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Disper sive wave runup on non-uniform shores

Denys Dutykh and Theodoros Katsaounis and Dimitrios Matkist

Abstract Historically the finite volume methods have been developethie numer-
ical integration of conservation laws. In this study we présome recent results on
the application of such schemes to dispersive PDEs. Namelgolve numerically
a representative of Boussinesq type equations in view obritapt applications to
the coastal hydrodynamics. Snapshots of a moderate wavktaheprunup onto
a complex beach are presented along with great lines of thoged numerical
method (see D. Dutykht al. (2011) [$] for more details).

1 Introduction

The simulation of water waves in realistic and complex emvinents is a very chal-
lenging problem. Most of the applications arise from theaaref coastal and naval
engineering, but also from natural hazards assessmerge Bpplications may re-
quire the computation of the wave generatif{[$, 12], pratiag [L]], interaction

with solid bodies, the computation of long wave run[ig [1§,&& even the extrac-
tion of the wave energ)mS]. Issues like wave breaking, stibess of the numerical
algorithm in wet-dry processes along with the validity af thathematical models in
the near-shore zone are some basic problems in this dine[@. During past sev-

eral decades the classical Nonlinear Shallow Water EquaifSWE) have been
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essentially employed to face these probleﬂwﬂ[l, 7]. Mathieally, these equations
represent a system of conservation laws describing theagedjon of infinitely long
waves with a hydrostatic pressure assumption. The wavékingphenomenon is
commonly assimilated to the formation of shock waves (oraytic jumps) which
is a common feature of hyperbolic PDEs. Consequently, thte fimlume (FV)
method has become the method of choice for these problemwdtseexcellent
intrinsic conservative and shock-capturing properfieBIff].

In the present article we report on recent results concegithia extension of the
finite volume method to dispersive wave equations stemisgreslly from water

wave modeling[[14]4] 6].

2 Mathematical model and numerical methods

Consider a cartesian coordinate system in two space diones1(sq, z) to simplify
notations. Thez-axis is taken vertically upwards and tkeaxis is horizontal and
coincides traditionally with the still water level. The fiLldlomain is bounded below
by the bottonz = —h(x) and above by the free surfaze- n(x,t). Below we will
also need the total water depith(x,t) := h(x) + n(x,t). The flow is supposed to
be incompressible and the fluid is inviscid. An additionauasption of the flow
irrotationality is made as well.

In the pioneering work of D.H. Peregrine (196@[14] the daling system of
Boussinesq type equations has been derived:

N+ ((h+n)u), =0, 1)

2

h h
Ut + Utk + Gl — E(hu)xxtJr B Ut = 0, (2)

whereu(x,t) is the depth averaged fluid velocity,is the gravity acceleration and
underscriptsyy, nt) denote partial derivatives.

In our recent study[[G] we proposed an improved version af dlyistem which
contains higher order nonlinear terms which should be réggdefrom asymptotic
point of view:

He +Qx =0, 3)

1

((1+ §HX2— !

SHHL)Q - TH?Qu— 2HAQ)) + (T +%H2)X gHh. (4)
The last system is also written in conservative variabtesQ) = (H,Hu).
Obviously the linear characteristics of both systeﬁls @))a(]d ), Kkl) coincide

since they differ only by nonlinear terms.
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However, this modification has several important implicas onto structural
properties of the obtained system. First of all, the maglaitaf dispersive terms
tends to zero when we approach the shordline> 0. This property corresponds to
our physical representation of the wave shoaling and rumapgss. On the other
hand, the resulting system becomes invariant under vettaraslations (subgroup
Gs in Theorem 4.2, T. Benjamin & P. Olver (198@ [2]):

z+z+d, n+n—-d, h+«h+d, u<+u, (5)

whered is some constant. This property is straightforward to cteoke we use
only the total water depth variabl¢ = h+ n which remains invariant under trans-
formation (}).

Remark 1 In this contribution we will consider the initial-boundavglue problem
posed in a bounded domaird [by, b,] with reflective boundary conditions. In this
case one needs to impose boundary conditions only in onesdinth dependent
variables, cf. [B]. In the case of reflective boundary coiudis it is sufficient to take
u(bs,t) = u(by,t) =0.

