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51, rue des Mathématiques,

Domaine universitaire de Saint-Martin-d’Hères, France.

January 10, 2011

Krawtchouk polynomials play an important role in coding theory and are also useful in graph theory
and number theory. Although the basic properties of these polynomials are known to some extent, there
is, to my knowledge, no detailed development available. My aim in writing this article is to fill in this gap.

Notation In the following we will use capital letters for (algebraic) polynomials, for example P or P (X);
for the polynomial function associated with a polynomial P , we will use small letters in the parentheses,
for example P (x).

1 Definition and first properties

To begin with, we define a collection of real polynomials Pj , for j ≥ 0, which we will use in the definition
of Krawtchouk polynomials. We set P0 = 1 and, for j ≥ 1,

Pj(X) =
1

j!
X(X − 1) . . . (X − j + 1).

Clearly, for i ≥ j ≥ 0, Pj(i) =
(

i

j

)

. Now we take n,m, s ∈ N, such that m ≤ n and s ≥ 2, and set

Km,n,s(X) =

m
∑

j=0

(−1)jPj(X)Pm−j(n−X)(s− 1)m−j .

The real polynomialKm,n,s is called a Krawtchouk polynomial. For every fixed pair (n, s) ∈ N×N\{0, 1},
there is a set of n+ 1 Krawtchouk polynomials Km,n,s. Clearly K0,n,s is the constant polynomial 1. To
simplify the notation, when the indices n and s are understood, we will write Km for Km,n,s.

Proposition 1.1 Km is a polynomial of degree m, whose leading coefficient is −sm

m! .

proof We first notice that

Pj(X)Pm−j(n−X) =
(−1)m−j

j!(m− j)!
Xm + terms of degree smaller than m,

which implies that

Km(X) =

m
∑

j=0

(−1)m

j!(m− j)!
(s− 1)m−jXm + terms of degree smaller than m.
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However
m
∑

j=0

(−1)m

j!(m− j)!
(s− 1)m−j =

(−1)m

m!

m
∑

j=0

(

m

j

)

(s− 1)m−j =
(−s)m

m!
,

and hence the result. 2

We have a simple expression for the value of the polynomial Km,n,s at certain integers.

Proposition 1.2 For i ∈ {0, . . . , n}, Km,n,s(i) is the coefficient of Xm in the product

(1 + (s− 1)X)n−i(1−X)i.

proof First we have

Km,n,s(0) =

m
∑

j=0

(−1)jPj(0)Pm−j(n− 0)(s− 1)m−j = Pm(n)(s− 1)m =

(

n

m

)

(s− 1)m,

which is the coefficient of Xm in the expression (1 + (s− 1)X)n. It is also easy to see that

Km,n,s(n) = (−1)mPm(n) = (−1)m
(

n

m

)

,

which is the coefficient of Xm in the expression (1−X)n. So the result is true for i = 0 and i = n.
Now let us consider the case where 1 ≤ i ≤ n− 1. We have

(1 + (s− 1)X)n−i = 1 +

(

n− i

1

)

(s− 1)X +

(

n− i

2

)

(s− 1)2X2 + . . .+ (s− 1)n−iXn−i

and

(1 −X)i = 1−

(

i

1

)

X +

(

i

2

)

X2 − . . .+ (−1)iX i.

It follows that the coefficient of Xm in the product of (1 + (s+ 1)X)n−1 and (1−X)i is

m
∑

j=0

(−1)j
(

i

j

)(

n− i

m− j

)

(s− 1)m−j = Km,n,s(i).

This ends the proof. 2

Remark Further on we will use the expressions for Km,n,s(0) and Km,n,s(n) found here, namely

Km,n,s(0) =

(

n

m

)

(s− 1)m and Km,n,s(n) = (−1)m
(

n

m

)

.

Corollary 1.1 The following statement follows directly from the proposition:

K1,n,s(i) = (n− i)(s− 1)− i = (s− i)n− si.

It is very easy to find an explicit expression for the polynomials K1,n,s.

Proposition 1.3 We have

K1,n,s(X) = n(s− 1)− sX.

proof Using Corollary 1.1, we obtain K1,n,s(0) = (s− 1)n and K1,n,s(1) = (s− 1)n− s, from which we
deduce the two coefficients of K1,n,s. 2

From what we have seen, we may obtain a useful recurrence relation.
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Proposition 1.4 For 1 ≤ m, i ≤ n, we have

Km,n,s(i) = Km,n,s(i− 1)−Km−1,n,s(i− 1)− (s− 1)Km−1,n,s(i).

proof We first notice the identity

(1 + (s− 1)X)n−i(1−X)i(1 + (s− 1)X) =
(

(1 + (s− 1)X)n−(i−1)(1−X)i−1
)

(1−X).

