λ ∈ [λ * , +∞], where λ * > 0 was defined in (1.7), then, as already emphasized, it follows from the maximum principle and [START_REF] Uchiyama | The behavior of solutions of some semilinear diffusion equation for large time[END_REF] that w * (u 0 ) = w * (u 0 ) = c * (it is actually sufficient to suppose that lim inf x→+∞ Λ(x) ≥ λ * ). We thus restrict ourselves to the case 0 ≤ λ < λ * .

The condition we will exhibit on u 0 depends on the function x → ρ(x) := u 0 (x) e λx (for x sufficiently large). Basically, this condition requires the solution of the heat equation associated with the initial datum ρ (extended by 1 in a neighborhood of -∞) to be uniformly away from 0 for each fixed t > 0.

To make the arguments work, we shall use an additional assumption on the nonlinearity f near 0. Namely, we assume that there exist C > 0, γ > 0 and s 0 ∈ (0, 1) so that ∀s ∈ [0, s 0 ], f (s) ≥ f ′ (0)s -Cs 1+γ .

(2.15)

Note that this hypothesis is fulfilled in particular if f is of class C 1+γ in a neighborhood of 0. We first deal with the case 0 < λ < λ * in (2.14).

Theorem 2.1 Let f satisfy (1.2) and (2.15), let λ ∈ (0, λ * ) and let u 0 be a front-like function such that there exist x 0 ∈ R, a nonnegative bounded function ρ : (x 0 , +∞) → [0, +∞) and a function Λ : (x 0 , +∞) → R so that u 0 (x) = ρ(x) e -Λ(x)x for a.e. x > x 0 and Λ(x) → λ as x → +∞.

Let ρ : R → [0, +∞) be defined by ρ(x) = 1 for x < x 0 and ρ(x) = ρ(x) for x > x 0 . Lastly, let ζ be the solution of the heat equation

∂ t ζ -∂ xx ζ = 0, t > 0, x ∈ R, ζ(0, x) = ρ(x) for a.e. x ∈ R. (2.16)
If there exists a time T > 0 such that Observe also that, by linearity of the heat equation and by the maximum principle, condition (2.17) remains unchanged if the function ρ is set to be equal to any given positive real number η > 0, instead of 1, on (-∞, x 0 ). Thus, what really matters in condition (2.17) is the behavior of ρ(x) as x → +∞.

inf x∈R ζ(T, x) > 0, (2.17) 
then w * (u 0 ) = w * (u 0 ) = λ + f ′ (0) λ . ( 2 
Under the only monostability and behavior-at-0 conditions (1.2) and (2.15), Theorem 2.1 then gives a sufficient condition on u 0 for the solution u of (1.1) to spread at speed c λ = λ + f ′ (0)/λ. It is immediate to see that the boundedness assumption of ρ is necessary for Theorem 2.1 to hold in general. For instance, if ρ(x) = e εx for x > x 0 with ε ∈ (0, λ), then, by writing u 0 (x) = ρ(x) e -Λ(x) x for a.e. x > x 0 with Λ(x) = Λ(x) -ε and ρ(x) = 1 for x > x 0 , the conclusion of Theorem 2.1 yields w * (u 0 ) = w * (u 0 ) = c λ-ε > c λ . Similarly, the condition (2.17) is obviously necessary for the conclusion to hold in general: indeed, if ρ(x) = e -εx for x > x 0 , with ε ∈ (0, λ * -λ), then (2.17) is not fulfilled and w * (u 0 ) = w * (u 0 ) = c λ+ε < c λ . However, this condition (2.17) is also not necessary in general for the conclusion (2.18) to hold. That is, there are examples for which (2.17) is violated and (2.18) still holds. For instance, choose any positive measurable function ρ on (x 0 , +∞) such that ρ(x) → 0 and | ln ρ(x)| = o(x) as x → +∞; then ζ(t, x) → 0 as x → +∞ for all t > 0 and conclusion (2.18) still holds since Theorem 2.1 can be applied by writting u 0 as u 0 (x) = e -Λ(x)x for a.e. x ≥ x 0 with

Λ(x) = Λ(x) - ln ρ(x) x → λ as x → +∞.
On the other hand, what is much less obvious is to see that there are examples for which (2.17) is violated while the maximal spreading speed w * (u 0 ) is still equal to c λ and the minimal spreading speed w * (u 0 ) is strictly less. That will be the purpose of Theorem 2.6 which is stated at the end of this section.

Before doing so, we first state an immediate corollary of Theorem 2.1, concerning the particular case of a function ρ which is the restriction on (x 0 , +∞) of a function having an average: we say that a function g ∈ L ∞ (R) admits an average

g m ∈ R if 1 h x+h x g(z) dz → g m as h → +∞ uniformly in x ∈ R.
Corollary 2.3 Let f , λ, u 0 , x 0 , ρ and Λ be as in Theorem 2.1 and assume furthermore that ρ can be extended on R to a bounded nonnegative function having a positive average. Then, the conclusion (2.18) holds automatically.

In particular, Corollary 2.3 covers the case of nonnegative functions ρ ∈ L ∞ (R) which are periodic, almost-periodic or uniquely ergodic, assuming that their average, which exists, is positive. Under the assumptions of Corollary 2.3, it is easy to check that u 0 satisfies the condition (1.12) of Bramson [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] and Lau [START_REF] Lau | On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF]. Hence, if, in addition to (1.2) and (2.15), the function f is such that f ′ (s) ≤ f ′ (0) for all s ∈ [0, 1], the proof of Corollary 2.3 gives then an alternate approach of that of Bramson and Lau.

We point out that, in Theorem 2.1 or in Corollary 2.3, the function ρ may vanish on sequences of sets with positive measure on [A, +∞) for all large A, in which case the function u 0 cannot be bounded from below by a positive constant times any function e -λx for large x. A typical example is when ρ is periodic and vanishes periodically, as in the joint figure. However, for the conclusion (2.18) to hold, the function ρ cannot be too close to 0 on a too large set, this is roughly speaking the meaning of condition (2.17). The simplest example is when ρ is periodic: the function ρ may vanish periodically but, unless it vanishes almost everywhere, the spreading speeds w * (u 0 ) and w * (u 0 ) are equal to c λ .

Another enlightening application of Theorem 2.1 is the following one. Let 0 < λ 1 < λ 2 < λ * be fixed, let ρ 1 and ρ 2 be two given bounded nonnegative periodic functions with positive averages, let u 1,0 and u 2,0 be two given front-like functions such that u 1,0 (x) = ρ 1 (x) e -λ 1 x and u 2,0 (x) = ρ 2 (x) e -λ 2 x for large x, and let u 1 and u 2 be the solutions of (1.1) with initial conditions u 1,0 and u 2,0 , respectively. It follows from Theorem 2.1 (actually, Corollary 2.3) that u 1 and u 2 spread at the speeds c λ 1 = λ 1 + f ′ (0)/λ 1 and c λ 2 = λ 2 + f ′ (0)/λ 2 , respectively. Let now u 0 be a front-like function such that u 0 (x) = ρ 1 (x) e -λ 1 x + ρ 2 (x) e -λ 2 x for large x and let u be the solution of (1.1) with initial condition u 0 . Since u 0 is equal to a linear combination of the functions u 1,0 and u 2,0 near +∞, one could have thought that u would have spread at a speed which would have been a sort of average of c λ 1 and c λ 2 . This is actually not the case, since Theorem 2.1 implies that

w * (u 0 ) = w * (u 0 ) = c λ 1 .
In other words, u spreads at the largest speed, that is the one given only from the slowest exponential decay. Indeed, for large x, u 0 (x) = ρ(x) e -λ 1 x , where ρ(x) = ρ 1 (x)+ρ 2 (x) e -(λ 2 -λ 1 )x is bounded near +∞; since ρ ≥ ρ 1 ≥ 0 and ρ 1 has a positive average, the condition (2.17) is fulfilled and the conclusion (2.18) holds with λ = λ 1 .

When, in Theorem 2.1, the function Λ is equal to the constant λ, the method we use to prove Theorem 2.1 gives actually more than (2.18) under assumption (2.17). Namely, it implies that the solution u of (1.1) is asymptotically almost trapped between two travelling fronts solutions with speed c λ = λ + f ′ (0)/λ, in the following sense. Proposition 2.4 Let f , λ, u 0 , x 0 , ρ and Λ be as in Theorem 2.1 and assume furthermore that Λ = λ on [x 0 , +∞) and that (2.17) holds. Then there exist two real numbers x 1 and x 2 such that

U c λ (x + x 1 ) ≤ lim inf t→+∞ u(t, x + c λ t) ≤ lim sup t→+∞ u(t, x + c λ t) ≤ U c λ (x + x 2 )
(2.20)

uniformly in x ∈ R.
This result means that the solution u is, at large time, as close as wanted from two shifts of the travelling front U c λ in the moving frame with speed c λ (in the case when Λ depends on x, the conclusion is not true in general, see the comment below on the position of the level sets of u at large time). However, even when Λ is constant, formula (2.20) does not mean that u(t, • + c λ t) is truly trapped between two shifts of U c λ , even for large t.

