Automata and temporal logic over arbitrary linear time

Julien Cristau

To cite this version:

HAL Id: hal-00553818
https://hal.science/hal-00553818
Submitted on 9 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ABSTRACT. Linear temporal logic was introduced in order to reason about reactive systems. It is often considered with respect to infinite words, to specify the behaviour of long-running systems. One can consider more general models for linear time, using words indexed by arbitrary linear orderings. We investigate the connections between temporal logic and automata on linear orderings, as introduced by Bruyère and Carton. We provide a doubly exponential procedure to compute from any LTL formula with Until, Since, and the Stavi connectives an automaton that decides whether that formula holds on the input word. In particular, since the emptiness problem for these automata is decidable, this transformation gives a decision procedure for the satisfiability of the logic.

1 Introduction

Temporal logic, in particular LTL, was proposed by Pnueli to specify the behaviour of reactive systems [12]. The model of time usually considered is the ordered set of natural numbers, and executions of the system are seen as infinite words on some set of atomic propositions. This logic was shown to have the same expressive power as the first order logic of order [11], but it provides a more convenient formalism to express verification properties. It is also more tractable: while the satisfiability problem of FO is non-elementary [18], it was shown in [17] that the decision problem of LTL with Until and Since on \(\omega \)-words is PSPACE-complete. This logic has also strong ties with automata, with important work to provide efficient translations to Büchi automata, e.g. [10].

Within this time model, a number of extensions of the logic and the automata model have been studied. But one can also consider more general models of time: general linear time could be useful in different settings, including concurrency, asynchronous communication, and others, where using the set of integers can be too simplistic. Possible choices include ordinals, the reals, or even arbitrary linear orderings. In terms of expressivity, while LTL with Until and Since is expressively complete (i.e. equivalent to FO) on Dedekind-complete orderings (which includes the ordering of the reals as well as all ordinals), this does not hold in the general case. Two more connectives, the future and past Stavi operators, are necessary to handle gaps [9] when considering arbitrary linear orderings.

Over ordinals, LTL with Until and Since has been shown to have a PSPACE-complete satisfiability problem [7]. Over the ordering of the real numbers, satisfiability of LTL with until and since is PSPACE-complete, but satisfiability of MSO is undecidable. Over general linear time, first order logic has been shown to be decidable, as well as universal monadic second order logic. Reynolds shows in [13] that the satisfiability problem of temporal logic with only the Until connective is also PSPACE-complete, and conjectures that this might stay true when adding the Since connective. The upper bound in [7] is obtained by reducing the satisfiability of LTL formulae to the accessibility problem in an appropriate automata model,
accepting words indexed by ordinals. In this paper, we focus on the general case of arbitrary linear orderings, using the full logic with Until, Since and both Stavi connectives. Our aim is to investigate the connections between LTL and automata in this setting.

Automata on linear orderings were introduced by Bruyère and Carton [3]. This model extends traditional finite automata using “limit” transitions to handle positions with no successor or predecessor, furthering Büchi’s model of automata on words of ordinal length [8]. Carton showed in [8] that accessibility over scattered ordering is decidable in polynomial time, and in [14] it was shown that these automata can be complemented over countable scattered linear orderings. The accessibility result can be extended to arbitrary orderings [6].

From any formula in this logic, we define an automaton which determines whether the formula holds on its input word. Satisfiability of the formula is reduced to accessibility in this automaton, and that way we get decidability of the satisfiability problem of LTL with Until, Since and the Stavi operators for any rational subclass.

Section 2 presents some definitions about linear orderings, linear temporal logic, and the model of automata used. Section 3 introduces our main result, an algorithm to translate any LTL formula into a corresponding automaton. Section 4 discusses the expressivity of the logic and automata considered, and looks at some natural fragments.

2 Definitions

2.1 Linear orderings

We first recall some basic definitions about orderings, and introduce some notations. For a complete introduction to linear orderings, the reader is referred to [15]. A linear ordering \(J \) is a totally ordered set \((J, <)\) (considered modulo isomorphism). The sets of integers (\(\omega \)), of rational numbers (\(\eta \)), and of real numbers with the usual orderings are all linear orderings.

Let \(J \) and \(K \) be two linear orderings. One defines the reversed ordering \(-J \) as the ordering obtained by reversing the relation \(<\) in \(J \), and the ordering \(J + K \) as the disjoint union \(J \sqcup K \) extended with \(j < k \) for any \(j \in J \) and \(k \in K \). For example, \(-\omega \) is the ordering of negative integers. \(-\omega + \omega \) is the usual ordering of \(\mathbb{Z} \), also denoted by \(\zeta \).

