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Abstract. We consider the problem of uniform sampling in large scale
open systems. Uniform sampling is a fundamental primitive that guar-
antees that any individual in a population has the same probability to
be selected as sample. An important issue that seriously hampers the
feasibility of uniform sampling in open and large scale systems is the
unavoidable presence of malicious nodes. In this paper we show that
restricting the number of requests that malicious nodes can issue and
allowing for a full knowledge of the composition of the system is a neces-
sary and sufficient condition to guarantee uniform and ergodic sampling.
In a nutshell, a uniform and ergodic sampling guarantees that any node
in the system is equally likely to appear as a sample at any non mali-
cious node in the system and that infinitely often any node has a non-null
probability to appear as a sample of honest nodes.

Keywords: Uniform sampling, unstructured peer-to-peer systems, er-
godicity, Byzantine adversary.

1 Introduction

We consider the problem of uniform sampling in large scale open systems with
adversarial (Byzantine) nodes. Uniform sampling is a fundamental primitive
guaranteeing that any individual in a population has the same probability to be
selected as sample. This property is of utmost importance in systems in which
the population is continuously evolving and where it is impossible to capture the
full complexity of the network through global snapshots. By collecting random
subsets of information over the network, one can infer at almost no cost some
global characteristic of the whole population (such as its size, its topological
organization, its resources, . . . ). Therefore uniform sampling finds its root in
many problems such as data collection, dissemination, load balancing, and data-
caching [1–4].

Providing unbiased (i.e., uniform) sampling in these open systems is a chal-
lenging issue. First, this primitive must cope with the continuous change of the
network structure caused by nodes departures and arrivals. Nevertheless, it has
been shown through simulations [1, 5] and analytic studies [6–8] that simply
maintaining a partial and small local view of node identifiers (ids) is sufficient to
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provide near uniform sampling. This can be achieved through gossip-based al-
gorithms [1, 9, 10] or through random walks [5, 11–13]. Gossip-based algorithms
mainly consist, for each node v in the system, in periodically selecting some
other node w in v’s local view and exchanging information. Information can
either be pushed to other nodes or pulled from other nodes. Over time, infor-
mation spreads over the system in an epidemic fashion allowing each node to
continuously update its local view with fresh node ids. On the other hand, a
random walk on a network (which can be represented as a graph) is a sequential
process, starting from an initial node v, which consists in visiting a node in v’s
neighborhood according to some randomized order. In its simpler form, the next
node is chosen uniformly at random among the neighbors, while more sophis-
ticated choices are implemented to cope with the bias introduced towards high
degree nodes (for instance, through the Metropolis-Hastings algorithm [14]).

An important issue that seriously hampers the feasibility of uniform sam-
pling in open and large scale systems is the unavoidable presence of malicious
nodes. Malicious (or Byzantine) nodes typically try to manipulate the system
by exhibiting undesirable behaviors [15]. In our context, they try to subvert the
system by launching targeting attacks against nodes in the aim of biasing uni-
formity by isolating honest nodes within the system. This is quickly achieved by
poisoning local views of honest nodes with malicious node ids. For instance in
unstructured graphs, a number of push operations logarithmic in the size of local
views is sufficient to fully eclipse honest nodes from the local view of a node [16],
while in structured graphs, a linear number of join operations is required [17].
Recent works have been proposed to detect and exclude these adversarial be-
haviors [18–20] by observing that malicious nodes try to get an in-degree much
higher than honest nodes in order to isolate them. Extensive simulations [18]
have shown that this approach is only highly effective for a very small number
of malicious nodes (i.e., in O(log |S|) where |S| is the size of the network S),
otherwise detection mechanisms may boil down to false positive detection (i.e.,
detection of honest nodes).

