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Abstract

Histopathological examination is a powerful method for the prognosis of critical diseases. But, despite significant
advances in high-speed and high-resolution scanning devices or in virtual exploration capabilities, the clinical analysis
of Whole Slide Images (WSI) largely remains the work of human experts. We propose an innovative platform in which
multi-scale computer vision algorithms perform fast analysis of a histopathological WSI. It relies on specific high and
generic low resolution image analysis algorithms embedded in a multi-scale framework to rapidly identify the high power
fields of interest used by the pathologist to assess a global grading. GPU technologies as well speed up the global
time-efficiency of the system. In a sense, sparse coding and sampling is the keystone of our approach. In terms of
validation, we are designing a computer-aided breast biopsy analysis application based on histopathology images and
designed in collaboration with a pathology department. The current ground truth slides correspond to about 36,000
high magnification (40X) high power fields. The time processing to achieve automatic WSI analysis is on a par with the
pathologist’s performance (about ten minutes a WSI), which constitutes by itself a major contribution of the proposed
methodology.

Keywords: Histopathology, breast cancer, Whole Slide Image, multi-scale analysis, dynamic sampling, virtual
microscope, Graphics Processing Unit

1. Introduction

Histopathology is widely accepted as a powerful gold
standard for prognosis in critical diseases such as breast,
prostate, kidney and lung cancers, allowing to narrow bor-
derline diagnosis issued from standard macroscopic non-
invasive analysis such as mammography and ultrasonog-
raphy. At the molecular/genetic scale as well challenging
methods recently emerged for clinical diagnosis purposes.
However, histomorphology as operated in hospitals is and
will remain the basis for most cancer classification.

The histopathological image analysis process has largely
remained the work of human experts so far. At the hos-
pital level, the task consists in the daily examination of
hundreds of slides, directly impacting critical diagnosis
and treatment decisions. According to pathologists’ opin-
ion [1], such a tedious manual work is often inconsistent
and subjective, lacking traceability and computer assisted
analysis/annotation/grading support tools. In addition,
hospitals will have to manage a shortage of expert pathol-
ogists keen at doing this kind of unrewarding tasks.

A few image analysis algorithms and automated grad-
ing systems dedicated to breast histopathology images have
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already been studied. Estévez et al. [2] and Schnorren-
ber et al. [3] worked on Fine Needle Aspiration (FNA)
biopsies. FNA images are relatively easier to analyze than
WSIs since such an examination has limited diagnostic op-
tions and produces mostly well separated cells over a well-
contrasted background. Petushi et al. [4, 5] introduced
a system able to label several histological and cytological
microstructures in high resolution frames, including differ-
ent grades of epithelial cells, fat cells and stroma. Doyle
et al. [6, 7] proposed a method based on geometrical fea-
tures, to distinguish between healthy tissue, low grade and
high grade cancer. Tutac et al. [8] initiated an innovative
knowledge guided approach relying on the prior modeling
of medical knowledge using ontology designed according
to the clinical standard called Nottingham Grading Sys-
tem [9]. An extension to this work involving multi-scale
approaches was proposed by Dalle et al. [10].

In close collaboration with a histopathology depart-
ment, we built up a high-speed WSI analysis platform able
to detect scale-dependent meaningful regions of interest in
microscopic biopsy images. This platform is dedicated to
the grading of breast cancer for prognosis purposes but
the methodology we present here is quite generic. We
use a standard optical microscope that can be found in
most of the analysis laboratories in pathology or bacteri-
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ology (in our case, an optical microscope Olympus BX51,
with 4X/10X/40X/60X/100X possible magnifications, Prior
H101A ProScanII motorized X/Y stage and Z focus with a
travel range of 114mm×75mm and a minimum step size of
0.02μm, and a 1280×1024 pixels digital camera MediaCy-
bernetics “EvolutionLC color” IEEE1394 MegaPixel). We
use a MediaCybernetics controller connected to the micro-
scope to perform an acquisition of high power fields/frames
(in our study at 40X magnification according to the request
of the pathologist for the high resolution analysis). The
acquired 40X high power fields are stitched together in or-
der to obtain the WSI.

To the best of our knowledge, most of the previous
research works focused on the analysis of individual high
resolution frames [11] and/or proposed solutions too com-
putationally expensive to be applied at the WSI level [12].
A few notable exceptions [13] rely on the analysis of lower
resolution images for the selection of regions of interest.
Unfortunately, there is little correlation between low res-
olution images and the actual levels of nuclear pleomor-
phism observable at high resolution for instance. There-
fore, even such methods proved to be inefficient for the
particular issue of nuclear pleomorphism assessment on
full biopsy slides. As a consequence, the time-efficiency
problem posed by the extremely large scale of biopsy im-
ages (several thousands of frames) still lacks a practical
solution.

In this work, we propose solutions to improve efficiency
of such a microscopic platform both in terms of speed and
precision, in particular with a multi-scale dynamic sam-
pling approach and the use of GPU programming. The
processing of a WSI starts by the detection of invasive
regions of interest (ROI) at low resolution level (1.2X).
This method relies on a bio-inspired visual information
paradigm related to sparse coding and Graphics Process-
ing Unit (GPU) implementation to dramatically speed-
up the processing line. This part will be detailed in Sec-
tion 2. Once the ROIs are detected, a map of local can-
cer grades is established using a new generic multi-scale,
computational geometry-based dynamic sampling method
combined with high-resolution application specific image
analysis algorithms. Then, this map is used to analyze the
WSI within an operational time frame compatible with the
pathology department’s needs and on a par with the pro-
cessing time of an experimented pathologist. This part will
be detailed in Section 3. Finally, Section 4 elaborates on
the results and validation issues and Section 5 is dedicated
to conclusions, future research directions and challenges.