A non-empty subset \(K \) of an ordering \(J \) is an interval if for any \(i < j < k \) in \(J \), if \(i \in K \) and \(k \in K \) then \(j \in K \). In order to define the runs of an automaton, we use the notion of cut. A cut of an ordering \(J \) is a partition \((K, L)\) of \(J \) such that for any \(k \in K \) and \(l \in L \), \(k < l \). We denote by \(J \) the set of cuts of \(J \). This set is equipped with the order defined by \((K_1, L_1) < (K_2, L_2)\) if \(K_1 \subseteq K_2 \). This ordering can be extended to \(J \sqcup J \) in a natural way \(((K, L) < j \iff j \in L) \). Notice that \(J \) always has a smallest and a biggest element, respectively \(c_{\min} = (\emptyset, J) \) and \(c_{\max} = (J, \emptyset) \). For example, the set of cuts of the finite ordering \(\{0, 1, \ldots, n-1\} \) is the ordering \(\{0, 1, \ldots, n\} \), and the set of cuts of \(\omega \) is \(\omega + 1 \).

For any element \(j \) of \(J \), there are two successive cuts \(c_j^- \) and \(c_j^+ \), respectively \(\{i \in J \mid i < j\}, \{i \in J \mid j \leq i\} \) and \(\{i \in J \mid i \leq j\}, \{i \in J \mid j < i\} \). A gap in an ordering \(J \) is a cut which is not an extremity (\(c_{\max} \) or \(c_{\min} \)), and has neither a successor nor a predecessor.

Given an alphabet \(\Sigma \), a word of length \(J \) is a sequence \((a_j)_{j \in J}\) of elements of \(\Sigma \) indexed by \(J \). For example, \((ab)^\omega\) is a word of length \(\omega \); the sequence \(ab^\omega ab^\omega a \) is a word of length \(\omega + \omega + 1 \), and \((ab^\omega)^\omega \) is a word of length \(\omega^2 \).
2.2 Temporal logic

We use words over linear orderings to model the behaviour of systems over linear time. To express properties of these systems, we consider linear temporal logic. The set of LTL formulae is defined by the following grammar, where \(\varphi \) ranges over a set \(\text{AP} \) of atomic propositions:

\[
\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi U \varphi \mid \varphi S \varphi \mid \varphi U' \varphi \mid \varphi S' \varphi
\]

Besides the usual boolean operators, we have four temporal connectives. The \(U \) connective is called “Until”, and \(S \) is called “Since”. \(U' \) and \(S' \) are respectively the future and past Stavi connectives. Other usual connectives such as “Next” (\(X \)), “Eventually” (\(F \)), “Always” (\(G \)) can be defined using these, as we see below.

These formulae are interpreted on words over the alphabet \(2^{\text{AP}} \). A formula \(\varphi \) is evaluated at a particular position \(i \) in \(x \); we say that \(\varphi \) holds at position \(i \) in \(x \), and we write \(x, i \models \varphi \), using the following semantics:

\[
\begin{align*}
x, i &\models p \quad \text{if} \quad p \in x_i \\
x, i &\models \neg \psi \quad \text{if} \quad x, i \not\models \psi \\
x, i &\models \psi_1 \lor \psi_2 \quad \text{if} \quad x, i \models \psi_1 \text{ or } x, i \models \psi_2 \\
x, i &\models \psi_1 U \psi_2 \quad \text{if} \quad \text{there exists } j > i \text{ such that } x, j \models \psi_2, \\
&\quad \text{and for any } k \text{ such that } i < k < j, \text{ we have } x, k \models \psi_1 \\
x, i &\models \psi_1 S \psi_2 \quad \text{if} \quad \neg x, i \models \psi_1 U \psi_2 \text{ where } \neg x \text{ is the reversed word } (a_j)_{j \in J} \text{ and } \\
x, i &\models \psi_1 U' \psi_2 \quad \text{if} \quad \text{there exists a gap } c \in J \text{ verifying three properties:}
\end{align*}
\]

\[
\begin{enumerate}
\item x, j \models \psi_1 \text{ for any position } j \text{ such that } i < j < c \\
\item \text{there is no interval starting at } c \text{ where } \psi_1 \text{ is always true (i.e. } \forall c < k \exists c < j < k x, j \models \neg \psi_1), \text{ and} \\
\item \psi_2 \text{ is always true in some interval starting at } c \\
\end{enumerate}
\]

\[
x, i \models \psi_1 U^s \psi_2 \quad \text{if} \quad \neg x, i \models \psi_1 U' \psi_2 \text{ (it is the corresponding past connective)}
\]

Note that we use a “strict” semantic for the Until operator, contrary to a common definition, which would be:

\[
x, i \models \psi_1 U^s \psi_2 \quad \text{if} \quad \text{there exists } j \geq i \text{ such that } x, j \models \psi_2 \text{ and } x, k \models \psi_1 \text{ for any } i \leq k < j.
\]

In the strict version, the current position \(i \) is not considered for either the \(\psi_1 \) or the \(\psi_2 \) part of the definition. Using the strict or non-strict version makes no difference when considering \(\omega \)-words, but in the case of arbitrary orderings, the strict Until is more powerful, as noted by Reynolds in [13].