On the other hand, when the system is harmed by a large number of malicious
peers (i.e., a linear proportion of the nodes of the system), which is definitively a
realistic assumption in peer-to-peer systems [15, 21], additional mechanisms are
required to prevent targeted attacks from succeeding. Specifically, in structured
peer-to-peer systems, analytical studies have shown that applying the “induced
churn” principle allows to defend the system against adversarial behaviors, either
through competitive induced churn strategies [22], or through global induced
churn [23]. Briefly, this principle states that, by forcing nodes to periodically
change their position in the graph, malicious peers cannot predict the evolution
of the state of the system after a given sequence of join and leave operations. By
taking advantage of the properties of structured graphs, the authors of both pa-
pers have shown that, with high probability, any node is equally likely to appear
in the local view of each other honest node in a number of rounds polynomial
in the size of the system. Unfortunately, in unstructured peer-to-peer systems,
nodes cannot rely on the topological nature of structured graphs to reject new
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node ids that do not conform to the imposed distance function (contrary to
structured networks [22, 23]). To circumvent this issue, Bortnikov et al. [16] rely
on the properties of min-wise independent permutations, which are fed by the
streams of gossiped node ids, to eventually converge towards uniform sampling
on the node ids. More precisely, these authors have derived an upper bound on
the expected time Ts to converge towards unbiased (uniform) samples. However,
by construction, this convergence is definitive in the sense that once a random
sample has been locally observed it is kept as a local sample forever. As a conse-
quence, beyond the time limit Ts, no other node ids received in the input stream
can ever appear in the random sample. The property of a sampler to guarantee
that each received node id infinitely often has a non-null probability to locally
appear as a sample is called the ergodic sampling property (this property is
formally defined later in the paper).

Intuitively, this lack of adaptivity seems to be the only defense against adver-
sarial behavior when considering bounded resources (memory and bandwidth).
This paper is devoted to the formal analysis of the conditions under which uni-
form and ergodic sampling is feasible or not. More precisely, the main contri-
bution of this paper is to show necessary and sufficient conditions under which
uniform and ergodic sampling is achievable in unstructured peer-to-peer systems
potentially populated with a large proportion of Byzantine nodes. Specifically,
let S represent the wide collection of nodes in the system, and k < 1 the propor-
tion of malicious nodes in S. Let δm be the number of (not necessarily unique)
malicious node ids gossiped by malicious nodes during a time interval Ts, and
Γ denote the local memory of any honest node u in S. In this context, we prove
the following assertions:

– If the number δm of (non-unique) malicious ids received at node u during a
given period of time Ts is strictly greater than Ts − |S|(1 − k) then, neither
uniform sampling nor ergodic sampling can be achieved;

– If δm ≤ Ts−|S|(1−k) and the size of the memory Γ is greater than or equal
to |S| then, both uniform and ergodic sampling can be achieved;

– If δm ≤ Ts − |S|(1 − k), and |Γ | < |S| then, uniform and ergodic sampling
cannot be achieved.

Briefly, these conditions show that if the system cannot provide the means to
limit the number of messages an adversary can periodically send, then solving
either uniform sampling or ergodic sampling is impossible. On the other hand,
if this assumption holds and if all honest nodes in the system have access to
a very large memory (in the size of the network) then, the problem becomes
trivially solvable. Unfortunately, as will be shown, both conditions are necessary
and sufficient to solve the uniform and ergodic sampling problem. Clearly, these
strong conditions highlight the damage that adversarial behavior can cause in
large-scale unstructured systems.

To the best of our knowledge, we are not aware of any previous work that
has specified the conditions for which uniform and ergodic sampling is reachable
in presence of adversarial behaviors.
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The outline of this paper is the following. In the next section, we describe
the model of the system and how it is vulnerable to malicious nodes. Afterwards
in Section 3, we define uniform and ergodic sampling, while in Section 4, re-
lated work is presented. Finally, Section 5 identifies the two conditions for which
uniform and ergodic sampling is achievable, before concluding in Section 6.

2 System Model

An overlay network is a logical network built on top of a physical network.
We consider an overlay network S populated with nodes labelled through a
system wide identifier. We assume that a unique and permanent identifier is
assigned to each node. In the following, nodes identifiers are abbreviated by
node ids. Nodes communicate among each other along the edges of the overlay
by using the communication primitives provided by the underlying network (e.g.,
IP network service). Nodes are free to join and leave the overlay at any time.
The particular algorithms use by nodes to choose their neighbors and to route
messages induce the resulting overlay topology. In particular, the topology of
unstructured overlays conforms with that of random graphs (i.e. relationships
among nodes are mostly set according to a random process).