2. Low Resolution Analysis and Sparse Coding

Region of interest (ROI) detection is a fundamental
phase of breast cancer grading for histopathological im-
ages. Pathologists identify ROIs to efficiently select the
most important invasive areas for the grading process.
Since neither pathologists nor computers are able to ex-
plore every details at high magnification within a reason-

able time, the effective and efficient choice of the ROI is
thus a critical step.

In this study, ROI detection is casted as as a classifica-
tion problem. The low magnification analysis will deter-
mine if a given region is an invasive area in a similar man-
ner as a pathologist would do when evaluating a biopsy. In
order to mimic this behaviour, we exploit the relationship
between human vision and neuroscience [14].

In the visual system, a set of opponent photo-receptors
forms a Receptive Field (RF). These photoreceptors form
a field which is called ganglion RF since they collect vi-
sual information and send neural spikes to a ganglion cell.
Eventually, the ganglion cells produce various stimulations
and send them to the primary visual cortex [15].

In the primary visual cortex, there are two major kinds
of cells: simple- and complex-cells. Generally speaking,
these cells produce two kinds of visual features: first- and
second-order features [16]. The first-order feature contains
the information of intensities of various color channels, and
the second-order feature includes spatial variance of visual
signal [17, 18].

In this study, we simulate some mechanisms of the hu-
man visual system, generate the first- and second- order
features as the mechanisms in the human visual system.
However, the human visual system and the brain is rather
complex. Until now, it is not possible to simulate all of
the function of the brain. Thus, in this study, we consider
a classification algorithm for distinguishing the difference
between the invasive area and normal tissue base on the
visual information. Meanwhile, in order to accelerate this
task, we make use of GPU technology. That is, the possi-
bilities of the parallelization is also considered. As a result,
we are able to use the proposing algorithm in practice.

2.1. Parallel Computing with GPU
A Graphics Processing Unit (GPU), has been involved

in this study in order to achieve the goal of efficient perfor-
mance. GPU is a specialized processor that offloads graph-
ics rendering from the microprocessor. The highly parallel
structure of the GPU makes the computing more effective
than general-purpose CPUs for a range of complex algo-
rithms. In a personal computer, a GPU can be present on a
video card. The GPU were coined by NVIDIA marketing
in 1999. Currently, most of the new desktop and note-
book computers have integrated GPUs, which are usually
far less powerful than those on a dedicated video card.

NVIDIA GPU comes with many streaming multipro-
cessors (SMs), each with many scalar cores (SPs) (see
Fig. 1). Threads running on the cores within an SM can
communicate with each other using shared memory. The
unit of thread execution on the SP is a kernel and this is
executed in concert with many other threads that form a
block. Many blocks can be scheduled on the GPU, how-
ever a block is assigned only to one SM and as the results,
threads across blocks should not rely on communications
with each other. Blocks are scheduled by the GPU as and
when the SMs have resources available to control them.

2



device global memory

SP
sh

ar
ed

 m
em

or
y

SM

…

SP

SP

SP

sh
ar

ed
 m

em
or

y

SM

…

SP

SP

SP

sh
ar

ed
 m

em
or

y

SM

…

SP

SP

SP

sh
ar

ed
 m

em
or

y

SM

…

SP

SP

…

Figure 1: The architecture of GPU.
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(a) Cone-cell sensitivities for var-
ious wavelengths of light.

350 400 450 500 550 600 650 700 750
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

wavelength (nm)

ra
di

an
ce

 (
w

/s
r*

m
2/

nm
)

(b) Spectrum of a typical CRT
screen.

Figure 2: Retina and screen coefficients.

2.1.1. Compute Unified Device Architecture
Compute Unified Device Architecture (CUDA) is the

computing engine in NVIDIA GPU that is accessible to
software developers through industry standard program-
ming languages.

CUDA Basic Linear Algebra Subprograms (CUBLAS)
is an implementation of basic linear algebra subprograms
on the top of the CUDA driver. It allows access to the
computational resources of NVIDIA GPU. The library is
self-contained at the API level. Thus, no direct interaction
with the CUDA driver is necessary.

Although the CUDA and CUBLAS provide various ad-
vantages on the development. However, the algorithms in
the proposed model is not that trivial since the limitations
of the parallel processing architecture. For example, in the
most recent version of CUDA, the version 3.0, some fre-
quently used matrix operations, such as matrix inversion,
is not included. Thus, for the sake of implementing the
algorithms in the proposed model, some alternate mathe-
matical matrix operations are required.

2.2. Color Representation
In this section, we aim at discovering the relationship

between the contents on the screen displaying a breast
biopsy image and the decision-making procedure which is
performed when a pathologist is analyzing the image on
the screen.

In order to extract the related visual reactions of hu-
man visual system, we need some parameters. First, the

sensitivity of the photoreceptors in the visible spectrum.
A well-known cone-cell sensitivity factor in visible spec-
trum is presented in Fig. 2a [19, 20]. Second, the radiance
factor in the visible spectrum of the screen is required in
order to evaluate the energy which might be received by
the human visual system. Fig. 2b shows a radiance fac-
tor in the visible spectrum of a typical CRT screen. Most
modern screens provide Gamma correction, Gamma Dis-
play Functions (GDC) of the screen are also required to
evaluate the radiance emitted by the screen based on the
following transformation:

⎡
⎣

l
m
s

⎤
⎦ = a ·T ·

⎡
⎣

Γred(r)
Γgreen(g)
Γblue(b)

⎤
⎦ , (1)

where r, g, b are the colors of the pixel, Γred(·), Γgreen(·),
and Γblue(·) are GDC functions used to reconstruct the
Gamma correction, s is a necessary scale in order to nor-
malize the input values, T is a 3 × 3 matrix which is the
linear combination of the cone-cell sensitivity factor and
the radiance factor in visible spectrum. l, m, and s rep-
resent the neural activities of various cone cells. Further
details can be found in [19, 20, 21].