The coefficient of Xm on the left-hand side is

Km,n,s(i) + (s− 1)Km−1,n,s(i)

and on the right-hand side is
Km,n,s(i− 1)−Km−1,n,s(i− 1).

This gives us the result. 2

Corollary 1.2 We have

Km,n,s(X) = Km,n,s(X − 1)−Km−1,n,s(X − 1)− (s− 1)Km−1,n,s(X).

proof The polynomials Km,n,s(X) and Km,n,s(X − 1) have the same degree and leading coefficient, so
the degree of their difference is at most m− 1. As the polynomials

Km,n,s(X)−Km,n,s(X − 1) and − (Km−1,n,s(X − 1) + (s− 1)Km−1,n,s(X))

have the same value at n points and m− 1 ≤ n, these polynomials are the same and we have the result
we were looking for. 2

Remark Using the recurrence relation of the proposition, we may successively calculate Km,n,s(1),
Km,n,s(2) and so on up to Km,n,s(m) and so determine the polynomial Km,n,s.

Example To calculate K2,n,s, it is sufficient to obtain K2,n,s(0), K2,n,s(1) and K2,n,s(2). To find
K2,n,s(0), we can use the the expression for Km,n,s(0) found above. We can calculate K2,n,s(1) from the
recurrence relation of the proposition: we need K2,n,s(0) (already calculated), K1,n,s(0) and K1,n,s(1),
which can be found from the expression for K1,n,s (Proposition 1.3). We may also determine K2,n,s(2)
from the recurrence relation of the proposition: we need K2,n,s(1) (already calculated) and K1,n,s(1) and
K1,n,s(2), which can be found using the expression for K1,n,s.

2 A summation formula

The recurrence relation found in the last section enables us to find a formula for the sum of successive
Krawtchouk polynomials. We need a preliminary result.

Lemma 2.1 For j ≥ 0, we have

Pj(X) + Pj+1(X) = Pj+1(X + 1).

proof Let
Q(X) = Pj(X) + Pj+1(X)− Pj+1(X + 1).

For any i ≥ j + 1, we have

Q(i) = Pj(i) + Pj+1(i)− Pj+1(i+ 1) =

(

i

j

)

+

(

i

j + 1

)

−

(

i+ 1

j + 1

)

= 0.

Therefore Q = 0. 2

We now turn to the summation formula.
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Theorem 2.1 For 1 ≤ m ≤ n, we have

m
∑

k=0

Kk,n,s(X) = Km,n−1,s(X − 1).

proof We will prove this result by induction on m. First

K0,n,s(X) +K1,n,s(X) = 1 + n(s− 1)− sX = (n− 1)(s− 1)− s(X − 1) = K1,n−1,s(X − 1),

therefore the theorem is correct for m = 1.
Suppose now that the result is true for m−1 and consider the case m. Using Corollary 1.2, we obtain

m
∑

k=1

Kk,n,s(X) = Km,n,s(X − 1)−K0,n,s(X − 1)− (s− 1)

m−1
∑

k=0

Kk,n,s(X),

which implies that
m
∑

k=0

Kk,n,s(X) = Km,n,s(X − 1)− (s− 1)

m−1
∑

k=0

Kk,n,s(X),

because K0,n,s(X − 1) = 1 = K0,n,s(X). Now

Km,n,s(X − 1) =

m
∑

j=0

(−1)jPj(X − 1)Pm−j(n−X + 1)(s− 1)m−j

and, by hypothesis,

(s− 1)

m−1
∑

k=0

Kk,n,s(X) = (s− 1)Km−1,n−1,s(X − 1)

= (s− 1)

m−1
∑

j=0

(−1)jPj(X − 1)Pm−1−j((n− 1)− (X − 1))(s− 1)m−1−j

=

m−1
∑

j=0

(−1)jPj(X − 1)Pm−1−j(n−X)(s− 1)m−j .

Using Lemma 2.1, we obtain

m
∑

k=0

Kk,n,s(X) =

m−1
∑

j=0

(−1)jPj(X − 1)Pm−j(n−X)(s− 1)m−j + (−1)mPm(X − 1)

=

m
∑

j=0

(−1)jPj(X − 1)Pm−j(n−X)(s− 1)m−j

= Km,n−1,s(X − 1).

Therefore the result is true for m. This finishes the induction step. 2

3 Inner products

For n ∈ N, let us write Rn[X ] for the set of real polynomials of degree not greater than n. Rn[X ] is a real
vector space of dimension n+1. Fixing s ≥ 2, we define an inner product 〈·, ·〉 on Rn[X ] in the following
way:

〈A,B〉 =
n
∑

i=0

(

n

i

)

(s− 1)iA(i)B(i).
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If 0 ≤ m ≤ n, then the polynomial Km,n,s ∈ Rn[X ]. In the next proposition, we will drop the second
and third parameters to simplify the notation.

