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Abstract—In this paper we analyse the asymptotic sum-rate
of regularized zero-forcing (RZF) precoding in MISO broadcast
channels with limited feedback, transmit correlation and path-
loss. Our analysis assumes that the ratio of the number of
transmit antennas ▼ to the number of users ❑ is bounded
as ✭❑❀▼✮ grow large. By applying recent results from random
matrix theory we derive a deterministic equivalent of the SINR
and compute the sum-rate maximizing regularization term as
well as sum-rate bounds for high SNR. Numerical simulations
show that the asymptotic results extend well into finite regimes.

I. INTRODUCTION

It has been shown in [1] that the capacity achieving precod-

ing strategy of the Gaussian MIMO broadcast channel is based

on the non-linear dirty-paper coding (DPC) technique. But so

far no efficient practical algorithm implementing the optimal

DPC scheme has been proposed. Therefore, low complexity

linear precoding strategies have gained a lot of attention since

they achieve a large portion of the channel capacity [2], [3].

The RZF filters have first been analysed in the MU-MIMO

context in [3]. It has been observed that the RZF precoding

matrix has a similar structure as the transmit Wiener filter

derived in [4]. Indeed, both transmit filters are equal for

asymptotically high ✭❑❀▼✮.
In this contribution we consider a system where both ▼

and ❑ grow asymptotically large but their ration ☞ ❂ ▼❂❑
is bounded. In particular we extend the models of [3], [5],

[6] by considering imperfect CSIT, transmit correlation as

well as different path-losses of the users. With the aid of

recent tools from random matrix theory (RMT), we derive

a deterministic equivalent of the signal-to-interference plus

noise ratio (SINR) of RZF which is independent of the

individual channel realizations.

Notation: In the following boldface lower-case and upper-

case characters denote vectors and matrices, respectively. The

operators ✭✁✮❍ and tr✭✁✮ denote conjugate transpose and the

trace, respectively. The expectation is ❊❬✁❪ and ❞✐❛❣✭①✮ is a

diagonal matrix with vector ① on the main diagonal. The ◆✂◆
identity matrix is ■◆ . The ❦th column of ❳ is denoted ①❦.

II. MATHEMATICAL PRELIMINARIES

Definition 1: Let ❋ be a probability distribution function.

For ③ ✷ ❈ outside the support of ❋ , we define the Stieltjes

transform of ❋ as the function

♠❋ ✭③✮ ❂

❩
✶

✕� ③
❞❋ ✭✕✮ (1)

In this paper we are interested in the Stieltjes transform ♠❇❑
of random matrices ❇❑ ✷❈▼✂▼ of the type

❇❑ ❂ ❘
✶❂✷
❑ ❳❍

❑▲❑❳❑❘
✶❂✷
❑ ✰❆❑ (2)

where ❘❑ ✷ ❈▼✂▼ and ▲❑ ✷ ❈❑✂❑ are positive definite

Hermitian matrices, ❳❑ ✷❈❑✂▼ is random with independent

and identically distributed (i.i.d.) entries of zero mean and

variance ✶❂▼ , and ❆❑ is a nonnegative Hermitian matrix,

with same eigenspace as ❘❑ ; denote then ❛✭✕✮ a function

mapping the eigenvalues of ❘❑ to those of ❆❑ . In our

derivations, we will require the following result,

Theorem 1: [7] Under the above model for ❇❑ where ▲❑
and ❘❑ have uniformly bounded spectral norm (w.r.t. ▼ ), as

✭❑❀▼✮ grow large with ratio ☞ ❂ ☞✭▼✮
✁
❂▼❂❑ such that

✵❁ ❧✐♠ ✐♥❢▼ ☞✭▼✮✔ ❧✐♠ s✉♣▼ ☞✭▼✮❁✶, for ③✷❈✰,

♠❇❑ ✭③✮�♠✍❇❑ ✭③✮
▼✦✶�✦ ✵ (3)

almost surely, where ♠✍
❇❑

✭③✮ is defined as

♠✍❇❑ ✭③✮ ❂

❩
✶

❛✭✕✮ ✰ ✕❝✭③✮� ③
❞❋❘❑ ✭✕✮ (4)

