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Giuliano De Rossi and Andrew Harvey*

Faculty of Economics, Cambridge University

August 20, 2008

Abstract

A time-varying quantile can be �tted by formulating a time se-

ries model for the corresponding population quantile and iteratively

applying a suitably modi�ed state space signal extraction algorithm.

It is shown that such quantiles satisfy the de�ning property of �xed

quantiles in having the appropriate number of observations above and

below. Like quantiles, time-varying expectiles can be estimated by a

state space signal extraction algorithm and they satisfy properties that

generalize the moment conditions associated with �xed expectiles. Be-

cause the state space form can handle irregularly spaced observations,

the proposed algorithms can be adapted to provide a viable means of

computing spline-based non-parametric quantile and expectile regres-

sions.

KEYWORDS: Asymmetric least squares; cubic splines; quantile

regression; signal extraction; state space smoother.
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1 Introduction

The movements in a time series may be described by time-varying quantiles.

These may be estimated non-parametrically by �tting a simple moving av-

erage or a more elaborate kernel. An alternative approach is to formulate

a partial model, the role of which is to focus attention on some particular

feature - here a quantile - so as to provide a (usually nonlinear) weighting

of the observations that will extract that feature by taking account of the

dynamic properties of the series. The model is not intended to be taken as

a full description of the distribution of the observations. Indeed models for

di¤erent features, for example di¤erent quantiles, may not be consistent with

each other.

In an earlier paper, we showed how time-varying quantiles could be �tted

to a sequence of observations by setting up a state space model and itera-

tively applying a suitably modi�ed signal extraction algorithm; see De Rossi

and Harvey (2006). Here we determine the conditions under which a linear

time series model for the quantile will satisfy the de�ning property of �xed

quantiles in having the appropriate number of observations above and below.

Expectiles are similar to quantiles except that they are de�ned by tail
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expectations; see Newey and Powell (1987). Here we show how time-varying

expectiles can be estimated by a state space signal extraction algorithm.

This is similar to the algorithm used for quantiles, but estimation is more

straightforward and much quicker. We then show that the conditions needed

for a time-varying expectile to generalize the moment conditions associated

with �xed expectiles are similar to those needed for a time-varying quantile

to satisfy the de�ning property of �xed quantiles.

Section 2 reviews the ideas underlying �xed quantiles and expectiles. Sec-

tion 3 then describes the signal extraction algorithms for estimating them

when they are time-varying and establishes some basic properties. The �nal

part of the paper is concerned with non-parametric estimation of regression

models using splines. It has long been known that cubic splines can be �tted

by signal extraction procedures because the state space form can handle ir-

regularly spaced observations from a continuous time model. The proposed

algorithms for time-varying quantiles and expectiles are easily adapted so as

to provide a viable means of computing spline-based non-parametric quantile

and expectile regressions. As well as illustrating the technique, we give a gen-

eral proof of the equivalence between splines and the continuous time models

underlying our signal extraction procedures for quantiles and expectiles.

2 Quantiles and expectiles

Let �(�) - or, when there is no risk of confusion, � - denote the ��th quantile.

The probability that an observation is less than �(�) is � ; where 0 < � < 1:
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Given a set of T observations, yt; t = 1; ::; T; (which may be from a cross-

section or a time series), the sample quantile, e�(�); can be obtained by sorting
the observations in ascending order. However, it is also given as the solution

to minimizing

S� =

TX
t=1

�� (yt � �) =
X
yt<�

(� � 1)(yt � �) +
X
yt��

�(yt � �) (1)

with respect to �; where �� (:) is the check function, de�ned for quantiles as

�� (yt � �) = (� � I(yt � � < 0)) (yt � �) (2)

and I(:) is the indicator function.