Indeed, for instance, if 0 < esssup R u 0 = M 0 < 1, then sup R u(t, •) ≤ M (t) for all t ≥ 0, where Ṁ (t) = f (M (t)
) for all t ≥ 0 and M (0) = M 0 . Since M (t) < 1 for all t ≥ 0 and since U c λ (-∞) = 1, the function u(t, • + c λ t) can never be larger than any shift of U c λ . Proposition 2.4 does not mean either that the solution in the moving frame, that is u(t, •+c λ t), converges to a shift of the front U c λ . The solution may well oscillate without converging between two shifts of the front U c λ , as proved by Bages, Martinez and Roquejoffre [START_REF] Bages | How travelling waves attract the solutions of KPP-type equations[END_REF][START_REF] Martinez | Convergence to critical waves in KPP-type equations[END_REF] under the additional assumption that f is concave. Actually, more precise estimates of the time-dependent shift, which also hold for more geneal periodic equations in cylindrical domains, are given in [START_REF] Bages | How travelling waves attract the solutions of KPP-type equations[END_REF][START_REF] Martinez | Convergence to critical waves in KPP-type equations[END_REF] when u 0 is assumed to be trapped between two finite shifts of the same front U c λ .

Lastly, when u 0 is not exponentially bounded as x → +∞, in the sense of (1.13), then w * (u 0 ) = w * (u 0 ) = +∞, as already noticed. More generally speaking, Theorem 2.1 still holds when λ = 0, if the condition (2.17) is fulfilled, implying that the solution u spreads with infinite speed.

Corollary 2.5 Under the same notations as in Theorem 2.1 but with λ = 0, and under the assumption (2.17), one has

w * (u 0 ) = w * (u 0 ) = +∞. (2.21)
It is possible to reformulate the above results in terms of the level sets of the solution u of the Cauchy problem (1.1). Namely, given a front-like initial condition u 0 , define the level set of u for a value m ∈ (0, 1) at a time t > 0, as follows:

E m (t) = x ∈ R, u(t, x) = m .
For a given m ∈ (0, 1), this set can be empty, but it is easy to see that it is non-empty and compact when t is sufficiently large. Now, from Definition 1.2 and under the hypotheses of Theorem 2.1 with 0 < λ < λ * (resp. Corollary 2.5 with λ = 0), we can reformulate the conclusions (2.18) and (2.21) into:

∀ m ∈ (0, 1), lim t→+∞ 1 t min E m (t) = lim t→+∞ 1 t max E m (t) = c λ = λ + f ′ (0) λ (2.22)
with the convention that c 0 = +∞. In other words, for any m ∈ (0, 1) and any family of real numbers (x m (t)) t>0 such that u(t, x m (t)) = m for large t, then x m (t)/t → c λ as t → +∞. Thus, the quantity c λ is the asymptotic time-averaged speed of all level sets of u. We mention here that another notion of speed, that of bulk burning rate defined, under additional assumptions on u 0 , as the integral of ∂ t u over R, was also introduced in [START_REF] Constantin | Bulk burning rate in passive-reactive diffusion[END_REF] (see also [START_REF] Kiselev | Enhancement of the traveling front speeds in reaction-diffusion equations with advection[END_REF] for further estimates). The bulk burning rate can then be viewed as a space-averaged speed and, of course, the bulk burning rate and the spreading speeds defined in Definition 1.2 coincide at large time when the solution u converges globally to a travelling front. As far as Proposition 2.4 is concerned, its conclusion (2.20) implies in particular that, for all m ∈ (0, 1), lim sup 

t→+∞ max E m (t) -c λ t <
(x) = e -Λ(x)x for large x with lim x→+∞ Λ(x) = λ ∈ (0, λ * ) and lim x→+∞ (Λ(x) -λ)x = +∞ (resp.
-∞), it then follows from the comparison principle and the general convergence results (1.9), that

max E m (t) -c λ t → -∞ resp. min E m (t) -c λ t → +∞ as t → +∞
for all value m ∈ (0, 1), while w * (u 0 ) = w * (u 0 ) = c λ from Theorem 2.1. On the other hand, if |Λ(x) -λ| = O(x -1 ) as x → +∞ and if (2.17) is fulfilled, then Proposition 2.4 and the maximum principle imply that (2.20) holds, whence (2.23). In all above results, the solutions u of (1.1) have a well defined spreading speed, that is w * (u 0 ) = w * (u 0 ), and this quantity is explicitely expressed in terms of the asymptotic behavior of the front-like initial condition at +∞. We now exhibit a class of front-like initial data u 0 for which w * (u 0 ) < w * (u 0 ). We not only prove that for some range of speeds c, the functions t → u(t, ct + x) do not converge as t → +∞, but also that their ω-limit sets are the whole interval [0, 1]. We recall that the ω-limit set as t → +∞ of a function t → g(t) ∈ [0, 1] defined in a neighborhood of +∞ is the set of all s ∈ [0, 1] for which there exists a sequence t n → +∞ such that g(t n ) → s as n → +∞. Given a function f satisfying (1.2), we denote

M f = max s∈[0,1] f ′ (s) > 0.
From comparisons with KPP-type nonlinearities, it follows that c * ≤ 2 M f , where c * is the minimal speed of travelling fronts with nonlinearity f (see also [START_REF] Hadeler | Travelling fronts in nonlinear diffusion equations[END_REF]).

Theorem 2.6 Let f satisfy (1.2) and (2.15) and let γ 1 < γ 2 be given in the interval [2 M f , +∞]. Then there exists a front-like function u 0 such that

γ 1 = w * (u 0 ) < w * (u 0 ) = γ 2 .
Furthermore, for any c ∈ (γ 1 , γ 2 ), any x ∈ R and any m ∈ (0, 1), the ω-limit set of the function t → u(t, ct+x) as t → +∞ is equal to the whole interval [0, 1] and the ω-limit sets of the functions t → t -1 min E m (t) and t → t -1 max E m (t) are equal to the whole interval [γ 1 , γ 2 ].

The initial data u 0 are constructed in such a way that they oscillate as x → +∞ between the two exponential functions e -λ 1 x and e -λ 2 x on larger and larger space-intervals, with

γ 1 = c λ 1 (or λ 1 = λ * if γ 1 = c * ) and γ 2 = c λ 2 .
The proof then shows that the solution u of (1.1) oscillates on larger and larger time-intervals between two approximate solutions moving with speeds close to γ 1 and γ 2 , so that the averaged speeds of the level sets, namely min E m (t)/t and max E m (t)/t, oscillate infinitely many times between γ 1 and γ 2 . Therefore, the level sets do not converge in speed to any real number as t → +∞. We refer to Section 4 for the details. It is worth noticing that, for such monostable problems, this completely new and highly non-trivial oscillating dynamics is present even in the simplest case of the onedimensional homogeneous equation (1.1). It also holds for general monostable functions f satisfying (1.2) and (2.15), provided that the chosen speeds γ 1 and γ 2 are large enough. Notice that, in the case when f ′ (s) ≤ f ′ (0) for all s ∈ [0, 1], then M f = f ′ (0) and c * = 2 M f . Hence, in this case, the speeds γ 1 and γ 2 can take any values between c * and +∞.

The proofs of the above results rely firstly on the maximum principle and on the construction of suitable sub-and supersolutions for the Cauchy problem (1.1). The gaussian decay of the heat kernel plays a crucial role in the proof of Theorem 2.6. We have to estimate sharply the time-depending behavior of u(t, x) as x → +∞ and we prove that these tails force the solution to spread at the desired approximated speeds on large time-intervals. It is important to point out that, even if the spreading properties are determined through the asymptotic behavior of u(t, x) as x → +∞, that is as u → 0, the function f may not need to be concave or even of the KPP type (1.4).

