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On Krawtchouk polynomials

Krawtchouk polynomials play an important role in coding theory and are also useful in graph theory and number theory. Although the basic properties of these polynomials are known to some extent, there is, to my knowledge, no detailed development available. My aim in writing this article is to fill in this gap.

Notation

In the following we will use capital letters for (algebraic) polynomials, for example P or P (X); for the polynomial function associated with a polynomial P , we will use small letters in the parentheses, for example P (x).

Definition and first properties

To begin with, we define a collection of real polynomials P j , for j ≥ 0, which we will use in the definition of Krawtchouk polynomials. We set P 0 = 1 and, for j ≥ 1, P j (X) = 1 j! X(X -1) . . . (Xj + 1).

Clearly, for i ≥ j ≥ 0, P j (i) = i j . Now we take n, m, s ∈ N, such that m ≤ n and s ≥ 2, and set

K m,n,s (X) = m j=0
(-1) j P j (X)P m-j (n -X)(s -1) m-j .

The real polynomial K m,n,s is called a Krawtchouk polynomial. For every fixed pair (n, s) ∈ N×N\{0, 1}, there is a set of n + 1 Krawtchouk polynomials K m,n,s . Clearly K 0,n,s is the constant polynomial 1. To simplify the notation, when the indices n and s are understood, we will write K m for K m,n,s .

Proposition 1.1 K m is a polynomial of degree m, whose leading coefficient is -s m m! .

proof We first notice that P j (X)P m-j (n -X) = (-1) m-j j!(mj)! X m + terms of degree smaller than m, which implies that

K m (X) = m j=0 (-1) m j!(m -j)!
(s -1) m-j X m + terms of degree smaller than m.

However m j=0 (-1) m j!(m -j)! (s -1) m-j = (-1) m m! m j=0 m j (s -1) m-j = (-s) m m! ,
and hence the result. 2

We have a simple expression for the value of the polynomial K m,n,s at certain integers.

Proposition 1.2 For i ∈ {0, . . . , n}, K m,n,s (i) is the coefficient of X m in the product

(1 + (s -1)X) n-i (1 -X) i .
proof First we have

K m,n,s (0) = m j=0 (-1) j P j (0)P m-j (n -0)(s -1) m-j = P m (n)(s -1) m = n m (s -1) m ,
which is the coefficient of X m in the expression (1 + (s -1)X) n . It is also easy to see that

K m,n,s (n) = (-1) m P m (n) = (-1) m n m ,
which is the coefficient of X m in the expression (1 -X) n . So the result is true for i = 0 and i = n. Now let us consider the case where 1 ≤ i ≤ n -1. We have

(1 + (s -1)X) n-i = 1 + n -i 1 (s -1)X + n -i 2 (s -1) 2 X 2 + . . . + (s -1) n-i X n-i and (1 -X) i = 1 - i 1 X + i 2 X 2 -. . . + (-1) i X i .
It follows that the coefficient of X m in the product of (1 + (s + 1)X) n-1 and (1 -

X) i is m j=0 (-1) j i j n -i m -j (s -1) m-j = K m,n,s (i).
This ends the proof. 2

Remark Further on we will use the expressions for K m,n,s (0) and K m,n,s (n) found here, namely

K m,n,s (0) = n m (s -1) m and K m,n,s (n) = (-1) m n m .
Corollary 1.1 The following statement follows directly from the proposition:

K 1,n,s (i) = (n -i)(s -1) -i = (s -i)n -si.
It is very easy to find an explicit expression for the polynomials K 1,n,s .

Proposition 1.3 We have K 1,n,s (X) = n(s -1) -sX.
proof Using Corollary 1.1, we obtain K 1,n,s (0) = (s -1)n and K 1,n,s (1) = (s -1)ns, from which we deduce the two coefficients of K 1,n,s .

2

From what we have seen, we may obtain a useful recurrence relation.