The formula “Next \(\varphi \)”, or \(X \varphi \), is equivalent to \(\bot U \varphi \). “Eventually \(\varphi \)”, noted \(F \varphi \), is \(\varphi \lor (\bot U \varphi) \), and “always \(\varphi \)”, noted \(G \varphi \), can be expressed as \(\neg (F(\neg \varphi)) \).

Given a word \(x \) of length \(J \), the truth word of \(\varphi \) on \(x \) is the word \(v_{\varphi}(x) \) of length \(J \) over the alphabet \(\{0,1\} \) where the position \(j \) is labelled by 1 iff \(x, j \models \varphi \). A formula is valid if its truth word on any input only has ones. A formula is satisfiable if there exists an input word such that the truth word contains a one.
Consider the formula $\varphi = \neg a \land (G \neg \chi a)$, with $AP = \{a\}$. If $x = (a \otimes)\omega$ (where a stands for $\{a\}$), then $v_\varphi(x) = 0^\omega$ (at every position, either a is true or a is true in the successor). On the other hand, if $x = a \otimes \omega a \otimes \omega a$, then $v_\varphi(x) = 0^\omega 01^\omega 0$: at positions 0, ω and at the last position, a is true so the formula doesn’t hold; at all other positions, a is false, and there is no position in the input word where χa holds.

The satisfiability problem for a formula φ consists in deciding whether there exists a word w and a position i in w such that $w, i \models \varphi$. As FO is decidable, and every LTL formula can be expressed using first order, satisfiability of LTL is decidable. Note however that in terms of complexity FO is already non-elementary on finite words \cite{18}, which is not true of LTL.

2.3 Automata

On infinite words, Büchi automata can be used to decide satisfiability of LTL formulae. In the case of words over linear orderings, a model of automata has been introduced in \cite{3}. Instead of accepting or rejecting each input word, as in the case of ω-words, we use these automata to compute the truth words corresponding to an LTL formula. Our model of automata thus has an output letter on each transition, so they are actually letter-to-letter transducers, which make composition easier (see Section 3.1).

An automaton is a tuple $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, I, F)$ where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite output alphabet, I and F are subsets of Q, respectively the set of initial and final states, and $\delta \subseteq (Q \times \Sigma \times \Gamma \times Q) \cup (2^Q \times Q) \cup (Q \times 2^Q)$ is the set of transitions. We note:

- $p \stackrel{c}{\rightarrow} q$ if $(p, a, b, q) \in \delta$ (successor transition)
- $P \rightarrow q$ if $(P, q) \in \delta$ (left limit transition)
- $q \rightarrow P$ if $(q, P) \in \delta$ (right limit transition).

Consider a word $x = (q_j)_{j \in \mathbb{Z}}$ over Q. We define the left and right limit sets of x at position $j \in \mathbb{Z}$ as the sets of labels that appear arbitrarily close to j (respectively to its left and to its right). Formally:

\[
\lim_{\leftarrow} x = \left\{ q \in Q \mid \forall k < j \exists i k < i < j \land q_i = q \right\}
\]

\[
\lim_{\rightarrow} x = \left\{ q \in Q \mid \forall k > j \exists i j < i < k \land q_i = q \right\}
\]

Note that $\lim_{\leftarrow} x$ is non-empty if and only if the transition to j is a left limit, and similarly for $\lim_{\rightarrow} x$ if the transition from j is a right limit. These sets help define the possible limit transitions in a run.

Given an automaton \mathcal{A}, an accepting run of \mathcal{A} on a word $x = (x_j)_{j \in \mathbb{Z}}$ is a word ρ of length \bar{f} over Q such that:

- $\rho_{\text{min}} \in I$ and $\rho_{\text{max}} \in F$;
- for each $i \in \bar{f}$, there exists $y_i \in \Gamma$ such that $\rho_i \xrightarrow{x_i|y_i} \rho_{i+1}$;
- if $c \in \bar{f}$ has no predecessor, $\lim_{\leftarrow} \rho \rightarrow \rho_c$, and if $c \in \bar{f}$ has no successor, $\rho_c \rightarrow \lim_{\rightarrow} \rho$.

Example 1. The first automaton in Figure 3 outputs 1 at each position immediately followed by a 1 in the input word, and 0 at other positions.