Expectiles, denoted �(!); 0 < ! < 1; are similar to quantiles but they

are determined by tail expectations rather than tail probabilities. For a

given value of !; the sample expectile, e�(!); is obtained by minimizing the
asymmetric least squares function,

S! =
X

�!(yt � �) =
X

j! � I(yt � � < 0)j (yt � �)2; (3)

with respect to �: Di¤erentiating S! and dividing by minus two gives

TX
t=1

j! � I(yt � � < 0)j (yt � �): (4)

The sample expectile, e�(!); is the value of � that makes (4) equal to zero.
Setting ! = 0:5 gives the mean, that is e�(0:5) = y: For other !�s it is

necessary to iterate.
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3 Signal extraction

A framework for estimating time-varying quantiles, �t(�); can be set up by

assuming that they are generated by stochastic processes and are connected

to the observations through a measurement equation

yt = �t(�) + "t(�); t = 1; :::; T; (5)

where Pr("t(�) < 0) = � with 0 < � < 1: The disturbances, "t(�); are

assumed to be serially independent and independent of �t(�): The problem is

then one of signal extraction. The assumption that the quantile or expectile

follows a stochastic process can be regarded as a device for inducing local

weighting of the observations. One possibility is a random walk,

�t(�) = �t�1(�) + �t(�); �t(�) v IID(0; �2�(�)): (6)

A smoother quantile can be extracted by a local linear trend

�t = �t�1 + �t�1 + �t (7)

�t = �t�1 + �t

where �t is the slope and �t is IID(0; �
2
�). It is well known that in a Gaussian

model setting V ar(�t) = �
2
�=3 and Cov(�t; �t) = �

2
�=2 results in the smoothed

estimates being a cubic spline.

The model for expectiles is set up in a similar way with (5) replaced by

yt = �t(!) + "t(!) where the !-expectile of "t(!) is equal to zero.
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3.1 Theory and computation

The state space form (SSF) for a univariate time series is:

yt = z0t�t + "t; V ar("t) = �
2
t ; t = 1; :::; T (8)

�t = Tt�t�1+�t; V ar(�t) = Qt

where �t is an m � 1 state vector, zt is a non-stochastic m � 1 vector, �2t
is a non-negative scalar, Tt is an m � m non-stochastic transition matrix

and Qt is an m � m covariance matrix. The speci�cation is completed by

assuming that �1 has mean a1j0 and covariance matrix P1j0 and that the

serially independent disturbances "t and �t are independent of each other

and of the initial state.

Consider the criterion function

J = �
TX
t=1

h�1t �(yt � z0t�t)�
1

2

TX
t=2

(�t �Tt�t�1)0Q�1
t (�t �Tt�t�1)

� 1

2
(�1�a1j0)0P�11j0(�1�a1j0); (9)

where �(yt � z0t�t) is as in (2) or (3), with z0t�t equal to �t(�) or �t(!); Qt

and P1j0 are are assumed positive de�nite matrices as in (8) and ht is a non-

stochastic sequence of positive scalars. For example, in the local linear trend

case (7)�t = (�t; �t)
0 and z0 = (1 0), whileT is upper triangular with nonzero

elements equal to one. Suppose that the initial state and the �0ts are normally

distributed. For a Gaussian model of the form (8) the logarithm of the joint

density of the observations and the states is, ignoring irrelevant terms, given

by J with �(yt� z0t�t) = (yt��t(0:5))2 and ht = 2�2t : Di¤erentiating J with
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respect to to each element of �t gives a set of equations, which, when set

to zero and solved, gives the minimum mean square error estimates of �t:

These they may be computed e¢ ciently by the Kalman �lter and associated

smoother (KFS) as described in Durbin and Koopman (2001, pp. 70-73). If

all the elements in the state are nonstationary and given a di¤use prior, the

last term in J disappears. An algorithm is available as a subroutine in the

SsfPack set of programs within Ox; see Koopman et al. (1999).

We can think of (9) as a criterion function that provides the basis for com-

puting a quantile or expectile subject to a set of constraints imposed by the

time series model for the quantile or expectile1. For expectiles di¤erentiating

J gives

@J

@�1
= z1(2=h1)IE(y1 � z01�1)�P�11j0(�1�a1j0) +T

0
2Q

�1
2 (�2�T2�1)

@J

@�t
= zt(2=ht)IE(yt � z0t�t)�Q�1

t (�t�Tt�t�1) +T0t+1Q�1
t+1 (�t+1�Tt+1�t) ;

t=2; : : : ; T � 1;
@J

@�T
= zT (2=hT )IE(yT � z0T�T )�Q�1

T (�T�TT�T�1) (10)

where

IE(yt��t (!)) = j! � I(yt � �t(!) < 0)j (yt��t (!)); t = 1; :::; T: (11)