2.1 Adversary

A fundamental issue faced by any practical open system is the inevitable pres-
ence of nodes that try to manipulate the system by exhibiting undesirable behav-
iors [15]. Such nodes are called malicious or Byzantine nodes. Malicious nodes
can simply display behaviors such as simply dropping or re-routing messages
towards other malicious nodes, or they can devise more complex strategies such
as mounting eclipse attacks (also called routing-table poisoning [15, 24]) by hav-
ing honest nodes redirecting outgoing links towards malicious ones. Moreover,
they can magnify the impact of their attacks by colluding and coordinating their
actions. In our work, we do not consider Sybil attacks [21], which mainly consist
in flooding the system with numerous fake identifiers. We assume the existence
of some external mechanism for solving this problem (for instance an off-line
certification authority, cf. Section 2.2). We model malicious behaviors through
a strong adversary that fully controls these malicious nodes. The adversary has
the ability to inspect the whole overlay and strategizes on the time at which ma-
licious nodes operations must be issued. We assume that the adversary cannot
control more than a fraction k < 1 of malicious nodes in the overlay. A node
which always follows the prescribed protocols is called honest. Note that honest
nodes cannot a priori distinguish honest nodes from malicious ones, which would
otherwise render the problem trivial.

2.2 Security Mechanisms

We assume the availability of a signature scheme that enables to verify the
validity of a signature on a message (i.e. the authenticity and integrity of this
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Fig. 1. Sampling component of node u ∈ N .

message with respect to a particular node). Recipients of a message ignore any
message that is not signed properly. Nodes ids and keys (private and public) are
acquired via a registration authority [24] and it is assumed that honest nodes
never reveal their private keys to other nodes. We also assume the existence of
private channels (obtained through cryptographics means) between each pair of
nodes preventing an adversary from eavesdropping and unnoticeably tampering
with the content of a message exchanged between two honest nodes through
this channel. However of course, a malicious node has complete control over the
messages it sends and receives.

3 Uniform and Ergodic Sampling

In this section, we describe the terminology and assumptions used in this paper
and then define uniform and ergodic sampling.

3.1 Assumptions and Terminology

Similarly to Bortnikov et al. [16], we consider the following assumptions. There
exists a time T0 such that from time T0 onwards, the churn of the system ceases.
This assumption is necessary to make the notion of uniform sample meaningful.
Thus from T0 onwards, the population of the system S is composed of |S| nodes,
such that at least (1 − k)|S| of them are honest and no more than k|S| of them
are controlled by the adversary (for k < 1). The subset of honest nodes in the
overlay is denoted by N and we assume that all the nodes in N are weakly
connected from time T0 onwards.

Each node u ∈ N has locally access to a sampling component4 as presented
in Figure 1. The sampling component implements a strategy s and has uniquely
access to a data structure Γu, referred to as the sampling memory. The size
of the sampling memory Γu is bounded and is denoted by |Γu|. The sampling

4 Although malicious nodes have also access to a sampling component, we cannot
impose any assumptions on how they feed it or use it as their behavior can be
totally arbitrary.
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component Ss

u
is fed with (non unique) node ids that correspond to the node

ids periodically received (either through gossip algorithms or through random
walks). This stream of node ids may contain repetition of the same node id, which
can be particularly frequent for malicious node ids, as discussed later. At each
time t, the following three steps are executed: the first element of the stream, say
node id v, is given as input to the sampler component. The sampling component
Ss

u
reads v, and removes it from the stream. According to its strategy s, Ss

u
may

store or not v in Γu (for example, the strategy s may consist in storing v if Γu is
not full or in substituting v for a randomly chosen node id in Γu), and outputs at
most one node id v′. The output at time t is denoted Ss

u
(t). The produced node

id v′ is chosen among the node ids in Γu according to the strategy s (for instance,
strategy s may choose the smallest node id in Γu or the smallest node id under
a given min-wise permutation [16]). Note that these three steps are atomically
done. The maximum finite hitting time needed for the sampling component Ss

u

to reach a uniform sample is denoted by Ts. Clearly Ts depends on the strategy
s implemented by the sampling component and also on the stream of node ids
the sampling component has access to. Finally, δm represents the number of
malicious node ids received (possibly multiple times) in the stream of node ids
at node u during the time interval Ts.