2.1 Finite volume discretization

Let 7 = {x}, i € Z denotes a partition oR into cellsC = (&7%,&+%) where
X = (Xi+% +x]-7%)/2 denotes the midpoint 6. LetAx; = X1 —%_1 be the length
of the cellG;, AxiJr% =X11—X.

The governing equationE (3[] (4) can be recast in the foligwiector form:

[Dve)l + [F(v)]x = S(v),

where
D(Vt) ( ] l||2 1|||| ' l||2 1|||| )7 (6)
( 3 x [ XX)QT 3 QXXt 3 XQXt

F(V) = (%2 +Q%H2) ) S(V) = (gHODX> : (7)

We denote byH;, U; andD; the corresponding cell averages. To discretize the
dispersive terms ir[[6) we consider the following approxiones:

X
= / i {1+}(HX)2éHHXX] Q dx~

Ax Jx 3
=32
1(Ha—Hi1\? 1 Hua—2Hi+H1)
<1+§<T) “g % @
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1 %1l Hi+l_Hi—lQi+1_Qi71
~HH,Qy dx~
Ax/ , 3 xQx X~ 3 2AX 2Ax

T2

1 X|+2 2 2Q|+l 2Q|+Q| l
— [z dx~ 1H;
Ax/ 31 Qudxx 3 X%

=2

We note that we approximate the reflective boundary contitiny taking the
cell averages afi on the first and the last cell to lug = un,1 = 0. We don’t impose
explicitly boundary conditions ohl. The reconstructed values on the first and the
last cell are computed using neighboring ghost cells anthgaéidd and even ex-
trapolation foru andH respectively. These specific boundary conditions appeared
to reflect incident waves on the boundaries while consertriagnass.

This discretization leads to a linear system with tridiagjanatrix denoted by
that can be inverted efficiently by a variation of Gauss eietibn for tridiagonal
systems with computational complexi®(d), d-being the dimension of the system.
We note that on the dry cells the matrix becomes diagonaésihds zero on dry
cells. For the time integration the explicit third-order DMRK method is used. In
the numerical experiments we observed that the fully discseheme is stable and
preserves the positivity dfl during the runup under a mild restriction on the time
stepAt.

Therefore, the semidiscrete problem ﬂf (6[|- (7) is writteraasystem of ODEs

in the form:
1

E(Sv
wherelL; is thei—th row of matrixL and.7; +1 can be chosen as one of the numer-

ical flux functions [§] (in computations presented below wease the FVCF flux
[A). In the sequel we will use the KT and the CF numerical feida this case the
Jacobian of is given by the matrix

1
Lvlt+A ( |+7 ‘27%):

A= (r.z:H—(oQ/m2 2Q1/H)’

and the eigenvalues akg >, = Q/H £ \/gH. Therefore, the characteristic numerical
flux [H] takes the form

F(VE F(VR F(VR F(Vt
7 ( |+%)+ ( I+%)*U(IJ) ( |+2) ( |+2)
I+3 2 2 ’
wherep = (ug, 42)" are the Roe average values,
L R L R R
H|+%+H|+2 H+2U 1T H U|+1

Hi = ) Mz =
2 L R
H|+1 \/ H|+2

and
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Sz(H2+C)2751(H2*C) 8-%

— C C — . .

U(k) = 8P sro sp-g | = VOHLS= sign(Ay).
C C

For more details on the discretization and reconstructioogdures we refer to
our complete work on this subjeg{ [6].

3 Numerical results

In the present section we show a numerical simulation ofitasgplwave runup onto
a non-uniform sloping beach. More precisely, we add a snoaitimlong the slope.
As our results indicate, this small complication is alreadificient to develop some
instabilities which remain controlled in our simulations.

As the initial condition we used an approximate solitary e@olution of the
following form:

No(X)
— Assecl (A (x— = —Ce

Mo(X) = Assectt (A (x—x0)),  Uo(X) = —Gsg—— s,

whereAs is the amplitude relative to the constant water ddpghtaken to be 1 in
our study. The solitary wave speeglalong with the wavelength are given here:

A [ gYRUEA) VHA)IILEA) — A
41+As)7 V3+ 2As As :

The solitary wave is centered initially & = 10.62 and has the amplitudig = 0.08.
The constant slopg is equal to 288°. The sketch of the computational domain can
be found in ).