Proposition 1.4 For 1 ≤ m, i ≤ n, we have K m,n,s (i) = K m,n,s (i -1) -K m-1,n,s (i -1) -(s -1)K m-1,n,s (i).
proof We first notice the identity

(1 + (s -1)X) n-i (1 -X) i (1 + (s -1)X) = (1 + (s -1)X) n-(i-1) (1 -X) i-1 (1 -X).
The coefficient of X m on the left-hand side is

K m,n,s (i) + (s -1)K m-1,n,s (i)
and on the right-hand side is

K m,n,s (i -1) -K m-1,n,s (i -1).
This gives us the result.

2 Corollary 1.2 We have K m,n,s (X) = K m,n,s (X -1) -K m-1,n,s (X -1) -(s -1)K m-1,n,s (X).
proof The polynomials K m,n,s (X) and K m,n,s (X -1) have the same degree and leading coefficient, so the degree of their difference is at most m -1. As the polynomials

K m,n,s (X) -K m,n,s (X -1) and -(K m-1,n,s (X -1) + (s -1)K m-1,n,s (X))
have the same value at n points and m -1 ≤ n, these polynomials are the same and we have the result we were looking for. 2

Remark Using the recurrence relation of the proposition, we may successively calculate K m,n,s (1), K m,n,s (2) and so on up to K m,n,s (m) and so determine the polynomial K m,n,s .

Example To calculate K 2,n,s , it is sufficient to obtain K 2,n,s (0), K 2,n,s (1) and K 2,n,s (2). To find K 2,n,s (0), we can use the the expression for K m,n,s (0) found above. We can calculate K 2,n,s (1) from the recurrence relation of the proposition: we need K 2,n,s (0) (already calculated), K 1,n,s (0) and K 1,n,s (1), which can be found from the expression for K 1,n,s (Proposition 1.3). We may also determine K 2,n,s (2) from the recurrence relation of the proposition: we need K 2,n,s (1) (already calculated) and K 1,n,s (1) and K 1,n,s (2), which can be found using the expression for K 1,n,s .

A summation formula

The recurrence relation found in the last section enables us to find a formula for the sum of successive Krawtchouk polynomials. We need a preliminary result.

Lemma 2.1 For j ≥ 0, we have

P j (X) + P j+1 (X) = P j+1 (X + 1).
proof Let Q(X) = P j (X) + P j+1 (X) -P j+1 (X + 1).

For any i ≥ j + 1, we have

Q(i) = P j (i) + P j+1 (i) -P j+1 (i + 1) = i j + i j + 1 - i + 1 j + 1 = 0. Therefore Q = 0. 2 
We now turn to the summation formula.

Theorem 2.1 For 1 ≤ m ≤ n, we have

m k=0 K k,n,s (X) = K m,n-1,s (X -1).
proof We will prove this result by induction on m. First

K 0,n,s (X) + K 1,n,s (X) = 1 + n(s -1) -sX = (n -1)(s -1) -s(X -1) = K 1,n-1,s (X -1),
therefore the theorem is correct for m = 1. Suppose now that the result is true for m -1 and consider the case m. Using Corollary 1.2, we obtain

m k=1 K k,n,s (X) = K m,n,s (X -1) -K 0,n,s (X -1) -(s -1) m-1 k=0 K k,n,s (X), which implies that m k=0 K k,n,s (X) = K m,n,s (X -1) -(s -1) m-1 k=0 K k,n,s (X), because K 0,n,s (X -1) = 1 = K 0,n,s (X). Now K m,n,s (X -1) = m j=0
(-1) j P j (X -1)P m-j (n -X + 1)(s -1) m-j and, by hypothesis,

(s -1) m-1 k=0 K k,n,s (X) = (s -1)K m-1,n-1,s (X -1) = (s -1) m-1 j=0 (-1) j P j (X -1)P m-1-j ((n -1) -(X -1))(s -1) m-1-j = m-1 j=0
(-1) j P j (X -1)P m-1-j (n -X)(s -1) m-j .