3.2 Sampling Properties

We consider the problem of achieving an unbiased (uniform) and ergodic sam-
pling in large scale unstructured peer-to-peer systems subject to adversarial
attacks. A strategy s that solves this problem has to meet the following two
properties: i) Uniformity, which states that any node in the overlay should have
the same probability to appear in the sample of honest nodes in the overlay, and
ii) Ergodicity, which states that any node should have a non-null probability to
appear infinitely often in the sample of any honest nodes in the overlay. More
formally, strategy s should guarantee:

Property 1 (Uniformity). Let N be a weakly connected graph from time T0

onwards, then for any time t ≥ Ts, for any node u ∈ S, and for any node v ∈ N ,

P[u ∈ Ss

v
(t)] =

1

|S|
.

Property 2 (Ergodicity). Let N be a weakly connected graph from time T0 on-
wards, then for any time t ≥ T0, for any node u ∈ S, and for any node v ∈ N ,

P [{t′|t′ > t ∧ u ∈ Ss

v
(t′)} = ∅] = 0,

where ∅ represents the empty set. In the following, Properties 1 and 2 are re-
spectively denoted U and E .

Remark 1. Uniformity by itself does not imply ergodicity and conversely, ergod-
icity by itself does not imply uniformity. Indeed, Property 1 guarantees that any
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node (honest or not) has an equal probability to be sampled by any honest node
in the system. Nonetheless, once convergence to a random sample locally holds,
this property does not say that this sample must change over time to provide a
fresh and random node id (this is definitively important for data-caching appli-
cations which continuously require fresh node id). Guaranteeing this dynamicity
is formalized by Property 2 which states that each node has a non-null prob-
ability to be selected as a sample at any time, guaranteeing the access of new
sample graphs.

4 Related Work

In the literature, different approaches have been proposed to deal with malicious
behaviors, each one focusing on a particular adversarial strategy.

With respect to eclipse attacks, a very common technique, called constrained
routing table, relies on the uniqueness and impossibility of forging nodes iden-
tifiers. It consists in selecting as neighbors only the nodes whose identifiers are
closer to some particular points in the identifier space [24]. Such an approach
has been successfully implemented into several overlays (e.g., CAN, Chord, Pas-
try). More generally, to prevent messages from being misrouted or dropped, the
seminal works of Castro et al. [24] and Sit and Morris [15] on distributed hash
tables based overlays combine routing failure tests and redundant routing as a
solution to ensure robust routing. Their approach has then been successfully
implemented in different structured-based overlays (e.g., [25–27]). In all these
previous works, it is assumed that at any time, and anywhere in the overlay,
the proportion of compromised nodes is bounded and known, allowing power-
ful building blocks such as Byzantine tolerant agreement protocols to be used
among peers subsets [26, 27]. When such an assumption fails, additional mech-
anisms are needed. For instance, Awerbuch et al. [22] propose the Cuckoo&flip
strategy, which consists in introducing local induced churn (i.e., forcing a subset
of nodes to leave the overlay) upon each join and leave operation. This strat-
egy prevents malicious nodes from predicting what is going to be the state of
the overlay after a given sequence of join and leave operations. Subsequently
to this theoretical work, experiments have been conducted to verify the practi-
cal feasibility of global induced churn, which consists in having all the nodes of
the overlay periodically leaving their positions. These experiments assume that
the overlay is populated by no more than k = 25% of compromised nodes [28].
Authors of [23] have analyzed several adversarial strategies, and show that an
adversary can very quickly subvert DHT-based overlays (DHT for Distributed
Hash Tables) by simply never triggering leave operations. They also show that
when all nodes (honest and malicious ones) are imposed a limited lifetime, the
system eventually reaches a stationary regime where the ratio of corrupted clus-
ters is bounded, independently from the initial amount of corruption in the
system.

Jesi et al. [18] propose a random sampling algorithm that deals with malicious
nodes. Their solution assumes that the ultimate goal of the malicious nodes is
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to mutate the random graph in a hub-based graph, hub for which malicious
nodes gain the lead. Once this goal is reached, malicious nodes can very quickly
and easily subvert the whole overlay by performing denial-of-service attacks.
Conducting a hub attack mainly consists for malicious nodes in increasing their
in-degree. Jesi et al. [18] propose to detect highly popular nodes by extending
classic node sampling services with a module that identifies and blacklists nodes
that have an in-degree much higher than the other nodes of the overlay. This
approach, also adopted in several structured based overlays [19] through auditing
mechanisms, or in sensor networks [20], is effective only if the number of malicious
nodes is very small with respect to the size of the overlay, typically of O(log |S|).