There are many arguments that compare the pros and
cons among various color spaces. According to Geusebroek
et al., the opponent color theory can be applied to com-
puter vision and implemented as the Gaussian color model
[22, 23, 24, 25]. In a Gaussian color model, the opponent
colors can be obtained by:

ured = log(l), ugreen = log(m), and

ublue = log(s), uyellow = log(1
2 (l + m)). (2)

Here (ured, ugreen) and (ublue, uyellow) are used to describe
the opponent colors: Red-Green (RG), Blue-Yellow (BY),
and Luminance (L):

⎧
⎨
⎩

vRG = ured − ugreen

vBY = ublue − uyellow

vL = 2
3 (ured + ugreen + ublue) − 1

(3)

Those color pairs and the luminance information can be
used to describe the visual signal of the human visual sys-
tem [15, 22, 21].

Based on these color information, the human visual
system is able to extract such features from images. In
our method, these feature extraction algorithms include
intensity, color and texture perception.

2.3. First Order Feature
2.3.1. Receptive Field

In the human visual system, the Receptive Field (RF)
of a ganglion is considered as the fundamental element
[15]. In the first order extraction, the RF is defined as
a set of pixels sampled over a specific area. Ideally, we
should compute all of the pixels in this area. However, in
order to reduce the computational cost, only some pixels in
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Figure 3: An example of breast biopsy (histopathology)
image from our virtual microscopic platform. The resolu-
tion of the image is 8.3μm/pixel at 1.2X (12 times) mag-
nification. One point (the black cross) is chosen by user
click. For the first order feature, a number of points (the
blue dots) are obtained based on multivariate Gaussian
distribution. For the second order feature, a number of
patches (the green rectangles) are obtained in a similar
way. The covariances are Σ11 = Σ22 = 1000 pixels and
Σ12 = Σ21 = 0.

this area are selected according to a sampling distribution.
The sampling distribution ps(l) is based on a multivariate
Gaussian distribution such that

ps(l) � N (µs,Σs), (4)

where l = (l1 . . . li . . . lm), li ∈ R
2 is a set of locations of

data points, µs = [x, y]T is the mean of the Gaussian dis-
tribution, (x, y) is the location of the sampling point, and
Σs is the covariance matrix.

2.3.2. First Order Feature Extraction
When a RF is chosen, a set of pixel locations l =

(l1 . . . li . . . lm), li ∈ R
2 is generated. We obtain the Her-

ing’s opponent color space: Red-Green (RG), Blue-Yellow
(BY), and the Luminance (L) information as follows:

vi = [vRG(li), vBY(li), vL(li)], i = 1 . . .m. (5)

According to Geusebroek et al., the opponent color the-
ory can be applied to computer vision and implemented as
the Gaussian color model [22, 23, 24, 25]. Thus, all vi can
be used to generate a multivariate Gaussian distribution
using a fast parallelized Expectation Maximization accel-
erated by GPU [26]:

p1(v) � N (µ1,Σ1). (6)

The mean µ1 and the covariance matrix Σ1, can be ob-
tained. In our study, µ1 and Σ1 are defined as the first
order features.

2.4. Second Order Feature
Second-order features cannot be detected by mecha-

nisms only sensitive to intensity changes. It is ubiquitous
in visual scenes, but the neuronal mechanisms mediating
perception of such stimuli are not well understood [27, 28].

Most research works agree that the second-order fea-
ture includes spatial variance of visual signal [17, 18]. In
order to extract the basis, various methods were proposed.
Generally speaking, most of them invoke one or several
basis analysing algorithms. Those algorithms include Ga-
bor filtering, Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), Sparse Coding, etc.
Advantages and disadvantages of each of them have been
actively compared. Olsausen et al. introduced the sparse
coding for natural images in [29] assessing its performances
in comparison with the PCA approaches (see Fig. 1 in
[29]). They concluded that the principal components do
not arise as a result of the oriented structures in whitened
natural images. Karklin et al. in [30] and Willmore et al.
in [31] compared more thoroughly various methods includ-
ing sparse coding, Gabor filtering, PCA, and ICA in terms
of cost and performance.

In this work, we propose a model based on sparse cod-
ing, similar to Karklin’s model [32]. First, the basis vectors
of various channels are extracted by sparse coding. Next,
the related coefficients of these basis vectors for various
images can be obtained. Third, the Gaussian distribution
of these coefficients can be generated. Finally, the parame-
ters μ and σ are obtained and are considered as the second
order features.

This model has the following advantages: it uses the
same color space as the first order feature extraction. As
a result, the computation time of the algorithm can be
reduced. Another benefit is that some components in the
system can be reused in this model. [33], Hyvärinen et al.
indicated the similarity between the ICA and the sparse
coding as well. Since the sparse coding has been proven
suitable for implementation in GPU [34], this approach
constitutes a definite, practical asset in order to increase
the time-efficiency of the system.