The second automaton accepts input words whose length is a linear ordering without first or last element, and without two consecutive elements (i.e. dense orderings). The notation $P \rightarrow q_0, q_1$ means that there is a transition $P \rightarrow q_0$ and a transition $P \rightarrow q_1$.
In [5], Carton proves that the accessibility problem on these automata can be solved in polynomial time, when only considering scattered orderings. This result can be extended to arbitrary orderings [6] as it is done for rational expressions in [2]. The idea is to build an automaton over finite words which simulates the paths in the initial automaton and remem- bers their contents. In order to handle the general case (as opposed to only scattered orderings), the added operation is called “shuffle”:
\[
\text{sh}(w_1, \ldots, w_n) = \Pi_{j \in J} x_j
\]
where \(J \) is a dense and complete ordering without a first or last element, partitioned in dense suborderings \(J_1 \ldots J_n \), such that \(x_j = w_i \) if \(j \in J_i \). Looking at automata, this means that if there are paths from \(p_1 \) to \(q_1 \) with content \(P_1 \), \ldots, from \(p_n \) to \(q_n \) with content \(P_n \), and transitions from \(P_1 \cup \cdots \cup P_n \) to each \(p_i \), transitions from each \(q_i \) to \(P_1 \cup \cdots \cup P_n \), a transition from \(p \) to \(P_1 \cup \cdots \cup P_n \) and a transition from \(P_1 \cup \cdots \cup P_n \) to \(q \), then there is a path from \(p \) to \(q \).

3 Translation between formulae and automata

Over \(\omega \)-words, problems on temporal logics are commonly solved using tableau methods [20], or automata-based techniques [19]. In this work we extend the correspondence between LTL and automata to words over linear orderings. Our main result is Theorem 2.

Theorem 2. For every LTL formula \(\varphi \), there is an automaton \(A_\varphi \) which given any input word \(x \) outputs the truth word \(v_\varphi(x) \).

Moreover, this automaton \(A_\varphi \) can be effectively computed, and has a number of states exponential in the size of \(\varphi \). Because we can compute the product of \(A_\varphi \) with any given automaton and check for its emptiness, we get Corollary 3, which states that given a temporal formula and a rational property (i.e. an automaton on words over linear orderings), we can check whether there exists a model of the formula which is accepted by the automaton.

Corollary 3. The satisfiability problem for any rational subclass is decidable.

The idea is to build \(A_\varphi \) by induction on the formula. We construct an elementary automaton for each logical connective. We use composition and product operations to build inductively the automaton of any LTL formula from elementary automata. All automata used in this proof have the particular property that there exists exactly one accepting run for each possible input word, i.e. they are non-deterministic, but also non-ambiguous. This property is preserved by composition and product.

The structure of the proof is the following: we define the composition and product operators on automata, then we present the elementary automata that are needed to encode logical connectives. Finally, we give the inductive method to build the automaton corresponding to a formula from elementary ones.
3.1 Product, composition and elementary automata

Let $A_1 = (Q_1, \Sigma, \Gamma, \delta_1, I_1, F_1)$ and $A_2 = (Q_2, \Sigma', \Delta, \delta_2, I_2, F_2)$ be two automata. The product consists in running both automata with the same input alphabet in parallel, and outputting the combination of their outputs. If A_1’s output alphabet and A_2’s input alphabet are the same, the composition consists in running A_2 over A_1’s output. We use the notation $\pi_1(a, b) = a$ and $\pi_2(a, b) = b$ for the first and second projections.

Definition 4. Suppose that A_1 and A_2 have the same input alphabet, i.e. $\Sigma = \Sigma'$. The product of A_1 and A_2 is the automaton $A_1 \times A_2 = (Q_1 \times Q_2, \Sigma_1 \times \Delta, \delta, I_1 \times I_2, F_1 \times F_2)$, where δ contains the following transitions:

- $(q_1, q_2) \xrightarrow{a|\epsilon} (q_1', q_2')$ if $q_1 \xrightarrow{a} q_1'$ and $q_2 \xrightarrow{\epsilon} q_2'$,
- $(q_1, q_2) \rightarrow P$ if $\pi_1(P) \rightarrow q_1$ and $\pi_2(P) \rightarrow q_2$,
- $P \rightarrow (q_1, q_2)$ if $\pi_1(P) \rightarrow q_1$ and $\pi_2(P) \rightarrow q_2$.