Remark 2.7 Similar propagation phenomena have been shown by Hamel and Sire [START_REF] Hamel | Reaction-diffusion spreading speeds for general initial conditions[END_REF] for ignition-type nonlinearities arising in combustion theory (see e.g. [START_REF] Ya | Stabilization of solution of the Cauchy problem for equations encountred in combustion theory[END_REF]), that is functions f for which there exists θ ∈ (0, 1) such that

f (s) = 0 if s ∈ [0, θ] ∪ {1}, f (s) > 0 if s ∈ (θ, 1). (2.24)
It is known that for such nonlinearities, for all α ∈ [0, θ), there exists a unique speed c α so that there exists a travelling front that connects α to 1 with speed c α , see [START_REF] Ya | Stabilization of solution of the Cauchy problem for equations encountred in combustion theory[END_REF]. The front-like initial data u 0 : R → [0, 1] are then defined as follows: lim inf x→-∞ u 0 (x) > θ and lim sup x→+∞ u 0 (x) < θ (up to a negligible set). For such nonlinearities f , the same definition for the minimal spreading speed w * (u 0 ) as in Definition 1.2 is taken, but the maximal spreading speed w * (u 0 ) is now defined by

w * (u 0 ) = inf c ∈ R, lim sup t→+∞ sup x≥ct u(t, x) ≤ θ ,
since the whole interval [0, θ] corresponds to the set of weakly unstable zeroes of the function f . More general heterogeneous problems in higher dimensions have been considered in [START_REF] Hamel | Reaction-diffusion spreading speeds for general initial conditions[END_REF], but, as far as the homogeneous one-dimensional equation (1.1) is concerned, the results of Hamel and Sire are the following ones: if u 0 is front-like and if u 0 (x) -p(x) → 0 as x → +∞, where p is a periodic function with periodic average p, then w * (u 0 ) = w * (u 0 ) = c p . But in the general case, the authors constructed a class of initial data u 0 such that w * (u 0 ) < w * (u 0 ). Moreover, their construction gives that, for such u 0 , for any c ∈ (w * (u 0 ), w * (u 0 )) and any x ∈ R, the ω-limit set of t → u(t, ct

+ x) is [α, 1],
where α ∈ [0, θ) is defined by c α = w * (u 0 ). It is interesting to notice that, despite their similarities, the results and proofs of [START_REF] Hamel | Reaction-diffusion spreading speeds for general initial conditions[END_REF] and the present paper are different in nature. For instance, a front-like initial condition u 0 which oscillates periodically at +∞ between two constants α and β in [0, θ) for equation (1.1) with (2.24) leads to a solution u spreading at an average speed belonging to the open interval ( c α , c β ). On the other hand, under the condition (1.2), a front-like initial condition which oscillates periodically at +∞ between two exponential tails e -λ 1 x and e -λ 2 x with 0 < λ 1 < λ 2 < λ * leads to a solution u spreading at the speed c λ 1 . Furthermore, although the equation (1.1) reduces to the heat equation when u < θ under assumption (2.24), the propagation phenomena and the proofs in this case are rather nonlinear in nature, whereas the spreading properties stated in Theorems 2.1 and 2.6 of the present paper are chiefly determined by the asymptotic behavior of u 0 when it approaches 0 and then by the linearization of (1.1) around u = 0, even if the function f does not satisfy the KPP assumption (1.4). Lastly, we mention that when the nonlinearity f is of the bistable type on [0, 1], that is when there exists θ ∈ (0, 1) such that

f (0) = f (θ) = f (1) = 0, f < 0 on (0, θ), f > 0 on (θ, 1), f ′ (0) < 0, f ′ (1) < 0,
then the situation is much simpler: there is a unique (up to shifts) travelling front U c (x -ct) connecting 0 to 1, with a unique speed c, and, for any "front-like" initial datum u 0 , namely 0 ≤ u 0 (x) ≤ 1 for a.e. x ∈ R and lim inf x→-∞ u 0 (x) > θ > lim sup x→+∞ u 0 (x), then u(t, x) converges to U c (x -ct + x 0 ) uniformly in x ∈ R as t → +∞, for some x 0 ∈ R, see [START_REF] Fife | The approach of solutions of non-linear diffusion equations to traveling front solutions[END_REF]. Thus, in the bistable case, the solutions u spread at the unique speed c for all frontlike initial conditions u 0 . We refer to [START_REF] Xin | Analysis and modeling of front propagation in heterogeneous media[END_REF] for a much more complete picture in heterogeneous media.

3 The case when the spreading speed is unique

This section is devoted to the proof of Theorem 2.1 and its corollaries. It is based on the construction of sub-and supersolutions moving asymptotically at the speed c λ , and on the basic interpretation of the solutions of the linearized problem (3.25) below in terms of the solutions of the heat equation (2.16). As a matter of fact, we first prove Theorem 2.1 when the function Λ is a constant. Namely, we prove Proposition 2.4, which implies the conclusion (2.18) of Theorem 2.1 when Λ(x) = λ in a neighborhood of +∞.

Proof of Proposition 2.4. As 0 < λ < λ * , one has λ 2 -λc * + f ′ (0) > 0. In other words, c λ > c * . As recalled in the introduction, we know that there exists a travelling front solution U c λ (x -c λ t) of (1.1) with speed c λ , and such that U c λ (x) ∼ M e -λ x as x → +∞, for some M > 0. Since ρ is bounded, there exists then M > 0 such that u 0 (x) ≤ u 0 (x) for a.e. x ∈ R, where u 0 (x) = min 1, M e -λx .

Let now u be the solution of (1.1) with initial condition u 0 . Because of (1.9), there exists a real number x 2 such that

sup x∈R u(t, x) -U c λ (x -c λ t + x 2 ) → 0 as t → +∞.
But the maximum principle yields u(t, x) ≤ u(t, x) for all t > 0 and x ∈ R, which provides the right inequality in (2.20). Furthermore, for any speed c such that c > c λ , one has

0 ≤ lim sup t→+∞ max x≥ct u(t, x) ≤ lim sup t→+∞ max x≥ct u(t, x) = lim sup t→+∞ max x≥ct U c λ (x -c λ t + x 2 ) = lim sup t→+∞ U c λ (ct -c λ t + x 2 ) = 0, which implies that w * (u 0 ) ≤ c λ .
In order to prove the left inequality in (2.20), and consequently w * (u 0 ) ≥ c λ , consider the solution ξ of the linear problem

∂ t ξ -∂ xx ξ = f ′ (0)ξ, t > 0, x ∈ R, ξ(0, x) = ρ(x) e -λx for a.e. x ∈ R. (3.25) 
From the definition of c λ , the maximum principle yields ξ(t, x) ≤ ρ L ∞ (R) e -λ(x-c λ t) for all t > 0 and x ∈ R.

(3.26)

The key-point here is to observe that the function (t, x) → e -λ(x-c λ t) ζ(t, x-2λt) solves (3.25), since ζ solves (2.16). Thus, by uniqueness, one has

ξ(t, x) = e -λ(x-c λ t) ζ(t, x -2λt) (3.27)
for all t > 0 and x ∈ R. Remember now that s 0 ∈ (0, 1), γ > 0 and C > 0 are given in (2.15). Define P (β) = β 2 -βc λ + f ′ (0) for all β ∈ R. This function P is decreasing on the interval [0, λ] since λ > 0 is its smallest simple zero, and one has 2λ < c λ . Choose ε > 0 and κ ∈ (0, 1] small enough so that

(1 + γ) λ ≥ λ + ε and (c λ -2λ -ε) ε ≥ κ γ .
Next, owing to (3.26), choose A > 0 large enough so that A ≥ C ρ 1+γ L ∞ (R) and

∀ (t, x) ∈ (0, +∞) × R, ξ(t, x) > A e -(λ+ε)(x-c λ t) =⇒ x ≥ max(c λ t, x 0 )
and κ ξ(t, x) -A e -(λ+ε)(x-c λ t) ≤ s 0 for all t > 0 and x ∈ R. 

Ω = (t, x) ∈ (0, +∞) × R, u(t, x) > 0 ⊂ (t, x) ∈ (0, +∞) × R, x ≥ max(c λ t, x 0 )
and sup (t,x)∈(0,+∞)×R u(t, x) ≤ s 0 .