Recently, Bortnikov et al. [16] have proposed a uniform sampling algorithm
that tolerates up to a linear number of malicious nodes. Their sampling mecha-
nism exploits the properties offered by min-wise permutations. Specifically, the
sampling component is fed with the stream of node ids periodically gossiped by
nodes, and outputs the node id whose image value under the randomly chosen
permutation is the smallest value ever encountered. Thus eventually, by the prop-
erty of min-wise permutation, the sampler converges towards a random sample.
By limiting the number of requests malicious nodes can periodically issue, their
solution requires a single node id to be stored in the local memory. Nevertheless,
their solution does not satisfy the ergodicity property as convergence toward a
random sample is permanent. It is worth noting that our results complement
two previous results [6, 7], in which both papers propose an analysis of the class
of uniform and ergodic sampling protocols. Each paper provides a complete an-
alytical proof of a gossip-based protocol that reaches both U and E . However, in
contrast to the present work, adversarial behaviors were not considered.

Finally, taking a completely different approach from the previously mentioned
papers, which are based on gossip algorithms or on distance function properties,
the techniques presented in [29, 30] rely on social network topologies to guard
against Sybil attacks. Both protocols take advantage of the fact that Sybil attacks
try to alter the fast mixing property of social networks to defend against these
attacks. However, in presence of malicious nodes with a high degree, performance
of both protocols degrade drastically.

Note that the analysis presented in this paper is independent from the way the
stream of node ids at each node u has been generated. That is, it may result from
the propagation of node ids through gossip-based algorithms (namely through
push, pull or push-pull mechanisms initiated by u and its neighbors), from the
node ids received during random walks initiated at u, or even from the induced
churn imposed in structured-based overlays.

5 Characterization of the Uniform and Ergodic Sampling

Problem

We start our characterization by showing that the adversary can bias the input
stream in such a way that neither uniform nor ergodic properties can be met.
This is achieved by flooding the input stream with sufficiently many malicious
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node ids. Specifically, Lemma 1 states that for any strategy s, if the number
δm of non unique malicious node ids that appear in the input stream of node
u ∈ N during Ts time units exceeds a given threshold then it is impossible for
any node in the overlay to equally likely appear as a sample of node u, and this
holds forever. Let (C1) be a condition on δm value

δm ≤ Ts − (1 − k)|S|. (C1)

Condition (C1) characterizes the fact that for any honest node v ∈ N , during
the time interval Ts, v has a non-null probability to appear in the input stream.
We have

Lemma 1.

¬(C1) =⇒ ¬U ∧ ¬E .

Proof. Let v ∈ N . Suppose that Condition (C1) does not hold, namely it exists
an adversarial behavior such that

δm > Ts − (1 − k)|S|.

In this case, the number of honest node ids in the input stream at v (i.e., Ts−δm)
is strictly lower than (1 − k)|S|, which means formally that

Ts − δm < (1 − k)|S|.

By assumption (cf. Section 3.1) the overlay is populated by (1 − k)|S| honest
nodes. Thus, as the adversary manages to flood the input stream at v, there
exists at least one node id u ∈ S that will never appear in the stream. Therefore,
whatever the strategy s, v’s sampling component can never output u. Thus,

∀t > T0, P[u ∈ Sv(t)] = 0, (1)

which clearly violates Property U .
Equation (1) can be rewritten as ∃t > T0,∃u ∈ S,∀t′ > t,P[u ∈ Sv(t′)] = 0,

which has for consequence that the set of instants t′ for which u can be sampled
by v is empty. Formally,

P[{t′|t′ > T0 ∧ u ∈ Sv(t′)} = ∅] = 1,

which violates Property E , and completes the proof of the lemma. ⊓⊔

We now assume that Condition (C1) holds. The second lemma states that if
the size of the sampling memory is large enough, then whatever the constrained
adversarial behavior, the sampling component succeeds in exhibiting uniform
and ergodic samples. This makes a sufficient condition to solve our problem.
Specifically, let (C2) be defined as follows

|Γ | < |S|. (C2)

Condition (C2) characterizes the fact that nodes cannot maintain the full knowl-
edge of the population overlay (essentially for scalability reasons). Then,
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Lemma 2.

(C1) ∧ ¬(C2) =⇒ U ∧ E .