Definition 5. Suppose now that the output alphabet of A_1 is the input alphabet of A_2, i.e. $\Gamma = \Sigma'$. The composition of A_1 and A_2 is the automaton $A_2 \circ A_1 = (Q_1 \times Q_2, \Sigma_1 \times \Delta, \delta, I_1 \times I_2, F_1 \times F_2)$. The transitions in δ are:

- $(q_1, q_2) \xrightarrow{a|\epsilon} (q_1', q_2')$ if $q_1 \xrightarrow{a} q_1'$ and $q_2 \xrightarrow{\epsilon} q_2'$,
- $(q_1, q_2) \rightarrow P$ if $\pi_1(P) \rightarrow q_1$ and $\pi_2(P) \rightarrow q_2$,
- $P \rightarrow (q_1, q_2)$ if $\pi_1(P) \rightarrow q_1$ and $\pi_2(P) \rightarrow q_2$.

Recall that LTL formulae are given by $\phi := p \mid \lnot p \mid p \lor q \mid p U q \mid p U' q \mid p S q \mid p S' q$. For each atomic proposition p we construct an automaton A_p which, given a word x, outputs $v_p(x)$. For each logical connective of arity n, we construct an automaton with input alphabet $\{0, 1\}^n$, and output alphabet $\{0, 1\}$. The input word is the tuple of truth words of the connective’s variables, the output is the truth word of the complete formula. For temporal connectives, we only describe the automata corresponding to U and U'. For the “past” connectives, the automata are the same with all transitions (successor and limits) reversed, and initial and final states swapped.

For any $p \in AP$, the automaton A_p is $(\{q\}, 2^\mathbb{AP}, \{0, 1\}, \delta, \{q\}, \{q\})$ where $\delta = \{(a \mapsto q \mid p \not\in a) \cup \{q \mapsto 1 \mid p \in a\} \cup \{q \rightarrow \{q\}, \{q\} \rightarrow \{q\}\}$. This automaton simply outputs 1 at positions where p is true, and 0 everywhere else. Note that the run is uniquely determined by the input word; such a transducer is called non-ambiguous.

Figures [2(a)] and [2(b)] show the automata corresponding to the negation (\lnot) and disjunction (\lor) connectives. Their limit transitions are $\{q\} \rightarrow q$ and $q \rightarrow \{q\}$. Again, these automata admit exactly one run for each input word.
3.2 Automaton for \mathcal{U}

The difficulty starts with the “Until” connective (\mathcal{U}). We recall that $\varphi \mathcal{U} \psi$ holds at position i in a word w if there exists $j > i$ such that ψ holds at j, and such that φ holds at every position k such that $i < k < j$.

We build an automaton $A_{\mathcal{U}}$ with input alphabet $\{0, 1\}^2$ (corresponding to the truth value of φ and ψ at each position), and output alphabet $\{0, 1\}$. On an input word of the form $(v_\varphi(w), v_\psi(w))$ for some word w, we want the output to be $v_{\varphi \mathcal{U} \psi}(w)$. Let $f = |w|$, and $c \in \hat{f}$. We have five different situations. For each of these cases the figure shows an example, with “$|$” representing the cut c, and each \bullet representing a position in the input word.

0. c is followed by a position where φ and ψ are true.

1. $c = \hat{c}_j^-$, and j is such that φ is false and ψ is true.

2. other cases where $\varphi \mathcal{U} \psi$ is true at c.

3. c is followed by a position where both φ and ψ are false.

4. other cases where $\varphi \mathcal{U} \psi$ is false at c. If $c = \hat{c}_j^-$ then the input at position j is $(1, 0)$.

The structure of the automaton $A_{\mathcal{U}}$ and the limit transitions are given by Figure 3. This automaton has five states q_0 to q_4 corresponding to the situations described above. Given any two states q and q' there exists a transition $q \rightarrow q'$ except from q_2 to q_3 or q_4 and from q_4 to q_0, q_1 or q_2. The input label of successor transitions is determined by the origin node: $(1, 1)$ for q_0, $(0, 1)$ for q_1, $(0, 0)$ for q_3, and $(1, 0)$ for q_2 and q_4. The output label is 1 on transitions leading to q_0, q_1 or q_2, and 0 on transitions leading to q_3 or q_4. All states are initial, while q_4 is the only final state.

Lemma 6. Let φ and ψ two formulae. Let x and y be the truth words of φ and ψ on a word w of length f. The output of $A_{\mathcal{U}}$ on (x, y) is the truth word of $\varphi \mathcal{U} \psi$ on w.

Proof. Let p be the word of length \hat{f} on Q defined by

- if $x_j = y_j = 1$, then $\rho(\hat{c}_j^-) = q_0$;
- if $x_j = 0$ and $y_j = 1$ then $\rho(\hat{c}_j^-) = q_1$;
- if $x_j = y_j = 0$ then $\rho(\hat{c}_j^-) = q_3$;
- otherwise, if there exists $j > c$ such that $y_j = 1$ and for all i such that $c < i < j$, $x_i = 1$, then $\rho(c) = q_2$;
- otherwise, $\rho(c) = q_4$.