Let us then check that u is a subsolution for problem (1.1). When (t, x) ∈ Ω, one has

∂ t u(t, x) -∂ xx u(t, x) -f ′ (0) u(t, x) = (λ + ε) 2 -(λ + ε)c λ + f ′ (0) κ A e -(λ+ε)(x-c λ t) = -(c λ -2λ -ε) ε κ A e -(λ+ε)(x-c λ t) ≤ -(c λ -2λ -ε) ε κ A e -(1+γ)λ(x-c λ t) ≤ -κ 1+γ A e -(1+γ)λ(x-c λ t) ≤ -C u(t, x) 1+γ
from (3.26) and the choice of ε, κ and A. Therefore, (2.15). It also follows from the definition of ξ(0, •) and from the choice of A and the inequality 0 < κ ≤ 1, that u(0, x) ≤ u(0, x) for a.e. x ∈ R. Summing up, as u = 0 in (0, +∞) × R \ Ω, the function u is a subsolution of (1.1). Thus

∂ t u -∂ xx u ≤ f (u) in Ω because of
u(t, x) ≥ u(t, x) for all (t, x) ∈ (0, +∞) × R (3.29)
from the maximum principle. Lastly, let τ > 0 be any positive real number. On the one hand, the maximum principle implies that lim inf x→-∞ u(t, x) ≥ θ(t) for all t > 0, where θ(t) = f (θ(t)) in [0, +∞) and θ(0

) = lim inf x→-∞ essinf (-∞,x) u 0 > 0. Hence lim inf x→-∞ u(t, x) ≥ θ(t) > 0 for all t > 0. (3.30)
Since u is a continuous positive function on (0, +∞) × R, there exists then η ∈ (0, 1) such that u(τ, x) ≥ η for all x ≤ 0. On the other hand, remember from Remark 2.2 and assumption (2.17) that η ′ := inf x∈R ζ(τ, x) > 0. Therefore, it follows from (3.27), (3.28) and (3.29) that

1 ≥ u(τ, x) ≥ v 0 (x) := η 1 (-∞,0] (x) + max 0, κ η ′ e -λ(x-c λ τ ) -κ A e -(λ+ε)(x-c λ τ ) 1 (0,+∞) (x) ≥ 0 (3.31)
for all x ∈ R. Let v denote the solution of (1.1) with initial condition v 0 . The maximum principle implies that u(t, x) ≥ v(t -τ, x) for all t ≥ τ and x ∈ R.

(3.32)

But v 0 is front-like and v 0 (x) ∼ η ′′ e -λx as x → +∞, with η ′′ = κ η ′ e λ c λ τ > 0. It follows then from [START_REF] Uchiyama | The behavior of solutions of some semilinear diffusion equation for large time[END_REF] that there exists 

x 1 ∈ R such that v(t, x + c λ t) → U c λ (x + x 1 )
(u 0 ) ≥ c λ , since U c λ (-∞) = 1. Even- tually, w * (u 0 ) = w * (u 0 ) = c λ .
Remark 3.1 The arguments used in the proof of Proposition 2.4, namely the construction of the subsolution u and the inequality (3.31), imply that, for all t > 0, u(t, •) is front-like and lim inf x→+∞ u(t, x) e λx > 0. As a matter of fact, the quantity u(t, x) e λx is also bounded as x → +∞ for all t > 0. Indeed, denote L = sup s∈(0,1] f (s)/s. It follows from the maximum principle that u(t, x) ≤ M e (λ 2 +L)t-λx for all t > 0 and x ∈ R,

where 0 < M = u 0 (x) e λx L ∞ (R) < +∞. Thus, lim sup x→+∞ u(t, x) e λx < +∞ for all t > 0. Furthermore, if f satisfies (1.4), then L = f ′ (0) and (3.34) implies that u(t, x) ≤ M e -λ(x-c λ t) for all t > 0 and x ∈ R, which directly gives w * (u 0 ) ≤ c λ . Remark 3.2 In the proof of Proposition 2.4, the left inequality in (2.20) implies immediately that w * (u 0 ) ≥ c λ . The proof uses (3.32) and the convergence result (3.33), given that v 0 is front-like and decays with the right exponential decay e -λx as x → +∞. However, one could also derive the weaker inequality w * (u 0 ) ≥ c λ without referring to the stronger properties (3.32) and (3.33), using only (3.29) and (3.30). Indeed, with the same notations as in the proof of Proposition 2.4, remember that inf [T,+∞)×R ζ ≥ inf R ζ(T, •) > 0 and choose δ 0 > 0 large enough such that inf [T,+∞)×R ζ ≥ 2 A κ -1 e -εδ 0 . It follows from (3.27), (3.28) and (3.29) that, for all t ≥ T ,

u(t, c λ t + δ 0 ) ≥ κ e -λδ 0 ζ(t, (c λ -2λ)t + δ 0 ) -A e -(λ+ε)δ 0 ≥ A e -(λ+ε)δ 0 > 0. (3.35)
Let τ > 0 be arbitrary and define

Q = (t, x) ∈ [τ, +∞) × R, x ≤ c λ t + δ 0 .
Since the function u is continuous and positive in (0, +∞) × R, it follows from (3.30) and (3.35) that α := inf (t,x)∈∂Q u(t, x) ∈ (0, 1). Since f (α) > 0, the weak maximum principle yields u ≥ α in Q. Consider now any real number c such that c < c λ and assume by contradiction that there exist ε 0 > 0 and a sequence (t n , x n ) n∈N in (0, +∞) × R such that t n → +∞ as n → +∞, and x n ≤ ct n and u(t n , x n ) ≤ 1 -ε 0 for all n ∈ N.

Set v n (t, x) = u(t + t n , x + x n ). From the Schauder parabolic estimates, the functions

v n converge in C 1,2 loc (R × R), up to extraction of a subsequence, to a solution v ∞ of ∂ t v ∞ -∂ xx v ∞ = f (v ∞ ) in R × R such that 0 ≤ v ∞ ≤ 1. Moreover, for all (t, x) ∈ R × R, there exist n 0 ∈ N large enough so that (t + t n , x + x n ) ∈ Q for all n ≥ n 0 , since x n ≤ ct n and c < c λ . Thus v ∞ ≥ α in R × R.
In particular, it follows from the maximum principle that v ∞ (t, x) ≥ ω(t -t 0 ) for all t 0 ∈ R and for all (t, x) ∈ [t 0 , +∞) × R, where ω(t) = f (ω(t)) in [0, +∞) and ω(0) = α.

Since ω(+∞) = 1, one concludes, by passing to the limit as

t 0 → -∞, that v ∞ (t, x) ≥ 1 for all (t, x) ∈ R × R, which contradicts v ∞ (0, 0) ≤ 1 -ε 0 . Thus, inf x≤ct u(t, x) → 1 as t → +∞ for all c < c λ , whence w * (u 0 ) ≥ c λ .
Proof of Theorem 2.1. Take ε > 0 such that λ + ε < λ * , and then x 1 ≥ max(x 0 , 0) large enough so that Λ(x) ≤ λ + ε for all x > x 1 . Set

v ε,0 (x) = u 0 (x) if x ≤ x 1 , ρ(x) e -(λ+ε)x if x > x 1 .
Then v ε,0 ≤ u 0 a.e. in R and thus w * (u 0 ) ≥ w * (v ε,0 ), using the maximum principle and Definition 1.2 of the minimal spreading speed w * . Moreover, we know from Proposition 2.4 that

w * (v ε,0 ) = λ + ε + f ′ (0) λ + ε .
Hence, w * (u 0 ) ≥ λ + ε + f ′ (0)/(λ + ε) for all ε > 0, which gives w * (u 0 ) ≥ λ + f ′ (0)/λ. A similar argument leads to the inequality w * (u 0 ) ≤ λ + f ′ (0)/λ. The inequality w * (u 0 ) ≤ w * (u 0 ) completes the proof.

Proof of Corollary 2.3. Consider the solution ζ of (2.16), that is

∂ t ζ -∂ xx ζ = 0, t > 0, x ∈ R, ζ(0, x) = ρ(x) for a.e. x ∈ R,
where the function ρ is now assumed to be a bounded, nonnegative function on R with positive average ρ m , and ρ(x) = ρ(x) if x > x 0 and ρ(x) = 1 if x < x 0 . Choose any real number η > 0 such that η ≤ 1 and η ρ L ∞ (R) ≤ 1. Thus, ρ(x) ≥ η ρ(x) for a.e. Let us now check that ζ(t, x) → η ρ m as t → +∞ uniformly in x ∈ R. By linearity, it is sufficient to consider the case η = 1. For all (x, y) ∈ R 2 , set R x (y) = y x ρ(z)dx. For all (t, x) ∈ (0, +∞) × R, one has

ζ(t, x) = 1 √ 4πt R e -y 2 4t ρ(x -y)dy = -1 √ 4πt R y 2t e -y 2 4t R x (x -y)dy
after integrating by parts (notice that |R x (x -y)| = O(|y|) as |y| → +∞). Let ε > 0 be arbitrary. Since ρ is assumed to have the average ρ m , there exists A > 0 such that | -y -1 R x (x -y) -ρ m | ≤ ε for all |y| ≥ A and for all x ∈ R. Thus, for all (t, x) ∈ (0, +∞) × R,

| ζ(t, x) -ρ m | ≤ 1 √ 4πt A -A |y| 2t e -y 2 4t |R x (x -y)|dy + ε √ 4πt |y|≥A y 2 2t e -y 2 4t dy +ρ m × 1 √ 4πt |y|≥A y 2 2t e -y 2 4t dy -1 . Since |R x (x -y)| ≤ ρ L ∞ (R) × |y| for all (x, y) ∈ R 2
, the first term of the right-hand side converges to 0 as t → +∞, uniformly in x ∈ R. The other two terms are independent of x and converge to ε and 0, respectively, as t → +∞. Thus, | ζ(t, x) -ρ m | ≤ 2ε for t large enough, uniformly in x ∈ R. This provides the desired result.