✇✐t❤ ❝✭③✮ ❂
✶

☞

❩
✗

✶ ✰ ✗❡❑✭③✮
❞❋▲❑ ✭✗✮ (5)

where ❡❑✭③✮✷❈✰ is the unique solution of

❡❑✭③✮ ❂

❩
✕

❛✭✕✮ ✰ ✕❝✭③✮� ③
❞❋❘❑ ✭✕✮ (6)

where ♠✍
❇❑

✭③✮ is referred to as a deterministic equivalent of

♠❇❑ ✭③✮.

III. SYSTEM MODEL

Consider the MISO broadcast channel composed of one

central transmitter equipped with ▼ antennas and of ❑ single-

antenna receivers. Assume narrow-band communication. De-

noting ②❦ the signal received by user ❦, the concatenated



received signal vector ② ❂ ❬②✶❀ ✿ ✿ ✿ ❀ ②❑ ❪❚ ✷ ❈❑ at a given

time interval reads

② ❂
♣
▼❍①✰ ♥ (7)

with transmit vector ① ✷ ❈▼ , channel matrix ❍ ✷ ❈❑✂▼
containing i.i.d. elements of zero mean and variance ✶❂▼
and noise vector ♥ ✘ ❈◆ ✭✵❀ ✛✷■❑✮. The transmit vector ①

is obtained by linear precoding

① ❂ ●s (8)

where s ✘ ❈◆ ✭✵❀ ■❑✮ is the symbol vector and ● ❂
❬❣✶❀ ✿ ✿ ✿ ❀❣❑ ❪✷❈▼✂❑ is the precoding matrix. The transmitter

has a limited amount of transmit power P ❃ ✵, thus we have

the constraint

tr✭❊❬①①❍❪✮ ❂ tr✭●●❍✮ ✔ P (9)

In this paper we consider regularized channel inversion pre-

coding

● ❂
♣
▼✘

✏
▼ ⑦❍❍ ⑦❍✰▼☛■▼

✑�✶
⑦❍❍ (10)

❂
✘♣
▼

✏
⑦❍❍ ⑦❍✰ ☛■▼

✑�✶
⑦❍❍ ✁

❂
✘♣
▼
❲ ⑦❍❍ (11)

where ⑦❍ is the estimated channel matrix available at the

transmitter and the scaling factor ✘ is set to fulfill the power

constraint (9). The regularization scalar ☛ in (10) is scaled by

▼ to ensure that, as ✭❑❀▼✮ grow large, both tr ⑦❍❍ ⑦❍ and

tr▼☛■▼ grow with the same order of magnitude. From (9)

we obtain

✘✷ ❂
P

✶
▼ tr

✔
⑦❍❍ ⑦❍

✏
⑦❍❍ ⑦❍✰ ☛■▼

✑�✷✕ ❂
P❘

✗
✭✗✰☛✮✷ ❞❋

⑦❍❍ ⑦❍✭✗✮

✭❛✮
❂

P

♠ ⑦❍❍ ⑦❍✭�☛✮� ☛♠✵
⑦❍❍ ⑦❍

✭�☛✮
✁
❂

P

✠✭☛✮
(12)

where ✭❛✮ follows from (1) and ✭✁✮✵ denotes the derivative w.r.t.

③ in ③❂�☛. The received symbol ②❦ of user ❦ is given by

②❦ ❂ ✘❤❍❦❲
⑦❤❦s❦ ✰ ✘

❑❳
✐❂✶❀✐✻❂❦

❤❍❦❲
⑦❤✐s✐ ✰ ♥❦ (13)

where ❤❍❦ and ⑦❤❍❦ denote the ❦t❤ row of❍ and ⑦❍, respectively.