We show that p is a run of $A_{\mathcal{U}}$, that it is unique, and that its output is indeed the truth word of $\varphi \mathcal{U} \psi$ on w.

By definition, ρ ends in q_4, which is the final state of $A_{\mathcal{U}}$. Let $c \in \hat{f}$. If $\rho(c)$ is q_0, q_1 or q_3, then $c = \hat{c}_j^-$ for some j and the successor transition from c to the next cut is allowed by the automaton. If $\rho(c) = q_2$, and $c = \hat{c}_j^-$ for some j, then $x_j = 1$ and $y_j = 0$, and $\rho(\hat{c}_j^+) = q_0$,
q_1 or q_2. If $\rho(c^-) = q_4$, then similarly $x_j = 1$ and $y_j = 0$, and $\rho(c^+) = q_3$ or q_4. Every successor transition in ρ is thus allowed by $A_\mathcal{U}$.

We now need to show the same for limit transitions. If a left limit transition leads to a cut c, then either ψ is true arbitrarily close to the left of c (in which case the corresponding limit set contains q_0 or q_1), or it is always false (and the limit set is $\{q_2\}$ or a subset of $\{q_3, q_4\}$). If the limit set contains q_0, q_1 or q_3, any state for c is allowed. If it is $\{q_2\}$, the cut c can’t be labelled by q_3 or q_4 without violating the definition of ρ. Conversely, if the limit set is $\{q_4\}$, $\rho(c)$ is necessarily q_3 or q_4.

Let’s now consider a right limit transition starting at a cut c. The label of this cut can only be q_2 or q_4. In the first case, ψ must be true everywhere in the limit set, which is thus a subset of $\{q_0, q_2\}$. In the second case, either ψ is false infinitely often in the limit, or ψ is always false. This means that the limit set contains q_1 or q_3, or is restricted to $\{q_4\}$.

We now show that a run on $A_\mathcal{U}$ is uniquely determined by the input word. Let γ a run of $A_\mathcal{U}$ on x, y. Because of the constraints on the successor transitions, a cut c is labelled by q_0, q_1 or q_3 in γ if and only if it is labelled by the same state in ρ.

Let’s suppose that a cut c is labelled by q_2 in γ. Since q_2 is not final, there exists $c’ > c$ labelled by some other state. If there is a first such cut, its label is necessarily q_0 or q_1 (by a successor transition from q_2 or a limit transition from $\{q_2\}$). Otherwise, there is a transition of the form $q_2 \rightarrow \{q_0\}$ or $q_2 \rightarrow \{q_0, q_2\}$. In both cases, c satisfies the condition for cuts labelled by q_2 in the definition of ρ. A similar argument shows that a cut labelled by q_4 in γ has the same label in ρ. The run of $A_\mathcal{U}$ on a given input word is thus unique.

The last step is to show that the output word is really the truth word of $\varphi U \psi$. Let j an element of J. First, suppose that $w, j \models \varphi U \psi$. If j has a successor k, and ψ is true at k, then $y_k = 1$, and $A_\mathcal{U}$ outputs 1 at position j. Otherwise, there exists $k > j$ such that $w, k \models \psi$ (i.e. $y_k = 1$), and $x\ell = 1$ whenever $j < \ell < k$. Thus, c^+_j is labelled with q_2, and $A_\mathcal{U}$ once again outputs 1 at position j.

Similarly, if $w, j \not\models \varphi U \psi$, there are two cases. In the first case, j has a successor k, and $x_k = y_k = 0$. This means that c^-_j is labelled by q_3, so the output at position j is 0. In the last

![Automaton for \mathcal{U}](image)
3.3 Automaton for the future Stavi connective (UU′)

Let’s recall that φUU′ψ holds at position i if there exists a gap c > i such that ϕ holds at every position i < j < c, the property ψ holds at every position in some interval starting at x, and ¬ϕ holds at positions arbitrarily close to c to the right.

The central point in this definition is the gap c, which corresponds to state q3 in the automaton. States q0, q1 and q2 follow the positions, before q3, where the formula holds. States q4, q5, q6, q7, q8 follow the positions where the formula doesn’t hold. If a run reaches q0, q1 or q2, it has to leave this region through q3, and all successor transitions until then have input label (1, 0) or (1, 1). The structure of this automaton is depicted in Figure 3. All states except q3 and q6 are initial; q8 and q9 are final. Transitions from q1 and q2 have input label (1, 1), transitions from q2 and q6 have input label (1, 0), transitions from q4 have input label (0, 0), and transitions from q5 have input label (0, 1). The output is 1 for transitions to q0, q1 and q2, and 0 for transitions to q4, q5, q6, q7 and q8.