The sparse coding is described as follows: assume an
image of a natural scene contains k pixels. Each image
is stacked as a vector xi. Sparse coding [29, 35] suggests
that m natural scenes defined by x1 . . .xm ∈ R

k can be de-
scribed in terms of a linear combination of n basis vectors
b1 . . .bn ∈ R

k and coefficients s1 . . . sm ∈ R
n with:

xi ≈
∑

j

bjsj,i , i = 1 . . .m, (7)

where si = [s1,i . . . sn,i]. The basis set can be over-complete
(n > k) if the maximum k exists.

Basis vectors b1 . . .bn and coefficients s1 . . . sn are ob-
tained using a training set x1 . . .xm. Thus, the optimiza-
tion problem for b and s corresponds to the minimization
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of:
m∑

i=1

1
2σ2 ‖xi −

n∑
j=1

bjsj,i‖2 + β
m∑

i=1

n∑
j=1

φ(sj,i),

with ‖bj‖2 ≤ c, j = 1 . . . n,
(8)

where σ2 is the variance of the noise, φ(·) a sparsity func-
tion, and β a constant.

Many methods can solve this optimization problem. A
popular method is to consider one of the parameters in
(8) as a convex function, and the other as the coefficient.
By using an iteration loop, the minimization of (8) can be
worked out. For example, first, hold the b and optimize
the s. Then, hold the new s and optimize the b. The
iteration continues until the cost function (8) is minimized.
It can be implemented on GPU by the following algorithm
proposed by Madhavan [34]:

• Parallelized coordinate descent algorithm: hold the
B in (8), and evaluate the S. Thus, (8) becomes the
following minimization problem:

minxf(x) =
1
2
||y − Ax||2 + γ||x||1. (9)

Thus, for each optimal xj , the x∗
j can be obtained

by:

x∗
j =

⎧
⎪⎨
⎪⎩

0, if | − yT a(j)| < γ
yT a(j)−γ
a(j)T a(j) , if (−yT a(j)) < −γ
yT a(j)+γ
a(j)T a(j) , if (−yT a(j)) > γ

(10)

• Learning bases using projected gradient descent: hold
the S in (8), and evaluate the B. Thus, (8) becomes
the following minimization problem:

minx||X − BS||2F , (11)

The optimal B can be obtained by projected gradient
descent:

B := B − η �B ||X − BS||2F , (12)

constrained at each step by scaling B down such
that:

k∑
i=1

B2
i,j ≤ c, ∀j = 1, . . . , m. (13)

where
�B||X − BS||2F = −2(X − BS)ST . (14)

Receptive Field
First, following (4), a set of data point locations l1 . . . lm ∈

R
2 are generated. Let li be the center of an image patch,

from which a set of patches x1 . . .xm can be obtained:

xi = I(li − d), (15)

where d = [n1, n2]T and I represents a channel obtained
from the input image, −N ≤ n1 < N , and −N ≤ n2 < N ,
and N indicates the size of the patches. In the exper-
iments, N = 10 pixels. Since all patches x1 . . .xm are
captured from the same region, they share the same fea-
tures. Thus, the texture can be encoded by coefficients sj,i

in (7) and (8) with a set of basis vectors bj , which need to
be obtained previously. All sj,i of RG: sRGj,i, BY: sBYj,i,
and L: sLj,i construct

cj,i = [sRGj,i(li), sBYj,i(li), sLj,i(li)], and
i = 1 . . .m and j = 1 . . . n. (16)

All cj,i generate a multivariate Gaussian probability dis-
tribution using a fast parallel expectation maximization
accelerated by GPU [26]:

p2(c) � N (µ2,Σ2). (17)

Like the first order feature, the mean µ2 and the covariance
matrix Σ2 are obtained. In our study, µ2 and Σ2 are
defined as the second order features.

2.5. Classification
We described how to generate the first- and second- or-

der features the same way as the mechanisms in the human
visual system do it. For a pathologist, this kind of infor-
mation is processed based on his/her knowledge, memory,
and experience (the mental database). However, we sim-
plify this issue and use a classification method to distin-
guish the invasive areas based on the visual information.
Once again, we make use of GPU technology by leverag-
ing the possibilities of parallelization to speed up again
the analysis performance and provide a practical system
for the end user in terms of time response.

The Support Vector Machine (SVM) is defined as fol-
lowing. A set of training data vectors xi ∈ Rn, i = 1, . . . , m
is given. Each xi includes the first and second order fea-
tures µ1,Σ1, µ2, and Σ2. This set of data vectors is classi-
fied into two classes and is labeled by a vector y such that
yi ∈ {1,−1}, i = 1, . . . , m. Training a SVM as a classifier
is equivalent to solve the following primal problem:

min
w,b,ξ

1
2w

Tw + C

m∑
i=1

ξi,

subject to yi(wT φ(xi) + b) ≥ 1 − ξi, (18)

where ξi ≥ 0, i = 1, . . . , m. The dual form of (18) is

min
α

1
2αT Qα −

∑
i

αi,

subject to yT α = 0, (19)

where 0 ≤ αi ≤ C, i = 1, . . . , m, Qij = yiyjK(xi,xj),
and K(xi,xj) ≡ φ(xi)T φ(xj). The SVM is implemented
on GPU based on Carpenter’s work [36]. In this method,
K(xi,xj) is defined as a Gaussian kernel :

e−λ||xi−xj ||2 . (20)
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Figure 4: 400 basis vectors on 20×20 pixels image patches,
extracted from digitized breast cancer biopsies (virtual mi-
croscope).

With a trained SVM, the hyper-plane is obtained as:

H(x) =
m∑

i=1

yiαiφ(xi)T φ(x) + b, (21)

and the classification is performed according to:

sign(H(x)). (22)

Note that |H(x)| is considered as the confidence degree of
the classification.