The SINR ✌❦ of user ❦ can be written in the form

✌❦ ❂
❥❤❍❦❲⑦❤❦❥✷

❤❍❦❲❯❍

❦❯❦❲❤❦ ✰
✶
✚✠✭☛✮

(14)

where ❯❍

❦ ❂ ❬⑦❤✶❀ ✿ ✿ ✿ ❀ ⑦❤❦�✶❀ ⑦❤❦✰✶❀ ✿ ✿ ✿ ❀ ⑦❤❑ ❪✷❈▼✂✭❑�✶✮ and

✚❂P❂✛✷ denotes the SNR. The sum-rate ❘s✉♠ is defined as

❘s✉♠ ❂

❑❳
❦❂✶

❧♦❣ ✭✶ ✰ ✌❦✮ ❬♥❛ts❂s❂❍③❪ (15)

Under the assumption of a rich scattering environment the

correlated channel can be modeled as [8]–[10]

❍ ❂ ▲✶❂✷❍✇✂
✶❂✷
❚ (16)

where ❍✇ ✷ ❈❑✂▼ has i.i.d. zero-mean entries of variance

✶❂▼ , ✂❚ ✷ ❈▼✂▼ is the nonnegative definite correlation

matrix at the transmitter and ▲ ❂ ❞✐❛❣✭❬❧✶❀ ✿ ✿ ✿ ❀ ❧❑ ❪✮ is a

diagonal matrix containing the user’s channel gain. We assume

❦✂❚❦�✶ to be uniformly bounded with respect to M.

Moreover, we suppose that only ⑦❍, an imperfect estimate of

the true channel matrix ❍, is available at the transmitter. The

channel-gain matrix ▲ as well as the transmit correlation ✂❚

can be estimated accurately and are assumed to be perfectly

known. We therefore model ⑦❍ as

⑦❍ ❂ ▲✶❂✷ ⑦❍✇✂
✶❂✷
❚ (17)

✇✐t❤ ⑦❍✇ ❂
♣

✶� ✜✷❍✇ ✰ ✜◗ (18)

where ◗ ✷ ❈❑✂▼ has i.i.d. zero-mean entries of variance

✶❂▼ which are not necessarily Gaussian distributed. Further-

more we suppose that ❍✇ and ◗ are mutually independent

as well as independent of the symbol vector s and noise ♥. A

similar model for imperfect CSIT has been used in [11]–[13].

IV. DETERMINISTIC EQUIVALENT OF THE SINR

In the following we will derive a deterministic equivalent

✌✍❦ of the SINR of user ❦, i.e. ✌✍❦ is such that, almost surely,

✌❦ � ✌✍❦
▼✦✶�✦ ✵ (19)

That is, ✌✍❦ is an approximation of ✌❦ independent of the

particular realizations of ❍✇ and ◗. We will proceed by

calculating deterministic equivalent expressions of ✠✭☛✮, the

signal power ❥❤❍❦❲⑦❤❦❥✷ and the power of the interference

❤❍❦❲❯❍

❦❯❦❲❤❦.

Consider ✠✭☛✮ in (12), from Theorem 1, with ❘❑ ❂✂❚

and ❆❑❂✵, we know that, for ❑ large, ♠ ⑦❍❍ ⑦❍✭�☛✮ is close

to ♠✍
⑦❍❍ ⑦❍

✭�☛✮ given by Equation (3). Therefore we have

✠✭☛✮� ✂
♠✍

⑦❍❍ ⑦❍
✭�☛✮� ☛♠✍✵

⑦❍❍ ⑦❍
✭�☛✮✄ ▼✦✶�✦ ✵ (20)

The Stieltjes transform is differentiable and ♠✍✵
⑦❍❍ ⑦❍

is well

defined.

At this point we need the following results.

Corollary 1: [14] Let ❆ be a deterministic ◆✂◆ complex

matrix with uniformly bounded norm. Let ①✷❈◆ have i.i.d.

complex entries of zero mean and variance ✶❂◆ . Then, almost

surely,

①❍❆①� ✶

◆
tr❆

◆✦✶�✦ ✵ (21)

and for vector ②✷❈◆ with standard i.i.d. entries, independent

of ①,

②❍❆①
◆✦✶�✦ ✵ (22)

almost surely.