Proof of Corollary 2.5. The same kind of argument as in the proof of Theorem 2.1 implies that for all ε ∈ (0, λ * ), one has

w * (u 0 ) ≥ ε + f ′ (0) ε .
We get the conclusion (2.21) by letting ε → 0 + .

Complex dynamics and intervals of spreading speeds

This section is devoted to the proof of Theorem 2.6. That is, we construct explicit examples of front-like initial conditions u 0 for which the minimal and maximal spreading speeds w * (u 0 ) and w * (u 0 ) are any two given strictly ordered numbers between 2 M f and +∞, where M f = max s∈[0,1] f ′ (s). The constructed functions u 0 oscillate at +∞ between two exponentially decaying functions, with different exponential rates. The intervals of oscillation are larger and larger. They are chosen in such a way that, during some suitable time-intervals and on some space-intervals, the Gaussian estimates of the difference between the solution u and two approximated fronts is negligible.

Proof of Theorem 2.6. Let γ 1 < γ 2 be given in the closed interval

[2 M f , +∞] ⊂ [c * , +∞]. If γ 1 > c * , let λ 1 ∈ (0, λ * ) be such that c λ 1 = γ 1 , that is λ 1 = (γ 1 -γ 2 1 -4f ′ (0))/2. If γ 1 = c * , set λ 1 = λ * .
Let also λ 2 be the unique real number in [0, λ * ) such that c λ 2 = γ 2 (with the convention that c 0 = +∞). In all cases, there holds

0 ≤ λ 2 < λ 1 ≤ λ * .
Let (λ 2,n ) n∈N be the sequence defined by

∀ n ∈ N,    λ 2,n = λ 2 if λ 2 > 0, λ 2,n = λ 1 n + 2 if λ 2 = 0.
Let now (x n ) n∈N and (y n ) n∈N be any two increasing sequences of positive real numbers such that 0

< x n < y n < λ 1 λ 2,n y n < x n+1 -1 < x n+1 for all n ∈ N and lim n→+∞ y n x n = lim n→+∞ x n+1 (λ 1 /λ 2,n )y n = +∞. (4.36)
Typical examples are x n = (2n+n 0 )! and

y n = (2n+1+n 0 )! if λ 2 > 0 (resp. x n = ((2n+n 0 )!) 2 and y n = ((2n + 1 + n 0 )!) 2 if λ 2 = 0)
, for some large enough integer n 0 . Given any such sequences (x n ) n∈N and (y n ) n∈N , we define the function u 0 : x → u 0 (x) as follows:

u 0 (x) =                      min(1, e -λ 1 x ) if x < x 0 , e -λ 1 x if x n ≤ x < y n , e -λ 1 yn if y n ≤ x < λ 1 λ 2,n y n , e -λ 2,n x if λ 1 λ 2,n y n ≤ x < x n+1 -1, e -λ 1 x n+1 + e -λ 2,n (x n+1 -1) -e -λ 1 x n+1 (x n+1 -x) if x n+1 -1 ≤ x < x n+1 ,
see the joint figure below. The function u 0 is thus continuous, front-like in the sense of Definition 1.1, non-increasing in R, and u 0 (-∞) = 1. Let u be the solution of (1.1) with the initial condition u 0 and let us check that the conclusion of Theorem 2.6 holds with this choice of u 0 . The function u 0 oscillates between e -λ 1 x and e -λ 2 x (or e -λ 2,n x if λ 2 = 0) as x → +∞. It is also glued between these two exponentially decaying functions between y n and (λ 1 /λ 2,n )y n and between x n+1 -1 and x n+1 in such a way that it is nonincreasing. This monotonicity property will be inherited at all positive times, which reduces the level sets E m (t) to singletons (and will then help in the calculations of their positions). Namely, the strong maximum principle implies that, for every t > 0, the function u(t, •) is decreasing on R, and u(t, -∞) = 1, u(t, +∞) = 0. Therefore, for every t > 0 and m ∈ (0, 1), the level set E m (t) reduces to a singleton E m (t) = x m (t) .

Furthermore, the functions t → x m (t) are all (at least) of class C 1 on (0, +∞) from the implicit function theorem. Since u 0 is front-like and e -λ 1 x ≤ u 0 (x) ≤ e -λ 2 x for all x ≥ 0, it follows from the maximum principle, together with [START_REF] Uchiyama | The behavior of solutions of some semilinear diffusion equation for large time[END_REF] (or Theorem 2.1) and the general comparisons (1.6), that

γ 1 ≤ w * (u 0 ) ≤ w * (u 0 ) ≤ γ 2 .
It also follows from the definitions of the spreading speeds that, for every m ∈ (0, 1),

γ 1 ≤ w * (u 0 ) ≤ lim inf t→+∞ x m (t) t ≤ lim sup t→+∞ x m (t) t ≤ w * (u 0 ) ≤ γ 2 . (4.37) 
Next, let u 0 and u 0 be the two functions defined on R by

u 0 (x) = 1 if x < 0, e -λ 1 x if x ≥ 0 and u 0 (x) = 1 if x < 0, e -λ 2,n x if x n ≤ x < x n+1 . (4.38) 
Observe that, if λ 2 > 0, then u 0 (x) = e -λ 2 x for all x ≥ 0. The function u 0 is obviously frontlike, as is the function

u 0 if λ 2 > 0. If λ 2 = 0, then λ 2,n = λ 1 /(n + 2), whence λ 2,n x n → +∞ as n → +∞ (since x n+1 /x n → +∞ as n → +∞
) and u 0 (x) → 0 as x → +∞. In other words, the function u 0 is front-like whenever λ 2 is positive or 0. Let u and u be the solutions of (1.1) with initial conditions u 0 and u 0 . Since 0 ≤ u 0 ≤ u 0 ≤ u 0 ≤ 1 on R, the maximum principle yields 0 ≤ u(t, x) ≤ u(t, x) ≤ u(t, x) ≤ 1 for all t ≥ 0 and x ∈ R.

Furthermore, as already recalled in Section 1, it follows from Uchiyama [START_REF] Uchiyama | The behavior of solutions of some semilinear diffusion equation for large time[END_REF] that

sup x∈R u(t, x) -U γ 1 (x -γ 1 t + m 1 (t)) → 0 as t → +∞, (4.39) 
where m 1 (t)/t → 0 as t → +∞ (moreover, if γ 1 > c * , then m 1 (t) can be chosen to be a constant real number x 1 in the above formula). Similarly, if γ 2 < +∞ (that is, λ 2 > 0), then there exists

x 2 ∈ R such that sup x∈R u(t, x) -U γ 2 (x -γ 2 t + x 2 ) → 0 as t → +∞. (4.40) 
Let us now prove that these two approximated travelling fronts U γ 1 (x -γ 1 t + m 1 (t)) and U γ 2 (x -γ 2 t + x 2 ) (if γ 2 < +∞) are closer and closer to u on some larger and larger space-intervals during some larger and larger intervals of time. That will be sufficient to derive the conclusion of Theorem 2.6 (at least if γ 2 < +∞, the case γ 2 = +∞ requiring a special treatment).

To do so, denote

v = u -u ≥ 0 and w = u -u ≥ 0 on [0, +∞) × R.
Choose any sequences (t n ) n∈N and (t ′ n ) n∈N of positive real numbers such that

x n < t n ≤ t ′ n < y n for all n ∈ N and lim n→+∞ t n x n = lim n→+∞ y n t ′ n = +∞.
Such sequences exist since y n /x n → +∞ as n → +∞. For instance, a particular choice is:

t n = x 1-θ n y θ n and t ′ n = x 1-θ ′ n y θ ′ n with 0 < θ ≤ θ ′ < 1. We now claim that max t∈[tn,t ′ n ] max x∈ (2 √ M f +ε)t,γt v(t, x) → 0 as n → +∞ (4.41)
for any two positive real numbers ε and γ such that

2 M f + ε ≤ γ.
This property will imply that the solution u is close to u and then to the approximated front U γ 1 (x -γ 1 t + m 1 (t)) on sequences of time-intervals [t n , t ′ n ] and on some space-intervals, provided that the ratio between the position and the time belongs to [2 M f + ε, γ]. Since ε > 0 can be arbitrarily small, the equality w * (u 0 ) = γ 1 will follow.