The smoothed estimates, e�t; satisfy the equations obtained by setting these
derivatives equal to zero. Let ht = gt=�; where � is a constant, the interpre-

tation of which will become apparent in sub-section 3.3. For any expectile,
1It could also be regarded as the log of the joint density of a model where the mea-

surement error is an asymmetric double exponential (quantile) or asymmetric normal

(expectile). But such a model could not be taken seriously as a data generating process.
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adding and subtracting ztg�1t z
0
t�t to the equations in (10) allows the �rst

term to be written as

ztg
�1
t [z

0
t�t + 2�IE (yt � z0t�t)]� ztg�1t z0t�t; t = 1; : : : ; T: (12)

This suggests that we set up an iterative procedure in which the estimate of

the state at the i-th iteration, b�(i)t ; is computed from the KFS applied to a

set of synthetic �observations�constructed as

by(i�1)t = z0tb�(i�1)t + 2�IE
�
yt � z0tb�(i�1)t

�
: (13)

The iterations are carried out until the b�(i)0t s converge whereupon e�t(!) =
z0te�t:
For quantiles, the �rst term in each of the three equations of (10) is given

by zth�1t IQ(yt � z0t�t); where

IQ(yt � �t(�)) =

8<: � � 1; if yt < �t(�)

� ; if yt > �t(�)
t = 1; :::; T; (14)

and the synthetic observations in the KFS are

by(j�1)t = z0tb�(j�1)t + �IQ
�
yt � z0tb�(j�1)t

�
; t = 1; :::; T (15)

However, the possibility of a solution where the estimated quantile passes

through an observation means that the algorithm has to be modi�ed some-

what; see De Rossi and Harvey (2006).

3.2 Properties

Estimates of time-varying quantiles and expectiles obtained from the smooth-

ing equations of the previous sub-section can be shown to satisfy properties

8
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that generalize the de�ning characteristics of �xed quantiles and expectiles.

In order to establish the conditions under which these properties hold, we

�rst prove a preliminary result for any time series model in SSF, (8). It is as-

sumed that the state has been arranged so that the �rst element represents

the level of the quantile or expectile and that (without loss of generality)

the �rst element in zt has been set to unity. Let the sum of the �rst deriv-

atives, with respect to �1;�2; : : : ;�T ; of the second term of J be written

j02 =
PT

t=1At�t; where the A0
ts are m�m matrices.

Lemma For a model in SSF with a di¤use prior on the initial state, a

su¢ cient condition for the �rst element in the vector j02 to be zero is that the

�rst column of Tt � I consists of zeroes for all t = 2; :::; T .

Proof - Summing the terms in the derivatives in question gives

X
At�t = (Q�1

2 T2 �T02Q�1
2 T2)�1

+

T�1X
t=2

(Q�1
t+1Tt+1 �T0t+1Q�1

t+1Tt+1 +T
0
tQ

�1
t �Q�1

t )�t

+
�
T0TQ

�1
T �Q�1

T

�
�T (16)

The matrix associated with �1 isA1 = Q
�1
2 T2�T02Q�1

2 T2 = (I�T02)Q�1
2 T2:

A su¢ cient condition for it to have a null �rst row is that I�T02 has a null

�rst row. The matrix associated with �T is (T0T � I)Q�1
T and the condition

for it to have a null �rst row is that T0T �I has a null �rst row. On examining

the matrices, At; t = 2; ::; T � 1; associated with the remaining state vectors

we see that an analogous condition is su¢ cient for each to have a null �rst

row. Letting some of the states have proper priors does not a¤ect the result

9
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as long as they are uncorrelated with the di¤use prior on the �rst element in

the state.

Proposition 1 If the condition of the Lemma holds, then, for expectiles, the

generalized moment condition

TX
t=1

j! � I(yt � z0te�t)j (yt � z0te�t)=ht = 0;
holds.

The result follows because, when the �rst element in the vector
P
At�t

is zero, di¤erentiating the �rst term in J gives

TX
t=1

h�1t IE(yt � z0te�t) = 0:
To give some intuition, in the special case of time invariant ht Proposition

1 implies that the weighted sum of residuals is zero. When ht is time invariant

and ! = 0:5 the solution is the Kalman �lter and smoother and the sum of

residuals is equal to zero.

The results for quantiles require a little more work.