2.6. Training and Testing
In the training phase, the pathologist provided digi-

tized breast biopsies with annotated regions of invasive in-
terest area. Then, the basis vectors for sparse coding were
generated from these annotated samples. In the system, a
GPU-based sparse coding was used in order to accelerate
the process. We obtained 400 basis vectors on 20×20 pix-
els image patches, extracted from all channels (red-green,
blue-yellow, and luminance) of the digitized breast cancer
biopsies. The basis vectors of the luminance channel are
presented in Fig. 4. Next, under the supervision of the
pathologist, receptive fields (RFs) were selected by user
click for both the first and second order features. These
RFs included invasive and non-invasive areas validated by
the pathologist (see Fig. 5a). The RFs are the training
patterns of the GPU-based SVM [37].

In the testing phase, a set of RFs were selected on
an input image based on a hexagonal arrangement (see
Fig. 5b). The first and second order features of these RFs
were classified by the trained GPU-based SVM [37] achiev-
ing an average 17-fold speed up for the detection of invasive
areas over the WSIs in comparison with a standard imple-
mentation. However, since only few regions were selected
for classification in order to reduce computation time, an
interpolation with a low-pass Gaussian filtering is applied
to the SVM classification results (see Fig. 5c). The thresh-
old for the invasive ROI detection is set to zero in Fig. 5d.
Last, morphological opening and closing filters are applied
on the results of the thresholding operation.

(a) (b)

Figure 6: (a-b) Examples of segmented critical cell nuclei.

3. Multi-scale Analysis and Sparse Sampling

The Nottingham Grading System (NGS) [9] is based
on an assessment of nuclear pleomorphism, mitotic counts
and tubule formation. However, as for now the goal of
the current study is not the clinical consistency but the
time efficiency. Besides, for the grading assessment, we
are on the process of building up a public image database
with the corresponding clinical scores given by a group
of expert pathologists. As for now, we trained the high-
resolution algorithm at the level of the frame on a semi-
consistent image database of clinical cases that need to be
consolidated in the near future. The global grading of the
WSIs was given by one expert pathologist and still need
to be confirmed by at least two other ones.

3.1. Nuclear Pleomorphism Detection
One important criterion of the NGS is the score of the

nuclear pleomorphism which is assessed on segmented cell
nuclei. Several methods have been proposed for the seg-
mentation of cell nuclei in histological images [6, 38, 39,
40, 41, 42, 43, 44]. These methods are based on traditional
algorithms such as thresholding, watershed, morphological
operations or active contours. The performance of these
methods relies on the accurate segmentation of cell nuclei.
This is computationally expensive when used to detect all
the cells. In contrast, at least for nuclear pleomorphism
scoring (one of the key component in NGS), according to
the pathologist’s knowledge and our experimental results,
it is not necessary to segment all the cell nuclei but only
critical cell nuclei affecting the score.

We refer the reader to [45] for more details about the
high-resolution method that is based on cell segmentation
using critical cell detection algorithm. It includes three
distinctive stages: detection of the cell nuclei, followed by
segmentation, and finally scoring of a population of cell
nuclei (Fig. 6) at the frame level.

Then, the classification of the population of segmented
cell nuclei is based on medical knowledge used by pathol-
ogists when scoring nuclear pleomorphism. Size, round-
ness and texture information of a population are extracted
and used to build a Gaussian distribution that is com-
pared to Gaussian models generated from training data
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(a) (b)

(c) (d)

Figure 5: An example of ROI construction.
(a) Ground truth provided by pathologists over the input image. Usually the ground truth contains two regions: invasive
and not invasive areas.
(b) Result of feature extraction and classification method on a set of equally distributed testing sites. The results are
shown as circles. The red-circles indicate positive areas, and the blue-circles are negative areas. Note that the size of
the circles is related to the hyper-plane H(·).
(c) Low-pass filtering in order to estimate the characteristics on the areas between the testing points.
(d) The region of interest is obtained by thresholding.

for each score. The score of the population of cell nu-
clei is assessed by choosing the closest Gaussian Model to
the Gaussian distribution representing the current popula-
tion. Once again, the final clinical assessment of this score
is still to be done. Only, assessment on a clinically semi-
consistent database of frames has been performed so far.
In particular, the final setting of the parameters weighting
size, roundness and texture information for the computa-
tion of the local score still needs to be learned based on
the database that is currently being built up for public
release.

At the computer-aided diagnosis system level, the scor-
ing of the nuclear pleomorphism can be used in two ways:

• after the ROI detection step(Section 2), to complete
annotation of the frames included in the invasive area
and build a systematic semantic indexing of those
frames;

• as a component of the multi-scale WSI grading ap-
proach presented in following Section 3.2.

Since our frame-level, high-resolution grading algorithm,
although selective, is still too slow to aggregate over one

WSI in order to give a global score in a realistic time re-
sponse, we designed a generic multi-scale analysis method
able to further accelerate the WSI grading in addition
to the GPU-based ROI detection step. This corresponds
more or less to the pathologist’s way of processing the WSI
by picking up about ten frames by a semi-informed cogni-
tive sampling, but we do it here in a more systematic way
using computational efficiency.

3.2. Nuclear Pleomorphism Scoring using Multi-Scale Dy-
namic Sampling

The next step of the process requires the computa-
tion of a score for the nuclear pleomorphism over the se-
lected ROIs and not only at the frame level. The score
is computed out of the frame scores having the highest
grade computed by our high-resolution nuclear pleomor-
phism scoring algorithm [45] applied over the whole ROI.
However, a single ROI can be potentially very large, up to
several thousands of high-resolution frames in some cases,
making such exhaustive analysis intractable . Whereas the
current research effort in histopathology image analysis fo-
cuses essentially on processing high-resolution frames and
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Figure 7: Multi-Scale Dynamic Sampling flowchart.