Proposition 3.1 For 0 ≤ k, l ≤ n, we have

〈Kk,Kl〉 =

{

0 k 6= l

sn(s− 1)k
(

n
k

)

k = l

proof Let us consider the real polynomial in two variables

P (X,Y ) =

n
∑

k=0

n
∑

l=0

(

n
∑

i=0

(

n

i

)

(s− 1)iKk(i)Kl(i)

)

XkY l.

Then

P (X,Y ) =

n
∑

i=0

(

n

i

)

(s− 1)i
n
∑

k=0

Kk(i)X
k

n
∑

l=0

Kl(i)Y
l

=

n
∑

i=0

(

n

i

)

(s− 1)i(1 + (s− 1)X)n−i(1−X)i(1 + (s− 1)Y )n−i(1− Y )i

=

n
∑

i=0

(

n

i

)

((s− 1)(1−X)(1− Y ))
i
((1 + (s− 1)X)(1 + (s− 1)Y ))

n−i

= ((s− 1)(1−X)(1− Y ) + (1 + (s− 1)X)(1 + (s− 1)Y ))
n
.

After simplification, we obtain

P (X,Y ) = sn(1 + (s− 1)XY )n =

n
∑

i=0

sn
(

n

i

)

(s− 1)iX iY i.

Therefore, if k 6= l, then
n
∑

i=0

(

n

i

)

(s− 1)iKk(i)Kl(i) = 0

and, if k = l, then
n
∑

i=0

(

n

i

)

(s− 1)iKk(i)Kl(i) = sn
(

n

k

)

(s− 1)k.

This ends the proof. 2

Corollary 3.1 If A is a real polynomial such that deg(A) = d < m, then

〈Km, A〉 = 0.

proof The polynomials Kk, 0 ≤ k ≤ n, form a basis of Rn[X ]. If deg(A) = d, then A =
∑d

k=0 λkKk and

〈Km, A〉 =

d
∑

k=0

λk〈Km,Kk〉 = 0.

This ends the proof. 2
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4 Another recurrence relation

We have already seen one recurrence relation involving Krawtchouk polynomials. In this section we
present another such relation, which will be useful when studying the roots of Krawtchouk polynomials.
Once again, we will drop the parameters n and s from Km,n,s to simplify the notation.

Theorem 4.1 For 1 ≤ m ≤ n− 1, we have the relation

(m+ 1)Km+1 = (m+ (s− 1)(n−m)− sX)Km − (s− 1)(n−m+ 1)Km−1.

proof We have seen that
n
∑

m=0

Km(i)Xm = (1 + (s− 1)X)n−i(1 −X)i.

If we differentiate both sides of the equation, then we obtain

n−1
∑

m=0

(m+ 1)Km+1(i)X
m = (s− 1)(n− i)(1 + (s− 1)X)n−i−1(1−X)i − i(1 + (s− 1)X)n−i(1−X)i−1.

We now multiply both sides of this expression by (1 + (s− 1)X)(1 −X). Writing A and B for the left-
and right-hand sides, we have

(1+(s−1)X)(1−X)A =

n−1
∑

m=0

(m+1)Km+1(i)X
m+(s−2)

n
∑

m=1

mKm(i)Xm−(s−1)

n+1
∑

m=2

(m−1)Km−1(i)X
m

and

(1 + (s− 1)X)(1−X)B = ((1−X)(s− 1)(n− i)− i(1 + (s− 1)X)) (1 + (s− 1)X)n−i(1 −X)i

= ((sn− n− is) + (n− sn)X)

n
∑

m=0

Km(i)Xm

= (sn− n− is)

n
∑

m=0

Km(i)Xm + (n− sn)

n+1
∑

m=1

Km−1(i)X
m.

Taking the difference of (1 + (s− 1)X)(1−X)A and (1 + (s− 1)X)(1−X)B, we obtain

n−1
∑

m=0

(m+1)Km+1(i)X
m−

n
∑

m=0

(m+(s−1)(n−m)−si)Km(i)Xm+

n
∑

m=1

(s−1)(n−m+1)Km−1(i)X
m = 0.

Hence, for 1 ≤ m ≤ n− 1 and 0 ≤ i ≤ n,

(m+ 1)Km+1(i)− (m+ (s− 1)(n−m)− si)Km(i) + (s− 1)(n−m+ 1)Km−1(i) = 0.