Proposition 2 If ht is time-invariant and the conditions of the Lemma

hold, the estimated quantiles satisfy the fundamental property of sample time-

varying quantiles, namely that the number of observations that are less than

the corresponding quantile, that is yt < e�t(�); is no more than [T� ] while the
number greater is no more than [T (1� �)]:

10
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Proof - Suppose that the only one point at which the quantile passes

through an observation is at t = s; so e�s = ys: All the derivatives of J;

de�ned in (9) with �� (:) as in (2), can be set to zero apart from this one.

However, a small increase in e�s gives IQ(ys � e�s) a value of � � 1 while a
small decrease makes it equal to � : Thus to have

IQ(ys � e�s) +X
t6=s

IQ(yt � e�t) = 0
implies

�� �
X
t6=s

IQ(yt � e�t) � 1� � :
When the quantile passes through k observations, a similar argument leads

to

�k� �
X
t=2C

IQ(yt � e�t) � k (1� �) (17)

where C is the set of all points such that e�s = ys. Now suppose that n denotes
the number of observations (strictly) below the corresponding quantile while

n = (T�n�k) is the number (strictly) above. Then, abbreviating IQ(yt�e�t)
to IQt; X

t=2C

IQt = n (� � 1) + (T � n� k) � = T� � n� k�

Now
P

t=2C IQt � �k� implies n � [�T ] because
P

t=2C IQt would be less

than �k� if n were greater than [�T ]. Similarly,
P

t=2C IQt � k(1 � �)

implies n � [(1� �)T ] because
P

t=2C IQt = n� (1� �)T + k (1� �) would

be greater than k(1� �) if n were to exceed [(1� �)T ].

Proposition 3 If ht is not time-invariant, the estimated quantiles satisfy a

11
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generalization of the fundamental property, which is thatX
t2B

1=ht � �
TX
t=1

1=ht and
X
t2A

1=ht � (1� �)
TX
t=1

1=ht

where t 2 B denotes the set of observations below the corresponding quantile

and t 2 A denotes the set above.

The result follows because corresponding to (17) we have

��
X
t2C

1=ht �
X
t=2C

(1=ht)IQ(yt � z0te�t) � (1� �)X
t2C

1=ht (18)

The condition of the lemma is obviously satis�ed by the random walk. It

is also satis�ed by the local linear trend. In a model with �xed explanatory

variables, xt; the �rst equation in (8) becomes

yt = x
0
t� + z

0
t�t + "t; t = 1; :::; T (19)

and if the coe¢ cient vector is put in the state vector as �t and given a di¤use

prior, the conditions apply to the transition equation for �t as before.

Finally we turn to the conditions under which quantiles and expectiles

match up when they are time-varying.

Proposition 4 If the distribution of y is time invariant when adjusted for

changes in location and scale, and is continuous with �nite mean2, the pop-

ulation ��quantiles and !�expectiles coincide for ! satisfying

! =

R �(�)
�1 (y � �(�))dF (y)R �(�)

�1 (y � �(�))dF (y)�
R1
�(�)
(y � �(�))dF (y)

2Newey and Powell (1987, theorem 1) show that the expectiles are uniquely de�ned if

the mean, E(y) = �(0:5); exists.

12
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where F (y) is the cdf of y: Assuming this to be the case, e�t(!) is an estimator
of the e��quantile, �t(e�); where e� is de�ned as the proportion of observations
for which yt < e�t(!); t = 1; :::; T:
When used in this way we will denote the estimator e�t(!) as e�t(e�): How-

ever, it will not, in general, coincide with the time-varying e��quantile esti-
mated directly since it weights the observations di¤erently. In particular, it

is unlikely to pass through any observations.

3.3 Parameter estimation

The smoothing algorithms of sub-section 3.1 depend on parameters that can

be estimated by cross validation. For time-varying quantiles, the function to

be minimized is

CV (�) =

TX
t=1

�� (yt � e�(�t)t ) (20)

where e�(�t)t is the smoothed value at time t when yt is dropped; see De Rossi

and Harvey (2006). A similar criterion, CV (!); may be used for expectiles.

In a time invariant model with quantiles or expectiles following a ran-

dom walk, Qt is a scalar equal to �2�(�) or �
2
�(!): We would like a suitable

parameterization in terms of a quasi signal-noise ratio that is scale invariant.