Using Lemma 2.1, we obtain

m k=0 K k,n,s (X) = m-1 j=0 (-1) j P j (X -1)P m-j (n -X)(s -1) m-j + (-1) m P m (X -1) = m j=0 (-1) j P j (X -1)P m-j (n -X)(s -1) m-j = K m,n-1,s (X -1).
Therefore the result is true for m. This finishes the induction step. 2

Inner products

For n ∈ N, let us write R n [X] for the set of real polynomials of degree not greater than n. R n [X] is a real vector space of dimension n + 1. Fixing s ≥ 2, we define an inner product •, • on R n [X] in the following way:

A, B = n i=0 n i (s -1) i A(i)B(i). If 0 ≤ m ≤ n, then the polynomial K m,n,s ∈ R n [X].
In the next proposition, we will drop the second and third parameters to simplify the notation.

Proposition 3.1 For 0 ≤ k, l ≤ n, we have

K k , K l = 0 k = l s n (s -1) k n k k = l
proof Let us consider the real polynomial in two variables

P (X, Y ) = n k=0 n l=0 n i=0 n i (s -1) i K k (i)K l (i) X k Y l . Then P (X, Y ) = n i=0 n i (s -1) i n k=0 K k (i)X k n l=0 K l (i)Y l = n i=0 n i (s -1) i (1 + (s -1)X) n-i (1 -X) i (1 + (s -1)Y ) n-i (1 -Y ) i = n i=0 n i ((s -1)(1 -X)(1 -Y )) i ((1 + (s -1)X)(1 + (s -1)Y )) n-i = ((s -1)(1 -X)(1 -Y ) + (1 + (s -1)X)(1 + (s -1)Y )) n .
After simplification, we obtain

P (X, Y ) = s n (1 + (s -1)XY ) n = n i=0 s n n i (s -1) i X i Y i . Therefore, if k = l, then n i=0 n i (s -1) i K k (i)K l (i) = 0 and, if k = l, then n i=0 n i (s -1) i K k (i)K l (i) = s n n k (s -1) k .
This ends the proof.

2 Corollary 3.1 If A is a real polynomial such that deg(A) = d < m, then K m , A = 0. proof The polynomials K k , 0 ≤ k ≤ n, form a basis of R n [X]. If deg(A) = d, then A = d k=0 λ k K k and K m , A = d k=0 λ k K m , K k = 0.
This ends the proof. 2

Another recurrence relation

We have already seen one recurrence relation involving Krawtchouk polynomials. In this section we present another such relation, which will be useful when studying the roots of Krawtchouk polynomials.

Once again, we will drop the parameters n and s from K m,n,s to simplify the notation.

Theorem 4.1 For 1 ≤ m ≤ n -1, we have the relation

(m + 1)K m+1 = (m + (s -1)(n -m) -sX)K m -(s -1)(n -m + 1)K m-1 .
proof We have seen that

n m=0 K m (i)X m = (1 + (s -1)X) n-i (1 -X) i .
If we differentiate both sides of the equation, then we obtain

n-1 m=0 (m + 1)K m+1 (i)X m = (s -1)(n -i)(1 + (s -1)X) n-i-1 (1 -X) i -i(1 + (s -1)X) n-i (1 -X) i-1 .
We now multiply both sides of this expression by (1 + (s -1)X)(1 -X). Writing A and B for the leftand right-hand sides, we have

(1+(s-1)X)(1-X)A = n-1 m=0 (m+1)K m+1 (i)X m +(s-2) n m=1 mK m (i)X m -(s-1) n+1 m=2 (m-1)K m-1 (i)X m and (1 + (s -1)X)(1 -X)B = ((1 -X)(s -1)(n -i) -i(1 + (s -1)X)) (1 + (s -1)X) n-i (1 -X) i = ((sn -n -is) + (n -sn)X) n m=0 K m (i)X m = (sn -n -is) n m=0 K m (i)X m + (n -sn) n+1 m=1 K m-1 (i)X m .
Taking the difference of (1 + (s -1)X)(1 -X)A and (1 + (s -1)X)(1 -X)B, we obtain

n-1 m=0 (m + 1)K m+1 (i)X m - n m=0 (m + (s -1)(n -m) -si)K m (i)X m + n m=1 (s -1)(n -m + 1)K m-1 (i)X m = 0. Hence, for 1 ≤ m ≤ n -1 and 0 ≤ i ≤ n, (m + 1)K m+1 (i) -(m + (s -1)(n -m) -si)K m (i) + (s -1)(n -m + 1)K m-1 (i) = 0.
However, the polynomial