(a) (b)

(c) (d)

Figure 8: Dynamic sampling method applied over a WSI
based on the ROI extraction. The incrementally con-
structed Voronoi diagrams are shown in black. Each cell
contains a single sample at its center. The maps result-
ing from the interpolation are shown in colors. Hot colors
represent higher pleomorphism values.
(a) After 50 samples: the whole ROI is being explored. No
area seems favored.
(b) After 150 samples: the algorithm converges towards a
high pleomorphism values area.
(c) After 400 samples: the sampling is very dense around
this area and remains sparse in others.
(d) For illustration, the highest grading area obtained from
the resulting map has been superimposed over a low reso-
lution image of the ROI. Score for nuclear pleomorphism
will be performed with frames picked from within this area.

does not consider the problem at the WSI level, we make
an attempt to develop an innovative method to rapidly
identify the frames of interest necessary for the nuclear
pleomorphism scoring.

Our algorithm aims at drawing a map of the nuclear
pleomorphism levels encountered within the individual ROIs.
In practice, the scoring is performed by the pathologist
based on a few frames of interest picked up because po-
tentially exhibiting the highest grade of cancer in the slide.
Usually, the most cancerous areas can be identified with
the regions having the highest degree of nuclear pleomor-
phism. It is the best indicator to obtain a global map of
the cancer because it can be assessed locally (framewise)
and is precisely quantifiable in a wide, continuous range
(although the Nottingham grading system discretizes it).
In comparison, mitoses are too sparse to be a good local in-
dicator and tubular formations do not distinguish between
different advanced cancers where tubules are absent.

A time-efficient exploration of every ROI is performed
with an original technique that can be described as a multi-
scale dynamic sampling of the frames. The algorithm
progressively identifies and focuses on regions showing a
higher pleomorphism while discarding the rest. By avoid-
ing an exhaustive analysis, it reduces the computation
time by a factor 27 on average as shown by the experi-
mental results in Section 4.

Let I be a specific ROI from the WSI identified with
the ROI selection algorithm described in Section 2. It
comprises a large number of rectangular frames x ∈ I.
For every frame x, the local nuclear pleomorhpism S(x)
(referred as “score”) can be computed using the algorithm
introduced in Section 3.1. The algorithm progressively
identifies and focuses on interesting regions (with a high
S(x)) while discarding the rest.

The following is a basic outline of this dynamic sam-
pling algorithm (more details are available in [46]):

Step 1. First, the dynamic sampling algorithm is initial-
ized using between 3 to 10 frames selected within the ROI.
Then, the score S(x) is computed for these initial samples.
The selection is made using a simple low resolution analy-
sis identifying the main histological components. This im-
proves the robustness of the algorithm over an arbitrary
selection of initial frames that is prone to miss entire com-
ponents.

Step 2. Then, additional samples are dynamically selected
and scored one-by-one in order to provide the most infor-
mation at every step. The most informative samples are
those which are both:

1. most distant from previous samples
2. within areas with a relatively higher pleomorphism

Computational geometry tools are used to efficiently
identify samples verifying condition 1. At each iteration,
given E the frames already sampled in the ROI I, we con-
struct the Voronoi diagram of the centroids of the frames
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in E denoted as VorE . VorE is a collection of Voronoi
cells {νx|x ∈ E}, defined by νx = {p ∈ I|∀y ∈ I −
{x}, dist(p, x) ≤ dist(p, y)}. The set of Voronoi vertices,
later referred as VE are the vertices of the planar graph
representation of VorE . Voronoi vertices share the propri-
ety to be locally the farthest position from their nearest
neighbor in E, therefore in the case of our algorithm from
already sampled frames.

Condition 2 is realized by selecting our next sample x
out of VE such that the score MaxScore(x) of its highest
scoring neighbor in E is higher that p×maxE where maxE

is the currently observed maximal score among E and p ∈
[0, 1] is a preset parameter defining the selectivity of the
algorithm.

In practice, we also impose that the distance between
two samples must be larger than a theshold d effectively
defining the coarseness of the sampling. Both parameters
p and d are dynamically adapted during the whole process
to progressively increase the selectiveness and the fineness
of the sampling. A pseudo-code for one iteration of the
sampling algorithm is given in Algorithm 9.

Input: current samples E, VorE , p, d, maxE

Output: updated values of E, VorE , maxE

1: compute VE

2: sort VE according to decreasing distance to E
3: for every x ∈ VE do
4: if dist(x, E) ≥ d then
5: if MaxScore(x) ≥ p × maxE then
6: E = E ∪ {x}
7: update VorE

8: maxE = max(S(x), maxE)
9: beak loop

10: end if
11: else
12: beak loop
13: end if
14: end for

Figure 9: One iteration of the dynamic sampling algorithm

Step 3. Finally, the graded samples are used in order to
interpolate the grade of all the frames in the ROI. The re-
sulting map precisely details the regions showing the high-
est levels of nuclear pleomorphism which is sufficient to
support an accurate global grading of the ROI. Frames of
interest are selected from these regions and a scoring is
performed with the algorithm described in Section 3.1.

Fig. 7 shows the proposed flowchart and Fig. 8 illus-
trates the algorithm output at different stages. It can be
seen that the algorithm first has an exploratory behav-
ior over the whole ROI, then converges towards areas with
the highest pleomorphism, to finally refine the map around
these areas.