In addition we will make use of the following identity

Lemma 1: [15, Lemma 2.2] Let ❆ be an ◆✂◆ invertible

matrix and ①✷❈◆ , ❝✷❈ for which ❆ ✰ ❝①①❍ is invertible.

Then

①❍
�
❆✰ ❝①①❍

✁�✶
❂

①❍❆�✶

✶ ✰ ❝①❍❆�✶①
(23)



A. Signal Power

Applying Lemma 1, we have

⑦❤❍❦❲❤❦ ❂
⑦❤❍❦
�
❯❍

❦❯❦ ✰ ☛■▼
✁�✶

❤❦

✶ ✰ ⑦❤❍❦
�
❯❍

❦❯❦ ✰ ☛■▼
✁�✶ ⑦❤❦ (24)

Together with ⑦❤❦ ❂
♣
✶� ✜✷❤❦ ✰ ✜ ⑦q❦ and ⑦q❦ ❂

♣
❧❦q❦✂

✶❂✷
❚

we obtain

⑦❤❍❦❲❤❦ ❂

♣
✶� ✜✷❧❦❤

❍

✇❦❆
�✶
❦ ❤✇❦

✶ ✰ ❧❦⑦❤❍✇❦❆
�✶
❦

⑦❤✇❦
✰

✜ ❧❦q
❍

❦❆
�✶
❦ ❤✇❦

✶ ✰ ❧❦⑦❤❍✇❦❆
�✶
❦

⑦❤✇❦

with ❱❍

❦ ❂ ❬⑦❤✇✶❀ ✿ ✿ ✿ ❀ ⑦❤✇✭❦�✶✮❀ ⑦❤✇✭❦✰✶✮❀ ✿ ✿ ✿ ❀ ⑦❤✇❑ ❪, ▲❦ ❂
❞✐❛❣✭❬❧✶❀ ✿ ✿ ✿ ❀ ❧❦�✶❀ ❧❦✰✶ ✿ ✿ ✿ ❧❑ ❪✮ and ❆❦❂❱

❍

❦▲❦❱❦✰☛✂�✶❚ .

Since ⑦❤✇❦ and q❦ have i.i.d. entries of variance ✶❂▼ and are

independent of ❆❦ we evoke Corollary 1 and obtain

❤❍✇❦❆
�✶
❦ ❤✇❦ �

✶

▼
tr❆�✶❦

▼✦✶�✦ ✵ (25)

⑦❤❍✇❦❆
�✶
❦

⑦❤✇❦ � ✶

▼
tr❆�✶❦

▼✦✶�✦ ✵ (26)

q❍❦❆
�✶
❦ ❤✇❦

▼✦✶�✦ ✵ (27)

Consequently we have

⑦❤❍❦❲❤❦ �
♣

✶� ✜✷
❧❦

✶
▼ tr❆�✶❦

✶ ✰ ❧❦
✶
▼ tr❆�✶❦

▼✦✶�✦ ✵ (28)

In [16] we prove that a rank-1 perturbation has no impact

on the trace of ❆�✶❦ for asymptotically large ❑. Therefore,

almost surely,

✶

▼
tr❆�✶❦ � ✶

▼
tr❆�✶

▼✦✶�✦ ✵ (29)

where

❆❂ ⑦❍❍

✇▲
⑦❍✇ ✰ ☛✂�✶❚ (30)

Furthermore we can write ✶
▼ tr❆�✶ in terms of the Stieltjes

transform ♠❆✭③✮ in ③ ❂ ✵ (which is valid since ❦✂�✶❚ ❦ is

bounded away from zero) which, for large ❑ is close to

♠✍
❆✭✵✮ ❂

❩
✕

✕❝✭✵✮ ✰ ☛
❞❋✂❚✭✕✮ (31)

✇✐t❤ ❝✭✵✮ ❂
✶

☞

❩
✗

✶ ✰ ✗♠✍
❆
✭✵✮

❞❋▲✭✗✮❞✗ (32)