C m = (m + 1)K m+1 -(m + (s -1)(n -m) -sX)K m + (s -1)(n -m + 1)K m-1
is of degree not greater than n and has n + 1 roots. It follows that C m = 0, which ends the proof. 2

Remark This recurrence relation also allows us to find the polynomials K m successively. For example, K 2 can be obtained from K 1 and K 0 , which we already know. After some calculation, we find K 2 = 1 2 (s -1) 2 n(n -1)s(2ns -2ns + 2)X + s 2 X 2 .

When s = 2, the expression is much simpler:

K 2 = (n -2X) 2 -n 2 .
Lemma 5.1 For x ∈ R, we have K m,n,2 (nx) = (-1) m K m,n,2 (x).

proof We have This ends the proof. 2

Proposition 5.2 The roots of K m,n,2 are symmetric with respect to n 2 . In particular, if m is odd, then n 2 is a root of K m,n,2 .

proof It is sufficient to notice that, if x 1 is a root, then so is nx 1 . 2

Remark It is particularly interesting to notice that, if m is odd and n even, then K m,n,2 has an integer root, namely n 2 .

  j P j (nx)P m-j (x) m-t P m-t (nx)P t (xt P m-t (nx)P t (x) = (-1) m K m,n,2 (x).

Roots of Krawtchouk polynomials

In this section we will see that all the roots of a Krawtchouk polynomial are real and distinct. We obtain an interesting relation between the roots of successive Krawtchouk polynomials. To simplify the notation, we set

Notice that a m > 0 and b m > 0.

Proposition 5.1 For 1 ≤ m ≤ n, the polynomial K m has m distinct real roots in the interval (0, n).

proof As

and K m (0) > 0, the real-valued polynomial function K m (x) changes sign in the interval (0, n). Suppose that K m (x) changes sign at the points x 1 < . . . < x d . These points are roots of K m . As deg

The polynomial S has x 1 , . . . , x d as roots. As these roots are simple, the derivative S ′ does not have any of these points as roots. It follows that the real-valued polynomial function S(x) changes sign at x 1 , . . . , x d . Thus the polynomial functions K m (x) and S(x) change signs at the same points. Hence the product S(x)K m (x) is strictly positive (or strictly negative), except at the points x 1 , . . . , x d , where its value is 0. Therefore S, K m > 0 (or < 0). However, this contradicts Corollary 3.1 and so d = m, i.e. K m has m distinct roots in the interval (0, n). 2

Remark As deg(K m ) = m, the roots of K m are necessarily simple.

We will now look at the 'interlacing' property of the roots of Krawtchouk polynomials.

Theorem 5.1 If the roots of K m are x 1 < . . . < x m and those of K m+1 are y 1 < . . . < y m+1 , then

proof We will prove the result by induction on m. We first notice that, from Theorem 4.1, we have

We begin with the case m = 1. Let x 1 be the unique root of

2 n 2 > 0, and so K 2 has a root in each of the intervals (0, x 1 ) and (x 1 , n). This proves the result for m = 1.

Suppose now that the property is true for m -1 and consider the case m. Let x 1 < . . . < x m be the roots of K m . Then K m-1 (x 1 ) > 0, K m-1 (x 2 ) < 0, . . . This implies that K m+1 (x 1 ) < 0, K m+1 (x 2 ) > 0, . . . Therefore K m+1 has a root in the interval (x i , x i+1 ), for i ∈ {1, . . . , m -1}. Also, K m+1 (0) > 0 and K m+1 (x 1 ) < 0, therefore K m+1 has a root in the in the interval (0, x 1 ). We claim that K m+1 has a root in the interval (x m , n). We observe that K m+1 (n) = (-1) m+1 n m+1 and that K m+1 (x m ) > 0, if m is even, and K m+1 (x m ) < 0, if m is odd. This implies that K m+1 has a root in the interval (x m , n). Thus the result is true for m. This finishes the proof. 2

In the case where s = 2, we can say a little more about the roots. This follows from a simple symmetry relation.