In order to prove (4.41), let ε > 0 and γ > 0 be as above and denote, for all n ∈ N,

E ε,γ n = (t, x) ∈ (0, +∞) × R, t n ≤ t ≤ t ′ n , (2 M f + ε)t ≤ x ≤ γt . Observe that 0 ≤ v(0, x) = u 0 (x) -u 0 (x) ≤ n∈N 1 [yn,x n+1 ] (x) for all x ∈ R
and that

∂ t v(t, x) -∂ xx v(t, x) = f (u(t, x)) -f (u(t, x)) ≤ M f v(t, x) for all (t, x) ∈ (0, +∞) × R,
owing to the definition of M f = max s∈[0,1] f ′ (s) and the nonnegativity of v. The maximum principle implies then that, for all (t, x) ∈ (0, +∞) × R,

0 ≤ v(t, x) ≤ e M f t √ 4πt n∈N x n+1 yn e -(x-y) 2 4t dy. (4.42) 
Then, choose n 1 ∈ N such that

x n ≤ (2 M f + ε) t n ≤ γ t ′ n ≤ y n for all n ≥ n 1 .
For any n ≥ n 1 and (t, x) ∈ E ε,γ n , one then has

x n ≤ (2 M f + ε) t n ≤ (2 M f + ε) t ≤ x ≤ γ t ≤ γ t ′ n ≤ y n , whence 0 ≤ v(t, x) ≤ e M f t √ 4πt × xn -∞ e -(x-y) 2 4t dy + +∞ yn e -(x-y) 2 4t dy = e M f t √ π xn-x √ 4t -∞ e -z 2 dz + e M f t √ π +∞ yn-x √ 4t e -z 2 dz, (4.43) from (4.42) 
. But

x n -x √ 4t ≤ x n -(2 M f + ε)t √ 4t = - √ t × M f + ε 2 - x n 2t ≤ - √ t × M f + ε 2 - x n 2t n
and x n /t n → 0 as n → +∞. Therefore, there exists n 2 ≥ n 1 such that, for all n ≥ n 2 and (t, x) ∈ E ε,γ n ,

x n -x √ 4t ≤ -M f t ≤ -M f t n < 0.
On the other hand,

+∞ A e -z 2 dz ≤ e -A 2 2A for all A > 0. Therefore, e M f t √ π xn-x √ 4t -∞ e -z 2 dz ≤ e M f t √ π × - √ M f t -∞ e -z 2 dz ≤ e M f t √ π × e -M f t 4M f t ≤ 1 4πM f t n (4.44)
for all n ≥ n 2 and (t, x) ∈ E ε,γ n . As far as the second term in the right-hand side of (4.43) is concerned, one knows that because of (4.37). Furthermore, w * (u 0 ) ≤ γ 1 , and (4.37) also yields the equality

y n -x √ 4t ≥ y n -γt ′ n 2 √ t ′ n ≥ y n 4 √ t ′
w * (u 0 ) = γ 1 .
Let us now prove that w * (u 0 ) = γ 2 and lim sup t→+∞ x m (t)/t = γ 2 for all m ∈ (0, 1). Remember the definition of u 0 in (4. [START_REF] Sherratt | Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation[END_REF], and that w = u -u ≥ 0 in [0, +∞) × R. Choose any sequences (τ n ) n∈N and (τ ′ n ) n∈N of positive real numbers such that

λ 1 λ 2,n y n < τ n ≤ τ ′ n < x n+1 -1 for all n ∈ N and lim n→+∞ τ n (λ 1 /λ 2,n )y n = lim n→+∞ x n+1 τ ′ n = +∞.
Such sequences exist because of (4.36). Since w(0, •) = u 0 -u 0 = 0 on all the intervals [(λ 1 /λ 

w * (u 0 ) = γ 2 .
Lastly, consider the case γ 2 = +∞ (that is, λ 2 = 0). Let η be any real number in the interval (0, λ * ). Let n η ∈ N be such that 0 < λ 2,n < η for all n ≥ n η . Define the function u η 0 : R → [0, 1] by

u η 0 (x) =                      1 if x < 0, 0 if 0 ≤ x < λ 1 λ 2,nη y nη , e -ηx if λ 1 λ 2,n y n ≤ x < x n+1 -1 with n ≥ n η , 0 if x n+1 -1 ≤ x < λ 1 λ 2,n+1 y n+1 with n ≥ n η .
From the choice of n η and u 0 , one has u 0 ≥ u η 0 on R, whence u(t, x) ≥ u η (t, x) for all t > 0 and x ∈ R (4.50) from the maximum principle, where u η denotes the solution of the equation (1.1) with initial condition u η 0 . Define now

u η 0 (x) =        1 if x < λ 1 λ 2,nη y nη , e -ηx if x ≥ λ 1 λ 2,nη y nη
and let u η be the solution of problem (1.1) with initial condition u η 0 . Since u η 0 ≥ u η 0 on R, the maximum principle yields w η (t, x) = u η (t, x) -u η (t, x) ≥ 0 for all t > 0 and x ∈ R. Furthermore, since u η 0 = u η 0 on the intervals (λ 1 /λ 2,n )y n , x n+1 -1 for all n ≥ n η , the same arguments as above imply that max

t∈[τn,τ ′ n ] max x∈ (2 √ M f +ε)t,γt
w η (t, x) → 0 as n → +∞ for all ε > 0 and γ < +∞ such that 2 M f + ε ≤ γ. On the other hand, because of Uchiyama [START_REF] Uchiyama | The behavior of solutions of some semilinear diffusion equation for large time[END_REF], there exists

x η ∈ R such that sup x∈R u η (t, x) -U cη (x -c η t + x η ) → 0 as t → +∞,
where Moreover, lim sup t→+∞ x m (t)/t = +∞ for all m ∈ (0, 1) and w * (u 0 ) = +∞. As a conclusion, whenever γ 2 is finite or +∞, there always holds w * (u 0 ) = γ 2 , and lim sup t→+∞ x m (t)/t = γ 2 for all m ∈ (0, 1). Because of (4.47), one concludes that, for all m ∈ (0, 1), the ω-limit set of the (continuous on (0, +∞)) function t → x m (t)/t is equal to the whole interval [γ 1 , γ 2 ]. Lastly, the limits (4.46), (4.49) and (4.52) imply that, for all c ∈ (γ 1 , γ 2 ) and x ∈ R, the ω-limit set of the (continuous on (0, +∞)) function t → u(t, ct + x) is equal to the whole interval [0, 1]. The proof of Theorem 2.6 is thereby complete.

c η = η + f ′ (0)/η. Since U cη (-∞) = 1,
Remark 4.1 If γ 1 > c * , then the quantity m 1 (t) appearing in (4.39) can be chosen to be a constant real number x 1 . Together with the inequality u ≥ u and formula (4.49) applied with c = γ 1 < γ 2 , it follows that, for each x ∈ R, the ω-limit set of the function t → u(t, γ 1 t + x) is equal to the interval [U γ 1 (x + x 1 ), 1]. Similarly, if γ 2 < +∞, then (4.40) and formula (4.46) applied with c = γ 2 > γ 1 imply that, for each x ∈ R, the ω-limit set of the function t → u(t, γ 2 t + x) is equal to the interval [0, U γ 2 (x + x 2 )]. [START_REF] Collet | Space-time behaviour in problems of hydrodynamic type: a case study[END_REF]. Somehow, for the nonlinear equation (1.1), the complex dynamics appears when the initial condition u 0 oscillates on larger and larger intervals between two exponentially decaying functions with different decay rates. For such u 0 , the proof of Theorem 2.6 shows that the solution u oscillates between the two nonlinear travelling fronts whose speeds are associated to the two decay rates of u 0 .

5 Appendix.

Extensions to heterogeneous higherdimensional problems

In the appendix, we just mention without proof some possible extensions of the results of the previous sections to more general equations. Similar theorems can indeed be established with the same type of methods, concerning more general heterogeneous equations in higher dimensions for which (pulsating) travelling fronts still exist.