Proof. Proof of the lemma is straightforward. By Condition (C1), any node u ∈ S
has a non-null probability to appear in the input stream of any node v ∈ N .
By assumption of the lemma, |Γv| ≥ |S|. Consider the basic strategy s of v’s
sampling component that consists in storing into Γv, any new id read from the
input stream. Then eventually, all the node ids will be present into Γv, and thus
any node u is equally likely to be chosen in Γv, which guarantees Property U .

Moreover, v has the possibility to return infinitely often any node id u present
in Γv. Thus for any time t, the set of instants t′, with t′ > t, such that u is chosen
has a zero probability to be empty, which provides Property E and completes
the proof. ⊓⊔

The following Lemma completes the characterization of the problem, specif-
ically:

Lemma 3.

(C1) ∧ (C2) =⇒ ¬(U ∧ E).

Proof. Suppose that both Conditions (C1) and (C2) hold. Proving that ¬(U ∧E)
is equivalent to showing that (¬E ∨¬U) holds, and thus, that (E =⇒ ¬U) holds.
Suppose that (C1) ∧ (C2) ∧ E is met, we now show that U cannot hold.

Consider any node v ∈ N (the set of honest nodes) and let Γv(t) denote the
content of v’s sampling memory at the instant t. From Condition (C2),

∀t′ ≥ T0,∃u ∈ S, u 6∈ Γv(t′). (2)

In particular, Equation (2) is true for t′ = Ts. Let node w ∈ S be such that
w /∈ Γv(Ts), then by assumption, Property E holds. Thus

∃t > Ts, w /∈ Γv(Ts) ∧ w ∈ Γv(t). (3)

w ∈ Γ
v w ∉ Γ

v

d

a

b c

Fig. 2. Markov chain that represents the evolution of w’s presence in the sampling
memory Γv of node v ∈ N .

The presence of a node id in the local memory of the sampling component can
be represented by a Markov chain. Figure 2 depicts the evolution of w ∈ Γv as a
function of the time. Labels a, b, c and d on the edges represent the probability
of transitions from both states. We have a + c = b + d = 1. From Equation (3),
we have a > 0 and thus, c < 1. We prove by contradiction that d > 0.
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Suppose that d = 0, then ∀t′′ ≥ t, w ∈ Γv(t′′), the state (w ∈ Γv) is absorb-
ing. Suppose that the overlay contains only two nodes, v and w. By assumption,
at least one of the two nodes is honest (k < 1). Let us assume that v is hon-
est (the proof is similar for w). Then, by Condition (C2), we have |Γv| = 1
(the case |Γv| = 0 trivially leads to impossibility). By assumption, we have
∀t′′ ≥ t, w ∈ Γv(t′′) and as |Γv| = 1, we also have ∀t′′ ≥ t, Γv(t′′) = {w}. As a
consequence, whatever the strategy s implemented in v’s sampling component,

∀t′′ ≥ t, P[v ∈ Ss

v
(t′′)] = 0 =⇒ P[{t′′|t′′ > t ∧ v ∈ Ss

v
(t′′)} = ∅] > 0,

contradicting E , and thus contradicting the assumption of the lemma. Thus d > 0
and, a fortiori, b < 1, and no state is absorbing.

Suppose now that U holds. We prove the lemma by contradiction. Consider
again the case where the overlay is populated by only two nodes, v and w.
As above suppose that node v is honest and that |Γv| = 1. The evolution of
the sampling memory at node v can be modeled by a Markov chain as repre-
sented in Figure 3. By assumption, E holds, thus infinitely often, and succes-
sively, both v and w appear in Γv. Moreover also by assumption, U holds, that
is, ∀t ≥ Ts,P[w ∈ Ss

v
(t)] = P[v ∈ Ss

v
(t)] = 1

2
. As a consequence, w has the same

probability as v to be in Γv, whatever the number of times w and v appear in
the stream before time Ts.

 Γ
v
 = {v}  Γ

v
 = {w}

Fig. 3. Markov chain that represents the state of the local memory Γv of v.

Suppose now that node w is malicious. By Condition (C1), node id w can
appear in v’s stream no more than Ts − 1 times during any sliding window of
Ts time units. As |Γv| = 1, a single node id can be stored, and beyond this
node id, no other additional information can be stored. We show that whatever
the strategies s implemented by v’s sampling component, they all lead to a
contradiction.