For the mean it will be recalled that ht = 2�2t and so in a time invariant

model the usual signal-noise ratio,3 �2�=�
2; implies that gt = �2 and � = 0:5

in (12). A similar normalization can be applied for other expectiles so the

3In terms of the notation used in (8), �2t = �
2 and Qt = �2� 8t.

13
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quasi signal-noise ratios are q! = �2�(!)=�
2: Hence the iterations are based on

(12) with gt set to one and � = 0:5.

For quantiles, �2�=h is not scale invariant. We therefore consider the quasi

signal-noise ratio, q� = �2�=g; with g de�ned so that q� is scale invariant. Since

the variance is not robust it is better to estimate the inter-quartile range, r;

and set g equal to its square. If the median is time-varying, it is estimated

by setting gt = � = 1 and r is estimated from the residuals; the estimated

quasi signal-noise may then be divided by the square of the estimate of r so

as to make it scale invariant. For the other quantiles the iterative scheme is

applied with g set to one and � = br:
4 Nonparametric regression with cubic splines

A slowly changing quantile can be estimated by minimizing the criterion

function
P
��fyt � �tg subject to smoothness constraints. The cubic spline

solution seeks to do this by �nding a solution to

min

TX
t=1

��fyt � �(xt)g+ �2
�Z

f�00(x)g2dx
�

(21)

where �(x) is a continuous function with square integrable second derivative,

0 � x � T and xt = t: The parameter �2 controls the smoothness of the

spline. We show in the appendix that the same cubic spline is obtained by

quantile signal extraction of (7) with �2 = h=2�2� : A randomwalk corresponds

to �0(x) rather than �00(x) in the above formula; compare Kohn, Ansley and

Wong (1992). Our proof not only shows that the well-known connection

14



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

between splines and stochastic trends in Gaussian models carries over to

quantiles, but it does so in a way that yields a more compact proof for the

Gaussian case and shows that the result holds for expectiles. We furthermore

establish the existence and uniqueness of the solution.

The SSF allows irregularly spaced observations to be handled since it can

deal with systems that are not time invariant. The form of such systems is

the implied discrete time formulation of a continuous time model; see Harvey

(1989, p 487). This generalisation allows the handling of nonparametric

quantile and expectile regression by cubic splines when there is only one

explanatory variable. The observations, which may be from a cross-section,

are arranged so that the values of the explanatory variable are in ascending

order. Other variables can be included if they enter linearly as in (19).

Bosch et al. (1995) propose a solution to cubic spline quantile regression

that uses quadratic programming. Unfortunately this necessitates the re-

peated inversion of large matrices of dimension up to 4T � 4T . This is very

time consuming. Our signal extraction appears to be much faster (and more

general) and makes estimation of the smoothing parameter (quasi signal-noise

ratio) a feasible proposition.

The fundamental property of quantiles continues to hold with irregularly

spaced observations. All that happens is that the SSF becomes time-varying.

If there are multiple observations at some points then n; the total number of

observations, replaces T; number of distinct points, in the summation. The

proof follows by adding more �(:) terms at times where there are multiple

observations.
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Proposition 5 If n denotes the total number of observations while T is the

number of distinct points at which observations occur, the fundamental prop-

erty of quantiles is stated in terms of n rather than T .

The only di¤erence in the proof is in the summation involving IQ(:)0s

which now becomes
nX
j=1

h�1t(j)IQ(yj � z
0
t(j)e�t(j))

where t(j) denotes that the j � th observation is observed at point t = t(j);

t 2 f1; : : : ; Tg :

Proposition 6 If there are multiple observations at some points, the gener-

alized moment condition for expectiles is

nX
j=1

h�1t(j)
��� � I(yj � z0t(j)e�t(j))�� (yj � z0t(j)e�t(j)) = 0

An example of cubic spline regression is provided by the �motorcycle

data�, which records measurements of the acceleration, in milliseconds, of

the head of a dummy in motorcycle crash tests. The data set was originally

analysed by Silverman (1985) and has been used in a number of textbooks,

including Koenker (2005, p 222-6). The observations are irregularly spaced

and at some time points there are multiple observations. Harvey and Koop-

man (2000) highlight the stochastic trend connection.

Figure 1 shows the cubic spline expectiles obtained using the value of

�2�=�
2 = 0:07 computed by CV for the mean. (The ML estimate is 0.03).