To be more precise, consider the Cauchy problem

     ∂ t u -div(A(z)∇u) + q(z) • ∇u = f (z, u), t > 0, z ∈ Ω, ν(z)A(z)∇u = 0, t > 0, z ∈ ∂Ω, u(0, z) = u 0 (z) for a.e. z ∈ Ω, (5.53) 
where Ω ⊂ R N is an unbounded domain of class C 2,α (with α > 0), periodic in d directions and bounded in the remaining variables. That is, there are an integer d ∈ {1, • • • , N } and d positive real numbers L 1 , . . . , L d such that

∃ R ≥ 0, ∀ z = (x, y) ∈ Ω, |y| ≤ R, ∀ k ∈ L 1 Z × • • • × L d Z × {0} N -d , Ω = Ω + k, where x = (x 1 , • • • , x d ), y = (x d+1 , • • • , x N ) and | • | denotes the euclidean norm.
Typical examples of such domains are the whole space R N with or without periodic perforations, or infinite cylinders with constant or periodically undulating sections. We denote by ν the outward unit normal on ∂Ω, and ξBξ ′ = 1≤i,j≤N ξ i B ij ξ ′ j for any two vectors ξ = (ξ i ) 1≤i≤N and ξ ′ = (ξ ′ i ) 1≤i≤N in R N and any N × N matrix B = (B ij ) 1≤i,j≤N with real entries. The symmetric matrix field A = (A ij ) 1≤i,j,≤N is assumed to be of class C 1,α (Ω) and uniformly positive definite. The vector field q = (q i ) 1≤i≤N is assumed to be of class C 0,α (Ω) and divergence-free. The reaction term f : Ω × [0, 1] → R, (z, s) → f (z, s) is continuous, of class C 0,α with respect to z uniformly in s ∈ [0, 1], and of class C 1 with respect to s uniformly in z ∈ Ω. All functions A ij , q i and f (•, s) (for all s ∈ [0, 1]) are assumed to be periodic in Ω, in the sense that they all satisfy w(x + k, y) = w(x, y) for all z = (x, y) ∈ Ω and k

∈ L 1 Z × • • • × L d Z.
We further assume that q has zero average, that f (z, 0) = f (z, 1) = 0, ∂ s f (z, 0) > 0 for all z ∈ Ω, f > 0 on Ω × (0, 1) and that there exist 0 < s 0 < s

1 < 1, γ > 0, C > 0 such that f (z, s) ≥ ∂ s f (z, 0) s -C s 1+γ on Ω × [0, s 0 ] and f (z, •) is nonincreasing on [s 1 , 1] for all z ∈ Ω.
For this problem, the usual notion of travelling fronts does not hold anymore in general, and it is replaced with that of pulsating travelling fronts. Namely, given a unit vector e ∈ R d × {0} N -d , a pulsating travelling front connecting 0 to 1, travelling in the direction e with (mean) speed c ∈ R * , is a time-global classical solution U c : R × Ω → (0, 1) of (5.53) 

such that        u(t, z) = U c (z • e -ct, z) for all (t, z) ∈ R × Ω, U c (s, •) is periodic in Ω for all s ∈ R, U c (s, z) -→ s→+∞ 0, U c (s, z) -→ s→-∞ 1, uniformly in z ∈ Ω.
It is known that, for each direction e, there is a minimal speed c * (e) > 0 such that pulsating travelling fronts U c in the direction e exist if and only if c ≥ c * (e), see [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration in periodic habitat[END_REF]. Furthermore, if f also satisfies the generalized KPP assumption f (z, s) ≤ ∂ s f (z, 0)s on Ω × [0, 1], then the fronts U c with speed c are unique up to shifts in time, see [START_REF] Hamel | Uniqueness and stability properties of monostable pulsating fronts[END_REF]. Under the KPP assumption, the speed c * (e) is given by c * (e) = min λ>0 k e (λ)/λ, where k e (λ) is the principal eigenvalue of the operator

ψ → div(A∇ψ) -2λeA∇ψ -q • ∇ψ + [-λdiv(Ae) + λq • e + λ 2 eAe + ∂ s f (z, 0)]ψ (5.54)
acting on the set of C 2 (Ω) periodic functions ψ such that νA∇ψ = λ(νAe)ψ on ∂Ω (the principal eigenfunction ψ = ψ e,λ is positive in Ω unique up to multiplication by positive constants), see [START_REF] Berestycki | The speed of propagation for KPP type problems. I -Periodic framework[END_REF]. More generally speaking, with or without the KPP assumption, the inequality c * (e) ≥ min λ>0 k e (λ) λ always holds, see [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF].

The Cauchy problem (5.53), where u 0 : Ω → R is measurable and satisfies 0 ≤ u 0 ≤ 1 a.e. in Ω and u 0 ≡ 0, u 0 ≡ 1 a.e. in Ω, 1 was first considered when the initial condition u 0 is compactly supported. In this case, the solution u spreads in any given unit direction e ∈ R d × {0} N -d in the sense that, as t → +∞, u(t, c t e + z) → 1 for any 0 ≤ c < C * (e) and u(t, c t e + z) → 0 for any c > C * (e) locally uniformly in z such that c t e + z ∈ Ω (see [START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive media[END_REF][START_REF] Freidlin | On wave front propagation in periodic media[END_REF][START_REF] Freidlin | On the propagation of concentration waves in periodic and random media[END_REF][START_REF] Majda | Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales[END_REF][START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration in periodic habitat[END_REF]). In this appendix, given a direction e in R d × {0} N -d , we consider the case when the initial condition u 0 is front-like in the direction e uniformly with respect to the orthogonal directions, that is lim inf 1 The strong maximum principle then yields 0 < u(t, z) < 1 for all t > 0 and z ∈ Ω.

The natural extension of the minimal and maximal spreading speeds in the given direction e, uniformly with respect to the orthogonal directions, is the following one: When u 0 is front-like in the direction e and is such that u 0 = 0 a.e. in Ω ∩ {z • e > M } for some M ∈ R, then w * (u 0 ) = w * (u 0 ) = c * (e), as proved by Weinberger [START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration in periodic habitat[END_REF] (see also [START_REF] Nadin | Travelling fronts in space-time periodic media[END_REF][START_REF] Nolen | Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds[END_REF] for further results in space-time periodic media, [START_REF] Shen | Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models[END_REF] for space periodic and time-limit periodic media and [START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF] for abstract monotone evolution systems). When u 0 is front-like in the direction e and exponentially decreasing as z • e → +∞, the exact estimates of the spreading speeds have been established only in the KPP case (see [START_REF] Nolen | Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds[END_REF][START_REF] Shen | Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models[END_REF]). In the general monostable case, the spreading speeds w * (u 0 ) and w * (u 0 ) are still expected to be finite and to strongly depend on the exponential decay of u 0 and on that of the fronts U c . In order to quantity these statements, one needs to introduce a few additional notations. Let λ * (e) > 0 be the smallest root of the equation k e (λ) = c * (e)λ. It was proved in [START_REF] Hamel | Qualitative properties of KPP and monostable fronts: monotonicity and exponential decay[END_REF] that, if c > c * (e), then any pulsating travelling front U c with speed c in the direction e is such that ln U c (s, z) ∼ -λs as s → +∞ uniformly in z ∈ Ω, where λ ∈ (0, λ * (e)) is the smallest root of the equation k e (λ) = cλ. The map c → λ is decreasing, one-to-one and onto from (c * (e), +∞) onto (0, λ * (e)). Furthermore, if u 0 decays exactly as a given front U c (z • e, z) as z • e → +∞ and is not far from 1 as z • e → -∞, then u(t, z) converges to this front U c (z • e -ct, z) as t → +∞ uniformly in z ∈ Ω. Even if the exact exponential decay of the fronts U c as they approach 0 is not know in general (it is however in the generalized KPP case even for the minimal speed c * (e), leading to more precise stability results, see [START_REF] Hamel | Qualitative properties of KPP and monostable fronts: monotonicity and exponential decay[END_REF][START_REF] Hamel | Uniqueness and stability properties of monostable pulsating fronts[END_REF]), the aforementioned logarithmic equivalent is enough to show that similar results as in Section 2 are still valid for the problem (5.53). Namely, the following statements generalize the results of Section 2. In the sequel, u 0 denotes a front-like initial condition in a given unit direction e ∈ R d × {0} N -d . Notice that the condition (5.55) is equivalent to the condition (2.17 • For any large enough speeds γ 1 < γ 2 ≤ +∞, there exist front-like initial conditions u 0 such that γ 1 = w * (u 0 ) < w * (u 0 ) = γ 2 .

Furthermore, for any c ∈ (γ 1 , γ 2 ), any M ∈ R and any m ∈ (0, 1), the ω-limit sets of the functions t → inf Ω∩{z•e=ct+M } u(t, •) and t → sup Ω∩{z•e=ct+M } u(t, •) as t → +∞ are equal to the whole interval [0, 1] and the ω-limit sets of the functions t → t -1 inf{z • e, u(t, z) = m} and t → t -1 sup{z • e, u(t, z) = m} are equal to the whole interval [γ 1 , γ 2 ].