Blind replacement. At any time t, the sampling component reads the first
node id in the stream, and stores it in Γv in place of the previous one.
By construction, any strategy has to select its output among the elements
stored in Γv, thus the output of the sampling component follows the same
probability distribution as the one observed in the stream. As the adversary
can flood the stream with up to Ts − 1 malicious node ids, this means that
property U cannot be met.

No replacement. Similarly to the blind replacement strategy, node ids are
read from the stream, and stored in Γv up to time t, where t is the first
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time at which a specific node id is read. From time t onwards, this specific
node id is kept in Γv, independently from the node ids read from the stream
after t, leading to an absorbing state of the Markov chain. For instance, this
specific node id can be the smallest image value under a random min-wise
independent function, such as the min-wise permutation [16]. Clearly, this
strategy violates property E .

Probabilistic replacement. This strategy consists in substituting the current
node id in Γv with the next one read from the stream according to a given
probability law. To guarantee that ∀t,P[w ∈ Ss

v
(t)] = P[v ∈ Ss

v
(t)] = 1

2
,

then either both v and w have an equal probability to appear in the stream
or the sampling component must be able to remember the node ids it has
seen in the past to guarantee that, at any time t, each node id has the same
probability to be chosen as sample. The former case does not hold as by
assumption, the adversary can flood the stream with up to Ts − 1 malicious
ids. Moreover, the latter case is impossible as by assumption |Γv = 1|, and
thus a single information can be stored which prevents to store more than a
single piece of information (e.g., it is impossible to store both a node id and
a counter), therefore property U cannot hold.

Thus (C1) ∧ (C2) =⇒ ¬(U ∧ E), which concludes the proof of the lemma. ⊓⊔

The last lemma reformulates the necessary condition of the problem charac-
terization by combining Lemmata 1 and 3.

Lemma 4.

U ∧ E =⇒ (C1) ∧ ¬(C2).

Proof. The contrapositive form of writing Lemma 3 is U ∧ E =⇒ ¬((C1)∧ (C2)),
and thus, by distributivity,

U ∧ E =⇒ ¬(C1) ∨ ¬(C2). (4)

On the other hand, the contraposition of Lemma 1 leads to U ∨ E =⇒ (C1). As
(U ∧ E ⇒ U ∨ E), we have

U ∧ E =⇒ (C1). (5)

By combining Equations 4 and 5, the following holds

U ∧ E =⇒ (C1) ∧ (¬(C1) ∨ ¬(C2)).

Thus,
U ∧ E =⇒ ((C1) ∧ ¬(C1)) ∨ ((C1) ∧ ¬(C2)) .

Due to the principle of contradiction, (C1) ∧ ¬(C1) cannot hold, leading to

U ∧ E =⇒ (C1) ∧ ¬(C2),

which completes the proof. ⊓⊔

The Uniform and Ergodic Sampling Problem defined in Sections 2 and 3 is
completely characterized by the following theorem:
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Theorem 1. (C1) ∧ ¬(C2) is a necessary and sufficient condition for Uniform
and Ergodic Sampling Problem to hold.

Proof. This result follows directly from the statements of Lemma 2 and 4. ⊓⊔

6 Conclusion

In this paper, we have investigated the sampling problem of large-scale unstruc-
tured peer-to-peer systems in adversarial environments. We have first shown
that, if the system cannot provide the means to limit resources of an adversary,
then solving either uniform sampling or ergodic sampling is impossible. We have
then demonstrated that, if this assumption holds and if all honest nodes in the
system have access to a very large memory (in the size of the system) then, the
problem becomes trivially solvable but not yet realistic. Unfortunately, we have
shown that both conditions are necessary and sufficient ingredients to solve the
uniform and ergodic sampling problem in potentially adversarial environments.
Clearly, these strong conditions highlight the damage that adversarial behavior
can cause in large-scale unstructured systems.

As future work, first we intend to study to which extent the adversary model
needs to be weaken to achieve uniform and ergodic sampling in a setting where
the nodes themselves have limited ressources (for instance in terms of memory).
Second, we plan to investigate an approximate version of the sampling primitive
to achieve near uniform and/or near ergodic sampling despite the presence of a
strong adversary. Both studies should have a positive impact for applications ex-
hibiting different requirements in terms of resources (i.e. memory, computational
power and communication complexity) and for settings in which probabilistic
guarantees on samples are sufficient.
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