Finally, Equation (28) implies

⑦❤❍❦❲❤❦ �
♣

✶� ✜✷
❧❦♠

✍
❆

✶ ✰ ❧❦♠✍
❆

▼✦✶�✦ ✵ (33)

B. Interference Power

After applying Lemma 1 twice, we obtain

❤❍❦❲❯❍

❦❯❦❲❤❦ ❂
❧❦❤

❍

✇❦❇
�✶
❦ ❱

❍

❦▲❦❱❦❇
�✶
❦ ❤✇❦�

✶ ✰ ❧❦✭✶� ✜✷✮❤❍✇❦❇
�✶
❦ ❤✇❦

✁✷ (34)

where ❇❦ ❂ ❆❦ ✰ ❧❦✜
✷q❦q

❍

❦ ✰ ❧❦✜
♣
✶� ✜✷❤✇❦q

❍

❦ ✰
❧❦✜
♣
✶� ✜✷❤❍✇❦q❦.

Lemma 2: Let ❆ ✷ ❈◆✂◆ of bounded norm. Let ①❀② ✷
❈◆ have i.i.d. complex entries of zero mean and variance

✶❂◆ . Then, for ❝✐✷❈❀ ✐❂✵❀ ✶❀ ✷ and ✉❂ ✶
◆ tr❆�✶

①❍
�
❆✰ ❝✵①①

❍ ✰ ❝✶②②
❍ ✰ ❝✷①②

❍ ✰ ❝✷②①
❍
✁�✶

①

� ✉✭✶ ✰ ❝✶✉✮

✭❝✵❝✶ � ❝✷✷✮✉
✷ ✰ ✭❝✵ ✰ ❝✶✮✉✰ ✶

◆✦✶�✦ ✵ (35)

almost surely. The proof can be found in [16].

Applying Lemma 2, after some algebraic manipulations we

obtain

❧❦❬♠
✍
❆
✭✵✮� ☛♠✍

❆✷✂❚
✭✵✮❪❬✶ ✰ ❧❦✜

✷✭❧❦♠
✍
❆
✭✵✮ ✰ ✷✮♠✍

❆
✭✵✮❪

✭✶ ✰ ❧❦♠✍
❆
✭✵✮✮✷

�

❤❍❦❲❯❍

❦❯❦❲❤❦
▼✦✶�✦ ✵ (36)

where ♠✍
❆✷✂❚

✭✵✮ ❂ ✶
▼ tr

✏
✂

✶❂✹
❚

⑦❍❍

✇▲
⑦❍✇✂

✶❂✹
❚ ✰ ☛✂

�✶❂✷
❚

✑�✷
.

We can express ♠✍
❆✷✂❚

✭✵✮ in terms of the derivative of

♠✍

❆✂
✶❂✷
❚

✭✵✮

♠✍
❆✷✂❚

✭✵✮ ❂
❅♠✍

❆✂
✶❂✷
❚

✭③✮

❅③ ③❂✵
❂ ♠✍✵

❆✂
✶❂✷
❚

✭✵✮ (37)

Applying Theorem 1 to matrix ❆✂
✶❂✷
❚ leads to

♠✍

❆✂
✶❂✷
❚

✭✵✮ ❂

❩
✕✶❂✷

✕❝✭✵✮ ✰ ☛
❞❋✂❚✭✕✮ (38)

✇✐t❤ ❝✭✵✮ ❂
✶

☞

❩
✗

✶ ✰ ✗❡
❆✂

✶❂✷
❚

✭✵✮
❞❋▲✭✗✮ (39)

❡
❆✂

✶❂✷
❚

✭✵✮ ❂

❩
✕

✕❝✭✵✮ ✰ ☛
❞❋✂❚✭✕✮ (40)

For the derivatives we obtain

♠✍✵

❆✂
✶❂✷
❚

✭✵✮ ❂

❩
✕� ✕✸❂✷❝✵✭✵✮

✭✕❝✭✵✮ ✰ ☛✮✷
❞❋✂❚✭✕✮ (41)