  Lastly, setu(t, x) = max 0, κ ξ(t, x) -A e -(λ+ε)(x-c λ t) (3.28)in [0, +∞) × R (see the joint figure for a schematic shape of the functions u, u and u at time t = 0). It follows that

Remark 4 . 2

 42 The complex dynamics shown in Theorem 2.6 for the nonlinear equation (1.1) resembles that already known for the pure heat equation ∂ t ζ = ∂ xx ζ. Namely, there are initial conditions ζ 0 ∈ L ∞ (R), which oscillate between essinf R ζ 0 and esssup R ζ 0 on larger and larger intervals, and for which the ω-limit set of the function t → ζ(t, x) is equal to the whole interval [essinf R ζ 0 , esssup R ζ 0 ] for each x ∈ R. This phenomenon was first pointed out by Collet and Eckmann

  with the speedC * (e) = min e ′ ∈R d ×{0} N -d , e ′ •e>0 c * (e ′ ) e ′ • e > 0,

M

  →-∞ essinf Ω∩{z•e<M } u 0 > 0 and lim M →+∞ u 0 L ∞ (Ω∩{z•e>M }) = 0.

w

  * (u 0 ) = sup c ∈ R, inf z∈Ω, z•e≤ct u(t, z) → 1 as t → +∞ , w * (u 0 ) = inf c ∈ R, sup z∈Ω, z•e≥ct u(t, z) → 0 as t → +∞ .

•

  If u 0 (z) = O(e -Λ(z) z•e ) as z • e → +∞ with lim inf z∈Ω, z•e→+∞ Λ(z) ≥ λ * (e), then w * (u 0 ) = w * (u 0 ) = c * (e). • If there exist λ ∈ (0, λ * (e)), M ∈ R, a nonnegative bounded function ρ defined on Ω ∩ {z • e > M } and a function Λ : Ω ∩ {z • e > M } → R such that u 0 (z) = ρ(z) e -Λ(z) z•e a.e. in Ω ∩ {z • e > M } and Λ(z) → λ as z • e → +∞, and if there exists T > 0 such that inf Ω ζ(T, •) > 0, (5.55)where ζ is the solution of the linear equation∂ t ζ -div(A∇ ζ) -2∇(ln ψ e,λ )A∇ ζ + 2λeA∇ ζ + q • ∇ ζ = 0 t > 0, z ∈ Ω, νA∇ ζ = 0 t > 0, z ∈ ∂Ω with initial condition ζ(0, z) = ρ(z) if z • e > M and ζ(0, z) = 1 if z • e < M in Ω, thenw * (u 0 ) = w * (u 0 ) = k e (λ) λ .

  ) given in Theorem 2.1 for the solution ζ of (2.16) in the case N = 1, A = 1 and q = 0, since, in this particular case, ψ e,λ is constant and ζ(t, x) = ζ(t, x -2λt). Notice also that (5.55) is equivalent to inf Ω ζ(t, •) > 0 for all t > 0 and even inf [t,+∞)×Ω ζ > 0 for all t > 0. If the function ρ can be extended to a bounded nonnegative function having a positive average, then (5.55) is fulfilled automatically, whence w * (u0 ) = w * (u 0 ) = c. Furthermore, if Λ(z) → 0 as z • e → +∞ and if (5.55) is satisfied, then w * (u 0 ) = w * (u 0 ) = +∞. Lastly, if f satisfies the generalized KPP condition f (z, s) ≤ ∂ s f (z, 0)s on Ω × [0, 1], if Λ = λ in Ω ∩ {z • e > M } and if (5.55) is fulfilled, then lim inf t→+∞ u(t, z) -U c (z • e -ct + τ 1 , z) ≥ 0and lim sup t→+∞ u(t, z) -U c (z • e -ct + τ 2 , z) ≤ 0 uniformly in z ∈ Ω, for some τ 1 , τ 2 ∈ R, where U c denotes the profile of the (unique up to time-shifts) pulsating travelling front with speed c = k e (λ)/λ in the direction e.

  

  

  +∞ and lim sup

	t→+∞	min E m (t) -c λ t < +∞,	(2.23)
	Property (2.23) is clearly stronger than (2.22). Both (2.22) and (2.23) also yield for-

mula

(2.18)

, since, as it can be easily seen, lim inf x→-∞ u(t, x) → 1 as t → +∞ and lim x→+∞ u(t, x) = 0 for all t ≥ 0. However, it is worth noticing here that, in general, the only assumptions of Theorem 2.1 do not guarantee that the level sets E m (t) stay at finite distance as t → +∞ from the position c λ t for each fixed m ∈ (0, 1). For instance, if u 0 is front-like and u 0

  where ζ denotes the solution of the heat equation∂ t ζ = ∂ xx ζ with initial condition η ρ.But it is elementary to see that ζ(t, x) → η ρ m as t → +∞ uniformly in x ∈ R (we give a quick proof in the next paragraph for the sake of completeness). Since η > 0 and ρ m is positive by assumption, condition (2.17) is fulfilled and we can thus apply Theorem 2.1, which provides(2.18).

x ∈ R and

ζ(t, x) ≥ ζ(t, x) for all (t, x) ∈ (0, +∞) × R,

  ∈ R and c > γ 1 . Therefore, for all m ∈ (0, 1), lim inf t→+∞ x m (t)/t ≤ γ 1 and eventually

	n . Combining (4.43), (4.44) and (4.45), one infers that, for for all n ≥ n 3 and (t, x) ∈ E ε,γ all n ≥ n 3 , max (t,x)∈E ε,γ n v(t, x) ≤ 1 + e M f t ′ n √ π × e -y 2 n 16 t ′ n × 2 √ t ′ n y n . 4πM f t n n and y n / √ t ′ n all converge But the right-hand side converges to 0 as n → +∞, since t n , y n /t ′ to +∞ as n → +∞. This provides (4.41). Putting together (4.39), (4.41) and the fact that U γ 1 (+∞) = 0, it follows that, for
	all A ∈ R and (2 M f ≤) γ 1 < c < γ,	
		max t∈[tn,t ′ n ]	max x∈[ct+A,γt]	u(t, x) → 0 as n → +∞.
	In particular,			
	max t∈[tn,t ′ n ]	u(t, ct + x) → 0 as n → +∞ for all c > γ 1 and x ∈ R.	(4.46)
	Since u(t, •) is decreasing for all t > 0, one actually gets that
		max t∈[tn,t ′ n ]	max x∈[ct+A,+∞)	u(t, x) → 0 as n → +∞
	for all A lim inf t→+∞	x m (t) t	= γ 1	(4.47)
					for all n large enough,
					n
	since y n /t ′ n → +∞ as n → +∞. Thus, there exists n 3 ≥ n 2 such that e M f t √ π +∞ yn-x √ 4t e -z 2 dz ≤ e M f t ′ n √ π +∞ yn 4 √ n t ′ e -z 2 dz ≤ e M f t ′ n √ π × e -y 2 n 16 t ′ n ×	2	√ t ′ n y n	(4.45)

  2,n )y n , x n+1 -1] for all n ∈ N, the same arguments as for the function v imply that max positive real numbers ε and γ such that 2 M f + ε ≤ γ. Consider first the case γ 2 < +∞ (that is, λ 2 > 0). It follows then from (4.40), (4.48) and U γ 2 (-∞) = 1 that, for all A ∈ R and 2 M f < c ′ < c < γ 2 ,

	Since u(t, •) is decreasing for all t > 0, one actually gets that
		min t∈[τn,τ ′ n ]	min x∈(-∞,ct+A)	u(t, x) → 1 as n → +∞
	for all A ∈ R and c < γ 2 . In particular,
	min t∈[τn,τ ′ n ]	u(t, ct + x) → 1 as n → +∞ for all c < γ 2 and x ∈ R.	(4.49)
	Furthermore, for all m ∈ (0, 1), lim sup t→+∞ x m (t)/t ≥ γ 2 and eventually
					lim sup t→+∞	x m (t) t	= γ 2
	because of (4.37). Lastly, w * (u 0 ) ≥ γ 2 , and (4.37) yields
	t∈[τn,τ ′ n ]	x∈ (2	max √ M f +ε)t,γt	w(t, x) → 0 as n → +∞	(4.48)
	for any two min t∈[τn,τ ′ n ]	min x∈[c ′ t,ct+A]	u(t, x) → 1 as n → +∞.

  ∈ R and 2 M f < c ′ < c < c η . Remember now that u ≥ u η from (4.50) and that u(t, •) is decreasing for all t > 0. Therefore, ∈ R and c < c η . Since η ∈ (0, λ * ) can be chosen arbitrarily small and c η → +∞ as η → 0 + , it follows that (4.51) holds for all c ∈ R and A ∈ R. In particular,

					one then infers that
		min t∈[τn,τ ′ n ]	min x∈[c ′ t,ct+A]	u η (t, x) → 1 as n → +∞
	for all A min t∈[τn,τ ′ n ]	min x∈(-∞,ct+A]	u(t, x) → 1 as n → +∞	(4.51)
	for all A min t∈[τn,τ ′ n ]	u(t, ct + x) → 1 as n → +∞ for all c < +∞ and x ∈ R.	(4.52)
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