We define a labelling ρ of the cuts of a word w on \{0,1\}^2 using the states of the automaton in the following way:

- q0 has no successor, φUU′ψ is true
- q1 has an outgoing transition labelled (1, 0), φUU′ψ is true
- q2 has an outgoing transition labelled (1, 1), φUU′ψ is true
- q3 is a gap, φUU′ψ is true before it and false afterwards
- q4 has an outgoing transition labelled (0, 0), φUU′ψ is false
- q5 has an outgoing transition labelled (0, 1), φUU′ψ is false
- q6 has an outgoing transition labelled (1, 0), φUU′ψ is false
- q7 has an outgoing transition labelled (1, 1), φUU′ψ is false

Figure 3: Automaton for the future Stavi operator

\[P \rightarrow q_0, q_1, q_2 \text{ if } P \cap \{q_4, q_5\} \neq \emptyset \text{ or } P \subseteq \{q_0, q_1, q_2\} \]
\[P \rightarrow q_3 \text{ if } P \subseteq \{q_0, q_1, q_2\} \]
\[P \rightarrow q_4, q_5, q_6, q_7 \text{ if } P \not\subseteq \{q_0, q_1, q_2\} \]
\[P \rightarrow q_8 \text{ if } P \cap \{q_4, q_5\} \neq \emptyset \]
\[P \rightarrow q_9 \text{ if } P \cap \{q_4, q_5\} = \emptyset \text{ and } P \not\subseteq \{q_0, q_1, q_2\} \]
\[q_0 \rightarrow P \text{ if } P \subseteq \{q_0, q_1, q_2\} \]
\[q_3 \rightarrow P \text{ if } P \cap \{q_1, q_4, q_6\} = \emptyset \text{ and } q_5 \in P \]
\[q_8 \rightarrow P \text{ if } P \cap \{q_4, q_5, q_6, q_7\} \neq \emptyset \]
\[q_9 \rightarrow P \text{ if } P \cap \{q_4, q_5, q_6, q_7\} \neq \emptyset \text{ and either } P \cap \{q_4, q_5\} = \emptyset \text{ or } P \text{ intersects } \{q_1, q_4, q_6\} \]
• \(q_8\) has no successor, \(\varphi\) doesn’t hold in the left limit if it has no predecessor, and \(\varphi \mathcal{U}' \psi\) is false
• \(q_9\) is a gap or is the last cut, \(\varphi \mathcal{U}' \psi\) is false, and \(\varphi\) is true in some interval to the left

Lemma 7. \(\rho\) defines the unique run of the automaton on its input word. If the input is \((v_\varphi(w), v_\psi(w))\) for some word \(w\), then the output of this run is \(v_{\varphi \mathcal{U}' \psi}(w)\).

Proof. We first show that \(\rho\) is a run. Successor transitions correspond almost directly to the definitions of the labelling \(\rho\), so let’s look at limit transitions. For left limits, the following cases need to be considered:

- if a transition \(P \rightarrow q_0\) is taken at a cut \(c\), then either \(\varphi\) is true in the limit, and so \(\varphi \mathcal{U}' \psi\) is too, and \(P \subseteq \{q_0, q_1, q_2\}\), or it’s not, and either \(q_4\) or \(q_5\) appear in the limit
- the same reasoning applies for \(q_1\) and \(q_2\)
- if \(c\) is labelled \(q_3\) then the incoming transition has to come from a subset of \(\{q_0, q_1, q_2\}\) since \(\varphi \mathcal{U}' \psi\) is true in the limit.
- if a transition \(P \rightarrow q_4\) is used, then \(\varphi \mathcal{U}' \psi\) is not true in the limit (otherwise it would still be true), and so \(P \not\subseteq \{q_0, q_1, q_2\}\); the same applies for \(q_5, q_6, q_7, q_8\) and \(q_9\)
- if \(c\) is a left limit and is labelled \(q_3\) then the incoming transition comes from a set \(P\) intersecting \(\{q_4, q_5\}\) because \(\neg \varphi\) is repeated
- if \(c\) is labelled \(q_9\) then \(q_4\) and \(q_5\) can’t appear in the left limit set (\(\varphi\) is true)

If \(c\) is a right limit cut, it can only be labelled \(q_0, q_3, q_8\) or \(q_9\). Here are the possible right-limit transitions:

- if a right-limit cut \(c\) is labelled \(q_0\), the limit transition has to go to a subset of \(\{q_0, q_1, q_2\}\) since \(\varphi \mathcal{U}' \psi\) holds in the limit
- if \(c\) is labelled with \(q_3\), the limit transition to its right leads necessarily to a set \(P\) not including \(q_1, q_4\) and \(q_6\) since \(\psi\) is always true, and including \(q_5\) because \(\neg \varphi\) is repeated
- if \(c\) is labelled \(q_8\) or \(q_9\), the right limit set can’t be a subset of \(\{q_0, q_1, q_2\}\) otherwise \(c\) would have been labelled \(q_0\)
- if \(c\) is labelled \(q_9\) we have the additional condition that either \(\varphi\) holds in the limit (and neither \(q_4\) nor \(q_5\) appears) or \(\psi\) doesn’t (and one of \(q_4\) and \(q_5\) is in the limit)

The labelling of cuts defined above is thus a path of the automaton, and we only need to show that it’s the only one, using the same method as for the \(\mathcal{A}_\mathcal{U}\). Moreover, the definition of \(\rho\) means that the output is 1 whenever \(\varphi \mathcal{U}' \psi\) holds, and 0 at all other positions.

3.4 Construction of \(\mathcal{A}_\varphi\)

Now that we have the basic blocks for our construction, we can build an automaton for any formula \(\varphi\). If \(\varphi\) is an atomic proposition \(p\), then we have seen how to build \(\mathcal{A}_p\) in the previous section. If \(\varphi = \neg \psi\), then \(\mathcal{A}_\varphi = \mathcal{A}_\neg \circ \mathcal{A}_\psi\). If \(\varphi = \psi_1 \lor \psi_2\), then \(\mathcal{A}_\varphi = \mathcal{A}_\lor \circ (\mathcal{A}_\psi_1 \times \mathcal{A}_\psi_2)\). If \(\varphi = \psi_1 \mathcal{U} \psi_2\), then \(\mathcal{A}_\varphi = \mathcal{A}_\mathcal{U} \circ (\mathcal{A}_\psi_1 \times \mathcal{A}_\psi_2)\). The same can be done for \(\mathcal{U}'\) and for the past connectives.

The number of states of the resulting automaton is the product of the number of states of all the elementary automata, and is thus exponential in the size of the formula. The actual size of the automaton includes limit transitions, so can be doubly exponential in the size of the formula, if those transitions are represented explicitly.
Figure 4: Automaton checking whether a gap exists in the future

To check whether the formula φ is satisfiable by a model which is recognized by an automaton B, we can compute the product of the automaton A_φ with B, and check whether a transition where A_φ outputs 1 is accessible and co-accessible. This ensures that there exists a successful run of the product automaton going through that transition, meaning that the corresponding input word is accepted by B and there is a position where φ holds. This concludes the proof of Corollary 3.

4 Discussion

Logical characterization of automata. We have shown that any LTL, and thus FO, formula can be represented as a non-ambiguous automaton with output. But one can also build such an automaton where the output is the truth word of a property which can’t be expressed as a first-order formula. The automaton shown on Figure 4 outputs 1 whenever “there is a gap somewhere in the future” is true; that formula can’t be expressed in FO. It would be interesting to find a logical characterisation of the properties that can be expressed using such automata.

Computational complexity. The exact complexity of the satisfiability problem for LTL on arbitrary orderings remains open. We give a 2EXPSPACE procedure to compute an automaton from a formula, whose emptiness can then be checked efficiently. A classical optimization in similar problems is to compute the automaton on the fly, which saves a lot of complexity, so an algorithm using this technique for LTL on arbitrary orderings would be interesting.

Expressive power. On finite and ω-words, LTL restricted to the unary operators (X, F, and their past counterparts) is equivalent to first-order logic restricted to two variables, FO$_2(<, +1)$ [6]. Restricting even further to F and its reverse, we get a logic expressively equivalent to FO$^2(\prec)$. In the case of finite words, FO$^2(\prec)$ corresponds to “partially ordered” two-way automata [6]. The proof of equivalence between unary temporal logic and FO2 can be easily extended to the case of arbitrary linear orderings. It would be interesting to find such a correspondence for arbitrary orderings as well, and to see if these restrictions provide lower complexity results.

Mosaics technique. In his work on LTL(\mathcal{U}), Reynolds uses “mosaics” to keep track of the
subformulas that need to be satisfied in particular intervals, and to find a decomposition that shows the satisfiability of the initial formula. Unfortunately it is not clear if and how this can be extended to handle a larger fragment of the logic.

5 Conclusion

We investigate linear temporal order with Until, Since, and the Stavi connectives over general linear time, and its relationship with automata over linear orderings. We provide a translation from LTL to a class of non-ambiguous automata with output, giving a 2EXPSPACE procedure to decide satisfiability of a formula in any rational subclass.

This leaves a number of immediate questions, starting with the actual complexity for the satisfiability problem for LTL, but also for some of its fragments, where some operators are excluded. While the full class of automata over linear orderings is not closed under complementation [1], it might still be possible to find a logical characterization for some interesting subclasses.

References

This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License.