❝✵✭✵✮ ❂ � ✶

☞

❩ ✗✷❡✵
❆✂

✶❂✷
❚

✭✵✮

✭✶ ✰ ✗❡
❆✂

✶❂✷
❚

✭✵✮✮✷
❞❋▲✭✗✮ (42)

❡✵
❆✂

✶❂✷
❚

✭✵✮ ❂

❩
✕✸❂✷ � ✕✷❝✵✭✵✮

✭✕❝✭✵✮ ✰ ☛✮✷
❞❋✂❚✭✕✮ (43)

Finally, the deterministic equivalent ✌✍❦ is given by (44). Note

that the computation of (44) requires the solution of only one

fixed-point equation [16].

V. SUM-RATE MAXIMIZING REGULARIZATION

To optimize the achievable sum-rate, ☛ in (44) should be

chosen to maximize (15). We then define ☛❄ as

☛❄ ❂ ❛r❣♠❛①
☛❃✵

❑❳
❦❂✶

❧♦❣ ✭✶ ✰ ✌✍❦✮ (45)

For the general channel model (17) the optimization in (45)

is very tedious and no closed-form solution for ☛❄ exists.

However, in case of a homogeneous network (▲❂■❑) without

transmit correlation (✂❚ ❂ ■▼ ) ☛❄ has a closed-from. In

this case ♠✍
❆
✭✵✮ ❂ ♠✍

❆✂
✶❂✷
❚

❂ ♠✍
⑦❍❍
✇
⑦❍✇

✭�☛✮ is the Stieltjes



✌✍❦ ❂
❧✷❦✭✶� ✜✷✮ ✭♠✍

❆
✭✵✮✮

✷

❧❦

✔
♠✍
❆
✭✵✮� ☛♠✍✵

❆✂
✶❂✷
❚

✭✵✮

✕
❬✶ ✰ ❧❦✜✷✭❧❦♠✍

❆
✭✵✮ ✰ ✷✮♠✍

❆
✭✵✮❪ ✰ ✶

✚ ✭✶ ✰ ❧❦♠✍
❆
✭✵✮✮✷✠✭☛✮

(44)

transform of the Marc̆enko-Pastur law and has the unique

solution given by [17]

♠✍
⑦❍❍
✇
⑦❍✇

✭�☛✮ ❂ ☞✭✶� ☛✮� ✶ ✰ ❞✭☛❀ ☞✮

✷☛☞

with ❞✭☛❀ ☞✮ ❂
♣
☞✷☛✷ ✰ ✷☛☞✭✶ ✰ ☞✮ ✰ ✭✶� ☞✮✷ (46)

Substituting (46) into (44) and setting the derivative w.r.t. ☛
to zero, we obtain

☛❄ ❂

✒
✶ ✰ ✜✷✚

✶� ✜✷

✓
✶

☞✚
(47)

For this ☛❄, ✌✍❦ in (44) takes the surprisingly simple form

✌✍❦ ❂ ♠✍
⑦❍❍
✇
⑦❍✇

✭�☛❄✮ ❂
☞✭✶� ☛❄✮� ✶ ✰ ❞✭☛❄❀ ☞✮

✷☛❄☞
(48)

The sum-rate saturation level at high SNR is

❘❧✐♠
s✉♠ ❂ ❧✐♠

✚✦✶
❑ ❧♦❣✭✶ ✰ ✌✍✮

❂ ❑ ❧♦❣

✒
✶� ✶ ✰ ☞✭✜✷ � ✶✮ ✰ ❞✭☞❀ ✜✮

✷✜✷

✓
(49)

with ❞✭☞❀ ✜✮ ❂
♣
☞✷✜✷ ✰ ☞✜✷✭✶� ✜✷✮✭✹� ☞✮ ✰ ✭☞ � ✶✮✷

Let’s assume that the parameters involved in (47) are mutually

independent and look at their asymptotic values.