Although the expectiles lack the nice interpretation of quantiles, the graph
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Figure 1: Cubic spline expectiles �tted to the motorcycle data. The para-

meter q� is estimated by cross validation.

gives a clear visual impression of the movements in level and dispersion. Of

course if we count the number of observations below each expectile, they can

be interpreted as quantiles if we are prepared to assume that the shape of

the distribution is time invariant.

5 Conclusions

Time-varying quantiles and expectiles are of interest in themselves and pro-

vide information on various aspects of a time series, such as dispersion and

asymmetry.

Time-varying quantiles can be �tted iteratively applying a suitably mod-
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i�ed state space signal extraction algorithm. The algorithm for time-varying

expectiles is much faster as there is no need to take account of corner solu-

tions. We derive the conditions under which time-varying quantiles satisfy

the de�ning property of �xed quantiles in having the appropriate number

of observations above and below it, while expectiles satisfy properties that

generalize the moment conditions associated with �xed expectiles.

Our model-based approach means that time-varying quantiles and expec-

tiles can be used for forecasting. As such they o¤er an alternative to methods

such as those in Engle and Manganelli (2004) and Granger and Sin (2000),

that are based on conditional autoregressive models.

Finally we prove that if the underlying time series model is a Wiener

process or an integrated Wiener process, then the solution for quantiles and

expectiles is equivalent to �tting a spline; for an integrated Wiener process

this is a cubic spline. We furthermore establish the existence and uniqueness

of the solution. Because the state space form can handle irregularly spaced

observations, the proposed algorithms are easily adapted to provide a viable

means of computing spline-based non-parametric quantile and expectile re-

gressions. We demonstrated how this worked for the �motorcycle�data and

showed, in that case, that �tting cubic spline expectiles gave a clear visual

impression of the changing distribution.

APPENDIX

State space representation of quantile and expectile regression

with smoothing splines

18
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Consider a set of n observations (y1; : : : ; yn) obtained at times (t1; : : : ; tn),

where 0 � t1 < : : : < tn � b. Moreover, consider the loss function �� de�ned

in (2). We will deal with the problem of �nding the function f : [0; b] ! R

that minimises

�m

Z b

0

�
f (m) (t)

�2
dt+

nX
i=1

�� (yi � f (ti)) (22)

for given � 2 (0; 1) and m, over all functions f having m � 1 absolutely

continuous derivatives and square integrable m�th derivative.

Now consider the time series representation obtained by assuming that:

�
�
f (0) ; f 0 (0) ; : : : ; f (m�1) (0)

�
� N (0; �Im) ;

�

f (t) =

mX
j=1

tj�1

(j � 1)!f
(j�1) (0) + �w

Z t

0

(t� s)m�1
(m� 1)! dWs (23)

where Wt is a Wiener process (in terms of the notation of sub-section

3.1, �w = �� for m = 1 and �� for m = 2);

� the distribution of yijf (ti) is asymmetric double exponential, i.e. its

pdf is

p (yijf (ti)) / exp
�
���1�� (yi � f (ti))

�
, (24)

where � is a constant.

De�ne y =(y1; : : : ; yn)
0 and f =(f (t1) ; : : : ; f (tn)). We will show that, if

�m = �=(2�2w), as � ! 1 the mode of the smoothing distribution p (f jy)

converges to the point (f (t1) ; : : : ; f (tn)) obtained by evaluating the solution

of the problem (22) at (t1; : : : ; tn).
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Remark 7 The quantile regression with smoothing splines problem described

by Bosch et al. (1995) is a special case with m = 2. The result can easily be

extended to expectile regression by replacing �� (x) with �! (x) = j! � I (x < 0)jx2

in the proof. This results in an asymmetric Gaussian distribution for the ob-

servations conditional on the signal.

Remark 8 If the density in the measurement equation (24) were Gaussian

our argument would provide an alternative proof of the result of Wahba (1978)

for the special cases m = 1; 2. This follows on noting that in a Gaussian

model conditional means and conditional modes coincide. Wahba�s proof re-

quires the explicit solution of the spline smoothing problem (derived in Kimel-

dorf and Wahba, 1971), which is shown to be equal to the conditional mean.

Our proof simply shows that the two optimisation problems, i.e. �nding the

mode and �nding the optimal spline, are equivalent.

Remark 9 The existence and uniqueness of the solution to problem (22)

depend crucially on the convexity of �� (x). This follows immediately from the

fact that if �� is convex then the log-likelihood of the time series representation

is strictly concave in Rn.