The time complexity of our algorithm is equivalent to
the cost of analyzing the sample frames. Indeed, as proved
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Figure 10: Performance of our system. The AUC is 0.9186.

by Ohya et al. in [47] the incremental construction of
a Voronoi diagram has a constant average cost for every
new added vertex (corresponding to our samples) and is
negligible compared to the cost of analyzing a sample at
high resolution.

4. Results and Discussion

Although application oriented, any microscopic WSI
based system can leverage the ideas developed and as-
sessed in this work to achieve interactive time applica-
tions. This section presents an experimental validation of
the proposed time-efficient WSI analysis framework based
on two major features of the breast cancer grading plat-
form:

• the invasive area detection based on a GPU imple-
mentation and spare coding paradigm;

• the nuclear pleomorphism scoring map based on a
sparse dynamic sampling algorithm.

The ground truth is provided by the pathology depart-
ment from the National University Hospital, Singapore for
nine breast cancer slides, with the annotation of the rele-
vant invasive ROIs (the whole area covered by ROIs was
outlined) and a global score s ∈ {1, 2, 3} for the nuclear
pleomorphism criterion. One slide is made up of about
4, 000 high power fields (representing the high resolution
frames) of size 1024×1024 pixels, acquired at 40X, with a
resolution of 0.25μm/pixel, using Aperio ScanScope R© CS
fast scanner. This represents about 8 gigabytes of data
per slide.

The microscope we presented in the introduction is
used to design the high-resolution algorithm and to set up
our own platform as well.But the ground truth must come
from the digitized histopathological images acquired at the
hospital. In practice, the pathologist is not able to analyze
all the frames. Instead, he/she identifies the invasive areas
at low resolution, before focusing on specific high resolu-
tion frames using his/her experience and his/her mental
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Table 1: Examples of ROIs detected by our system and their corresponding quantitative assessment
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database. The grading is then performed based on these
frames with, in a typical case, the examination of about
only 10 to 40 high power fields.

The following results show that our system is able to
provide a global score within an operational time frame of
about ten minutes.

4.1. Invasive area detection
Fifteen ROIs were annotated out of nine digitized breast

biopsy slides. Two of the ROIs are used as the training
patterns. The global Receiver Operating Characteristic
(ROC) curve and the Clinical Test Performance are shown
in Fig. 10. The global Area Under the Curve (AUC) is
0.9186. We also computed the difference of ROIs between
the results of ROI detection and the ground truth by the
standard Jaccard index:

c =
R ∩ G

R ∪ G
, (23)

where R is our result, and G is the ground truth provided
by the pathologist, and c ∈ (0, 1) is the covering rate.
It should be noticed that the labeling of these ROIs by
the pathologist was rather coarse and the delineation of
these regions can be assessed as not accurate (see Table
1, left column). Anyway, due to the difficulty of such a
task over a WSI we considered it as a first step towards a
global assessment of our system. Despite this limitation,

the average of all of the testing results is c = 0.7077 which
can be considered as a robust score according to the quality
of the ground truth. Results1 are presented in Table 1 with
from left to right the original slide, the first map issued
by the learning process, the interpolated ROI to smooth
the final result and the quantitative assessment by ROC
curves.

In the design of our system, the results are determined
by the sign of the hyper plane H(·) which has been pro-
duced by the SVM-based classification. However, the test
performance suggested that the optimal cut point be −1.1348
corresponding to the equal sensitivity/specificity cut-off
point on the ROC curve. Although almost validated from
a clinical point of view, the main objective of this study
is to assess the methodology from a time-efficient point of
view, which is actually the critical issue for WSI analysis.

In this perspective, the performance of GPU accelera-
tion is presented in Table 2. The overall speed-up gain
(sparse coding and SVM) is about 24-fold faster. The
model of the GPU is GeForce 9400M from NVIDIA. The
computer is Apple Macbook with Intel CPU Core 2 Duo
with 4 gigabytes of memory. With a pre-trained kernel,
the processing time allocated for the low resolution image
ROI detection module is about 120 seconds a WSI. Once

1The full image set can be obtained from IPAL web site http:

//ipal.i2r.a-star.edu.sg/project_MICO.htm
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Table 2: The performance of GPU acceleration.

CPU GPU Speed-up Factor
Sparse coding 1406.759 56.297 about× 25
SVM 92.265 5.427 about× 17
ECM 26.314 2.58 about× 10

these ROIs are detected in a reasonable time frame and at
low resolution, a high-resolution but time-efficient analysis
over these ROIs can be triggered by the dynamic sampling
algorithm.

4.2. Multi-Scale Dynamic Sampling
In order to improve the precision of the sampling pro-

cess, individual high resolution frames are split into four
512 × 512 pixel smaller frames. The map created by our
algorithm is used to retrieve the frames corresponding to
the highest pleomorphism scores. Therefore, we tested its
performances for the retrieval of the set Relf of frames in
the ROI having a pleomorphism value of at least 0.9×max
where max is the global maximum pleomorphism value in
the ROI. Retf refers to the set of frames actually retrieved
by our method for having an interpolated score of at least
0.9×max according to the map. We compute the precision
and the recall defined by:

prec =
|Retf ∩ Relf |

|Retf | rec =
|Retf ∩ Relf |

|Relf | (24)

For the sake of comparison, we also generate maps
based on identical numbers of samples which were ran-
domly selected. Comprehensive benchmark results for the
nine slides can be found in Table 3 (the threshold value
for the amount of selected samples is set to 500). Figures
given in the case of random sampling are average values
over 40 experiments. Note that the amount of “frames
selected as samples” in Table 3 is the amount of frames
selected by the dynamic sampling algorithm to create the
map of the ROI and not the amount of high grade frames
that are subsequently retrieved from the map.