However, the polynomial

Cm = (m+ 1)Km+1 − (m+ (s− 1)(n−m)− sX)Km + (s− 1)(n−m+ 1)Km−1

is of degree not greater than n and has n+ 1 roots. It follows that Cm = 0, which ends the proof. 2

Remark This recurrence relation also allows us to find the polynomials Km successively. For example,
K2 can be obtained from K1 and K0, which we already know. After some calculation, we find

K2 =
1

2

(

(s− 1)2n(n− 1)− s(2ns− 2n− s+ 2)X + s2X2
)

.

When s = 2, the expression is much simpler:

K2 =
(n− 2X)2 − n

2
.
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5 Roots of Krawtchouk polynomials

In this section we will see that all the roots of a Krawtchouk polynomial are real and distinct. We obtain
an interesting relation between the roots of successive Krawtchouk polynomials. To simplify the notation,
we set

am = m+ (s− 1)(n−m) and bm = (s− 1)(n−m+ 1).

Notice that am > 0 and bm > 0.

Proposition 5.1 For 1 ≤ m ≤ n, the polynomial Km has m distinct real roots in the interval (0, n).

proof As

0 = 〈K0,Km〉 =

n
∑

i=0

(

n

i

)

(s− 1)iKm(i)

and Km(0) > 0, the real-valued polynomial function Km(x) changes sign in the interval (0, n). Suppose
that Km(x) changes sign at the points x1 < . . . < xd. These points are roots of Km. As deg(Km) = m,
we have d ≤ m. Suppose that d < m and let

S =

d
∏

i=1

(X − xi).

The polynomial S has x1, . . . , xd as roots. As these roots are simple, the derivative S′ does not have
any of these points as roots. It follows that the real-valued polynomial function S(x) changes sign at
x1, . . . , xd. Thus the polynomial functions Km(x) and S(x) change signs at the same points. Hence the
product S(x)Km(x) is strictly positive (or strictly negative), except at the points x1, . . . , xd, where its
value is 0. Therefore 〈S,Km〉 > 0 (or < 0). However, this contradicts Corollary 3.1 and so d = m, i.e.
Km has m distinct roots in the interval (0, n). 2

Remark As deg(Km) = m, the roots of Km are necessarily simple.

We will now look at the ‘interlacing’ property of the roots of Krawtchouk polynomials.

Theorem 5.1 If the roots of Km are x1 < . . . < xm and those of Km+1 are y1 < . . . < ym+1, then

0 < y1 < x1 < y2 < x2 < . . . < xm < ym+1 < n.

proof We will prove the result by induction on m. We first notice that, from Theorem 4.1, we have

(m+ 1)Km+1 = (am − sX)Km − bmKm−1.

We begin with the case m = 1. Let x1 be the unique root of K1. As K0 = 1 and b1 > 0, K2(x1) < 0.
Also, K2(0) = (s − 1)2

(

n

2

)

> 0 and K2(n) = (−1)2
(

n

2

)

> 0, and so K2 has a root in each of the intervals
(0, x1) and (x1, n). This proves the result for m = 1.

Suppose now that the property is true for m− 1 and consider the case m. Let x1 < . . . < xm be the
roots of Km. Then Km−1(x1) > 0, Km−1(x2) < 0, . . . This implies that Km+1(x1) < 0, Km+1(x2) > 0,
. . . Therefore Km+1 has a root in the interval (xi, xi+1), for i ∈ {1, . . . ,m− 1}. Also, Km+1(0) > 0 and
Km+1(x1) < 0, therefore Km+1 has a root in the in the interval (0, x1). We claim that Km+1 has a root
in the interval (xm, n). We observe that Km+1(n) = (−1)m+1

(

n

m+1

)

and that Km+1(xm) > 0, if m is
even, and Km+1(xm) < 0, if m is odd. This implies that Km+1 has a root in the interval (xm, n). Thus
the result is true for m. This finishes the proof. 2

In the case where s = 2, we can say a little more about the roots. This follows from a simple symmetry
relation.
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Lemma 5.1 For x ∈ R, we have

Km,n,2(n− x) = (−1)mKm,n,2(x).

proof We have

Km,n,2(n− x) =

m
∑

j=0

(−1)jPj(n− x)Pm−j(x)

=

m
∑

t=0

(−1)m−tPm−t(n− x)Pt(x)

= (−1)m
m
∑

t=0

(−1)tPm−t(n− x)Pt(x)

= (−1)mKm,n,2(x).

This ends the proof. 2

Proposition 5.2 The roots of Km,n,2 are symmetric with respect to n
2 . In particular, if m is odd, then

n
2 is a root of Km,n,2.

proof It is sufficient to notice that, if x1 is a root, then so is n− x1. 2

Remark It is particularly interesting to notice that, if m is odd and n even, then Km,n,2 has an integer
root, namely n

2 .
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