Proof

The mode of p(f jy) is found by solving maxf p(f jy):This is equivalent to

solving maxf p(y; f) and we proceed by �rst noting that

p(y; f) = p (yjf) p (f) : (25)
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Consider the joint distribution p (f). It is a multivariate normal distribu-

tion with mean zero (because f(0); f 0(0); : : : have zero mean) and covariance

matrix �2Wn + �TT
0, where

T0 =

266666664
1 : : : 1

t1 : : : tn
...

...

tm�11 = (m� 1)! : : : tm�1n = (m� 1)!

377777775
and

Wn = Cov

" Z t1

0

(t1 � s)m�1

(m� 1)! dWs; : : : ;

Z tn

0

(tn � s)m�1

(m� 1)! dWs

!0#
:

It can be easily shown that, for an (n�m) matrix a and a nonsingular (n�n)

matrix 
:

(In + aa
0)
�1
= In � a (Im + a0a)�1 a0

and


�1 � 
�1a
�
a0
�1a

��1
a0
�1 = a? (a

0
?
a?)

�1
a0?;

where a? is an n � (n � m) matrix whose columns are orthogonal to the

columns of a.

The above identities imply that

lim
�!1

�
�2wWn + �TT

0��1 = lim
�!1

��2w

 
W�1

n �W�1
n T

�
In�m

�2w
�
+T0W�1

n T

��1
T0W�1

n

!
= ��2w

�
W�1

n �W�1
n T

�
T0W�1

n T
�
T0W�1

n

�
= ��2w U (U

0WnU)
�1
U0
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where U0 is a (n�m)� n matrix whose rows are orthogonal to the rows of

T0. As a result, the density of f becomes

lim
�!1

p (f) / exp
�
� 1

2�2w
f 0U (U0WnU)

�1
U0f

�
:

From (25) and (24) we have

lim
�!1

p (f jy) / exp
 
� 1

2�2w
f 0U (U0WnU)

�1
U0f � 1

�

nX
i=1

�� (yi � f (ti))
!
:

For m = 1 we can set

U0 =

266666664
u01

u02
...

u0n�1

377777775
; u0i =

0BBB@ 0; : : : ; 0

i-1 zeros

; �i0; �
i
1; 0; : : : ; 0

n-1-i zeros

1CCCA ;

�i0 =
1

ti+1 � ti
�i1 = � 1

ti+1 � ti
:

It is easy to show that in this case (U0WnU)
�1 is a diagonal matrix with

entries t2 � t1; t3 � t2; : : : ; tn � tn�1. Thus

� 1

2�2w
f 0U (U0WnU)

�1
U0f = � 1

2�2w

nX
i=2

(ti � ti�1)
�
f(ti)� f(ti�1)
ti � ti�1

�2
:

Well known results on spline interpolation (summarized, for example, in

Schoenberg, 1964) imply that the solution to (22), f(t), is a piecewise linear

function with knots at t1; : : : ; tn. Thus we obtain

� 1

2�2w
f 0U (U0WnU)

�1
U0f = � 1

2�2w

Z b

0

[f 0 (t)]
2
dt:
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If we set �1 = �= (2�2w) the maximisation problem is equivalent to minimising

(22) with respect to f for m = 1.

The proof for m = 2 proceeds along the same lines. Here we set

U0 =

266666664
u01

u02
...

u0n�2

377777775
; u0i =

0BBB@ 0; : : : ; 0

i-1 zeros

; �i0; �
i
1; �

i
2; 0; : : : ; 0

n-2-i zeros

1CCCA ;

�i0 =
1

ti+1 � ti
�i1 = � 1

ti+2 � ti+1
� 1

ti+1 � ti
�i2 =

1

ti+2 � ti+1
:

It can be shown thatWn has entries

[Wn]ij =
1

3
[min (ti; tj)]

3 +
1

2
jti � tjj [max (ti; tj)]2 .

Bosch et al. (1995) showed that

�m

Z b

0

[f 00 (t)]
2
dt = �mf

0U (U0WnU)
�1
U0f

where f(t) is the solution to problem (22), a cubic spline with knots at

t1; : : : ; tn. Thus �nding the mode is equivalent to minimising (22) with re-

spect to f for m = 2 and �2 = �= (2�2w).
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