Results show ideal overall performances of our algo-
rithm with a consistent 100.0% precision, which means
that frames selected by our algorithm are systematically
representative of the highest pleomorphism values in the
ROI. Nevertheless, we are conscious that these figures do
not represent the real error risk in terms of precision due
to the limited number of slides. As a matter of fact, un-
like other medical imaging fields like mammography, in
histopathology, no database is yet publicly available. In
addition, fueled by the recent availability of instruments
for digitizing microscope slides, the working group 26 of
the Digital Imaging and Communications in Medicine2

2http://medical.nema.org/

(DICOM) standard is about to release the supplement 145
“Whole Slide Microscopic Image IOD and SOP Classes”.
This explains that validation of systems dealing with WSI
is still quite limited.

The recall rate fluctuates between 25.0% and 100.0%
for an average value of 51.6% which is in any case suf-
ficient to compute a robust nuclear pleomorphism on a
large enough number of high grade frames. This means
that the dynamic sampling method is a valid alternative
to an exhaustive analysis in terms of quality of the scoring.
These figures compare to the 45.8% precision and 4.0% re-
call averages obtained with a map generated from random
sampling.

We also achieved a significant overall speedup: the pro-
portion of analyzed frames ranges from 0.8% to 9.0% with
an average of 3.3% of the ROI. Therefore, our method pro-
duced a clinically semi-consistent nuclear pleomorphisnm
scoring requiring only 3.3% (on average) of the time re-
quired for an exhaustive analysis of the whole slide. As
for now, a more dedicated local scoring must be designed
framewise in order to achieve clinical consistency. How-
ever, the global time response will not be dramatically
affected due to the generecity of the method in which any
sophisticated local scoring function can be plugged in.

4.3. Overall speed-up performance
Processing the whole set of WSI high power fields would

require several dozens of hours. For example, in [12],
a multiscale stochastic texture-based algorithm classifies
specific biological elements for virtual slide analysis of ovar-
ian carcinoma cases in 100 to 300 hours on one processor of
a 3 gigahertz Xeon quadriprocessor. This is prohibitive for
clinical daily use ( but also for large scale biological mod-
elling as needed for the Virtual Human Physiology efoorts
currently carried out worldwide). Usually, a pathologist
analyzes a breast biopsy slide in about ten minutes.

We implemented several mechanisms to speed-up WSI
automatic processing and, regardless the accuracy perfor-
mance, time required by our system to score a slide is on a
par with pathologists’ analysis time. In any case, improv-
ing accuracy performance should not degrade significantly
the processing time performance achieved so far. The key
idea is to mimic the pathologist’s routine when he has to
grade a slide. First of all, the most important point is to
reduce dramatically the number of high power fields to be
processed in detail. To reach this goal, in a first step, we
perform ROI detection at low resolution (by using GPU,
we achieve a speed-up factor of about 24-fold). In a second
step, a multi-scale dynamic sampling selects a small num-
ber of high power fields with the highest concentration of
pleomorphic cells. Precise cell detection and feature com-
putation for scoring the slide, the most time consuming
part of the scoring, is applied only to this small number of
selected relevant high power fields. Only 3.3% of the high
power fields of a slide are thoroughly analyzed on average.
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Table 3: Experimental results.

Case id. Amount of frames Selected as samples Analyzed fraction Dynamic sampling Random sampling
precision recall rate precision recall rate

P1 8400 313 3.7% 1.000 0.684 0.540 0.036
P2 2288 118 5.2% 1.000 0.400 0.340 0.076
P3 9804 422 4.3% 1.000 0.857 0.720 0.051
P4 3744 88 2.4% 1.000 0.250 0.080 0.025
P5 5544 500 9.0% 1.000 0.384 1.000 0.091
P6 22752 500 2.2% 1.000 0.546 0.300 0.016
P7 14628 500 3.4% 1.000 0.268 0.960 0.038
P8 14112 275 1.9% 1.000 0.250 0.160 0.023
P9 10148 79 0.8% 1.000 1.000 0.020 0.004

5. Conclusion

From now, it is a great challenge to propose automated,
time-efficient microscopic WSI analysis systems. The dig-
ital pathology world experiences the same overwhelming
quality and quantity of data to be processed as the satel-
lite world does. Not only has the system to be clinically
pertinent, but it also has to provide results within reason-
able time frame. This work has focused on the latter issue
so far. However, to some extent, it has been proven clin-
ically compliant. The Nottingham Grading System has
not yet been fully implemented and only nuclear pleomor-
phism was tested. We proposed two solutions to speed up
the overall time response of the system: the sparse cod-
ing paradigm embedded in a GPU framework for the pre-
attentive part and the dynamic sampling algorithm to im-
plement the informed picking up of frames operated by the
pathologists. The assessment of our pleomorphism scoring
showed room for improvement of our system from a clini-
cal accuracy point of view but the overall architecture of
the system has proven to yield preliminary clinical insights
within a time frame on a par with the pathologists’ one. As
the nuclear pleomorphism scoring will get more accurate,
the global clinical consistency of our system will improve
without undermining much the overall time-efficiency of
the proposed architecture within which a histopathologi-
cal WSI is automatically analyzed in about ten minutes .
All in all, this architecture can be applied to any micro-
scopic WSI analysis systems regarding the multi-scale and
GPU approaches and then tailored to every specific clinical
or biological applications at the high-resolution level.
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