First, notice that for perfect CSIT (✜ ❂ ✵) we have ☛❄ ❂
✶❂✭☞✚✮ which corresponds to the result derived in [3]. As

mentioned in [3], for large ✭❑❀▼✮ the RZF precoder is equal

to the MMSE precoder in [4], [11].

In contrast, for ✜ ❃✵ the RZF transmit filter and the MMSE

transmit filter are not identical anymore, even in the large ❑
limit. Moreover, for asymptotically high SNR, (47) becomes

❧✐♠
✚✦✶

☛❄ ❂
✜✷

✶� ✜✷
✶

☞
(50)

Thus, for ✚✦✶, RZF has a finite sum-rate limit. That means,

as soon as there are errors in the CSIT a sum-rate saturation

effect occurs and the system becomes interference-limited. An

open question is to determine how the distortion ✜✷ has to scale

in order to assure that the system sum-rate does not saturate

at high SNR.

VI. NUMERICAL RESULTS

In our simulations all results are averaged over 10,000

independent channel realizations. Additional results can be

found in [16].

Figure 1 shows the ergodic sum-rate two different precoder,

RZF-1 using the sum-rate maximizing regularization term ☛❄

in (47) and RZF-2 with ☛ ❂ ✶❂✭☞✚✮ i.e. designed based on

perfect CSIT. For comparison we also plot the performance

of the MMSE filter proposed in [11] and the ZF precoder.

We observe that as soon as the error variance ✜✷ dominates

over the noise power ✛✷, the ergodic sum-rate of the RZF-2

filter decreases and approaches ZF precoding for high SNR.

We further notice that the RZF-1 and MMSE filters achieve

similar performance since they are almost identical for small

values of ✜✷. But, since ☛❄ is derived for asymptotically large

✭❑❀▼✮, the performance advantage of the RZF-1 over the

MMSE filter increases with increasing ✭❑❀▼✮.
Figure 2 illustrates the ergodic sum-rate of RZF with the

asymptotic optimal regularization ☛❄ and the true optimal reg-

ularization ☛❖♣t found by exhaustive search for ▼❂❢✷❀ ✹❀ ✽❣.

As expected, we observe that for an increasing number of

transmit antennas ✌❦ approaches ✌✍❦ .

Figure 3 compares our deterministic results to Monte-Carlo

simulations for a correlated channels with unequal user path

loss. We indicate the standard deviation of the simulations by

error bars.

The transmit correlation is assumed to depend only on

distance ❞✐❥ , ✐❀ ❥ ❂ ✶❀ ✷❀ ✿ ✿ ✿ ❀▼ between antennas ✐ and ❥
placed on a uniform circular array (UCA). Thus, ✭✂❚✮✐❥ ❂
❏✵✭✷✙❞✐❥❂✕✮ [18], where ❏✵ is the zero-order Bessel function

of the first kind and ✕ is the signal wavelength. To assure that

❦✂❚❥❦�✶ is bounded we suppose that the distance between

adjacent antennas ❞❂ ❞✐❀✐✰✶ is independent of ▼ , i.e. as ▼
grows the radius of the UCA increases.

Furthermore, we consider a uniform density of users in

a circular cell. We take ❑ samples of the user distribution

which remain constant over all channel realizations. According

to [19] (“Suburban Macro”) ❧❦ ❂ �✭✸✶✿✺ ✰ ✸✺ ❧♦❣✶✵ ❞❦✮ dB,

where ❞❦ is the distance of user ❦ to the transmitter.

From Figure 3 we observe, that the expressions derived for

large ✭❑✿▼✮ lie approximately within one standard deviation

of the simulation results even for finite ✭❑❀▼✮. To avoid the

small divergence of the asymptotic results from the simulation

results for high SNR, ▼ has to be increased.

VII. CONCLUSION

In this paper we derived a deterministic equivalent of the

SINR of RZF precoding in MISO broadcast channels by

applying recent results from random matrix theory. We use the

deterministic equivalent expression of the SINR to compute

the sum-rate maximizing RZF precoder for large ✭❑❀▼✮.
Simulations show that the asymptotic results extend well into

finite regimes.