In numerical simulations presented below we used a unifpanea discretization
with Ax=0.025 and very fine time stefit = Ax/100 to guarantee the accuracy and
stability during the whole simulation.

——Boussinesq (UNO)
- - Boussinesq (TVD)
- - - Shallow water (UNO)

——Boussinesq (UNO)
- - Boussinesq (TVD)
- - - Shallow water (UNO)

T

(a)t;ls (b)t;Ss

T

Fig. 1 Solitary wave aproaching a sloping beach with a pond.



6 D. Dutykh, Th. Katsaounis and D. Mitsotakis

——Boussinesq (UNO) ——Boussinesq (UNO)

- - Boussinesq (TVD) - - Boussinesq (TVD)
o0ab - - - Shallow water (UNO) o0ab - - - Shallow water (UNO)
02 02F
0.1 0.1

n n
oF oF
-0.4] -0.4]
-02] -02]

-2 0 2 4 6 8 10
T

(@t :m3.5 S (b)yt=4s

Fig. 2 Beginning of the pond inundation.

——Boussinesq (UNO) ——Boussinesq (UNO)

- - Boussinesq (TVD) - - Boussinesq (TVD)
o0ab - - - Shallow water (UNO) o0ab - - - Shallow water (UNO)
02 02F
0.1 0.1

n n

oF oF
-0.1] -0.1]
-02] -02]

-2 0 2 4 6 8 10
T

(@t=5s (b) t :m5.5 s

Fig. 3 A part of the wave mass is trapped in the pond volume.

— Boussinesq (UNO) — Boussinesq (UNO)
- - Boussinesg (TVD) - - Boussinesg (TVD)
03f - - - Shallow water (UNO)| 03f - - - Shallow water (UNO)|

-2 0 2 4 6 8 10 -2 0 2 4 6 8 10
T

@t=6s (b) t :IG.SS

Fig. 4 Wave oscillations in the pond.

Snapshots of numerical results are presented on FiﬂurﬂsWe present simul-
taneously three different computational results:
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——Boussinesq (UNO)
- - Boussinesq (TVD)

——Boussinesq (UNO)
- - Boussinesq (TVD)
- - - Shallow water (UNO)

- - - Shallow water (UNO)

T T

(a)t#?s (b)t;SS

Fig. 5 Stabilization of wave oscillations.

——Boussinesq (UNO)
- - Boussinesq (TVD)
03l - - - Shallow water (UNO)

0.2

-0.1r

-0.21

-2 0 2 a4 6 8 10

Fig. 6 The whole system is tending to the rest position (snapskentatt = 10 s).

e Modified Peregrine system solved with UNO2 reconstruct@] [
e The same system with classical MUSCL TVD2 sche@a [13]
e Nonlinear Shallow Water Equations (NSWE) with UNO2 schefid [

Surprisingly good agreement was obtained among all thregerigal models.
Presumably, the complex runup process under consideratigoverned essen-
tially by nonlinearity. However, on Figureﬂs 1(b) aﬁd 2(a@ #implitude predicted
by NSWE is slightly overestimated.

On Figureg]3(b) §]4(b) some oscillations can be seen. Howtar amplitude
remains small for all times and does not produce any blow \gnpmena. Later
tEheEse oscillations decay tending gradually to the “lakéatéest” state (see Figures

)

In the specific experiment a friction term could be beneficakduce the ampli-
tude of oscillations (or damp them out completely). Howewer prefer to present
the computational results of our model without adding amhad term to show its
original performance.
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4 Conclusions

In this study we presented an improved version of the Paregsistem which is par-
ticularly suited for the simulation of dispersive wavesupnThis system allows for
the description of higher amplitude waves due to improvedinear characteristics.
Better numerical stability properties have been obtairiedesmost of the disper-
sive terms tend to zero when we approach the shoreline. Goasdy, our model
naturally degenerates to classical Nonlinear Shallow WEatgiations (NSWE) for
which the runup simulation technology is completely masderowadays. However
we underline that there is no artificial parameter to turndigpersive terms. Their
importance is naturally governed by the underlying phygcacess.

Moreover we presented some numerical results on the wawgromto a com-
plex beach containing a pond. Even in this stiff case our migakemodel produced
stable and physical results, thus validating modificatibthhe Peregrine system.
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