REFERENCES

[1] H. Weingarten, Y. Steinberg, and S. Shamai, “The Capacity Region of
the Gaussian Multiple-Input Multiple-Output Broadcast Channel,” IEEE

Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, 2006.
[2] G. Caire and S. Shamai, “On the Achievable Throughput of a Multi-

antenna Gaussian Broadcast Channel,” IEEE Trans. Inf. Theory, vol. 49,
no. 7, pp. 1691–1706, 2003.



✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵
✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✚ [dB]

❘
s✉
♠

[b
it

s/
s/

H
z]

RZF-1 with ☛❄

RZF-2 with ☛❄✭✜✷❂✵✮
MMSE Filter

ZF

Fig. 1. Ergodic sum-rate vs. average SNR with ✂❚❂■▼ , ▲❂■❑ , ▼❂✶✵,
☞❂✶, ✜✷❂✵✿✶.

✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵
✵

✷

✹

✻

✽

✶✵

✶✷

✶✹

✶✻

✶✽

▼❂✷

▼❂✹

▼❂✽

✚ [dB]

❘
s✉
♠

[b
it

s/
s/

H
z]

☛❖♣t
☛❄

Fig. 2. Ergodic sum-rate vs. average SNR with ✂❚❂■▼ , ▲❂■❑ , ☞❂✶,
✜✷❂✵✿✶.

[3] C. Peel, B. Hochwald, and A. Swindlehurst, “A Vector-Perturbation
Technique for Near-Capacity Multiantenna Multiuser Communication–
Part I: Channel Inversion and Regularization,” IEEE Trans. Commun.,
vol. 53, no. 1, pp. 195–202, 2005.

[4] M. Joham, K. Kusume, M. Gzara, W. Utschick, and J. Nossek, “Transmit
Wiener Filter for the Downlink of TDD DS-CDMA Systems,” in Proc.

ISSSTA 2002, vol. 1, 2002, pp. 9–13.

[5] H. Viswanathan and S. Venkatesan, “Asymptotics of Sum Rate for Dirty
Paper Coding and Beamforming in Multiple-Antenna Broadcast Chan-
nels,” in Proc. Allerton Conf. Communication, Control, and Computing,
Monticello, Illinois, Oct. 2003, pp. 1064–1073.

[6] R. Couillet, S. Wagner, and M. Debbah, “Asymptotic Analysis of
Linear Precoding Techniques in Correlated Multi-Antenna Broadcast
Channels,” IEEE Trans. Inf. Theory, submitted for publication. [Online].
Available: http://arxiv.org/abs/0906.3682

[7] R. Couillet, M. Debbah, and J. W. Silverstein, “A Deterministic
Equivalent for the Capacity Analysis of Correlated Multi-user MIMO
Channels,” IEEE Trans. Inf. Theory, submitted for publication. [Online].
Available: http://arxiv.org/abs/0906.3667v3

[8] C. Chuah, D. Tse, J. Kahn, and R. Valenzuela, “Capacity Scaling in

✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵
✵

✷✵

✹✵

✻✵

✽✵

✶✵✵

✶✷✵

✶✹✵

✶✻✵

✶✽✵

✷✵✵

❘❧✐♠
s✉♠

✚ [dB]

❘
s✉
♠

[b
it

s/
s/

H
z]

✜✷❂✵✿✵, ✂❚❂■▼ , ▲❂■❑
✜✷❂✵✿✵, UCA ❞ ❂ ✕, ▲

✜✷❂✵✿✶, ✂❚❂■▼ , ▲❂■❑
✜✷❂✵✿✶, UCA ❞ ❂ ✕, ▲

Fig. 3. Ergodic sum-rate vs. average SNR with ▼❂✸✷, ☞❂✶, simulation
results are indicated by circle marks with error bars indicating the standard
deviation.

MIMO Wireless Systems Under Correlated Fading,” IEEE Trans. Inf.

Theory, vol. 48, no. 3, pp. 637–650, 2002.
[9] A. Tulino, A. Lozano, and S. Verdú, “Impact of Antenna Correlation
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