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Asymptotic Analysis of Regularized Zero-Forcing Precoding in MISO Broadcast Channels with Limited Feedback

In this paper we analyse the asymptotic sum-rate of regularized zero-forcing (RZF) precoding in MISO broadcast channels with limited feedback, transmit correlation and pathloss. Our analysis assumes that the ratio of the number of transmit antennas ▼ to the number of users ❑ is bounded as ✭❑❀ ▼ ✮ grow large. By applying recent results from random matrix theory we derive a deterministic equivalent of the SINR and compute the sum-rate maximizing regularization term as well as sum-rate bounds for high SNR. Numerical simulations show that the asymptotic results extend well into finite regimes.

I. INTRODUCTION

It has been shown in [START_REF] Weingarten | The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel[END_REF] that the capacity achieving precoding strategy of the Gaussian MIMO broadcast channel is based on the non-linear dirty-paper coding (DPC) technique. But so far no efficient practical algorithm implementing the optimal DPC scheme has been proposed. Therefore, low complexity linear precoding strategies have gained a lot of attention since they achieve a large portion of the channel capacity [START_REF] Caire | On the Achievable Throughput of a Multiantenna Gaussian Broadcast Channel[END_REF], [START_REF] Peel | A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication-Part I: Channel Inversion and Regularization[END_REF].

The RZF filters have first been analysed in the MU-MIMO context in [START_REF] Peel | A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication-Part I: Channel Inversion and Regularization[END_REF]. It has been observed that the RZF precoding matrix has a similar structure as the transmit Wiener filter derived in [START_REF] Joham | Transmit Wiener Filter for the Downlink of TDD DS-CDMA Systems[END_REF]. Indeed, both transmit filters are equal for asymptotically high ✭❑❀ ▼✮.

In this contribution we consider a system where both ▼ and ❑ grow asymptotically large but their ration ☞ ❂ ▼❂❑ is bounded. In particular we extend the models of [START_REF] Peel | A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication-Part I: Channel Inversion and Regularization[END_REF], [START_REF] Viswanathan | Asymptotics of Sum Rate for Dirty Paper Coding and Beamforming in Multiple-Antenna Broadcast Channels[END_REF], [START_REF] Couillet | Asymptotic Analysis of Linear Precoding Techniques in Correlated Multi-Antenna Broadcast Channels[END_REF] by considering imperfect CSIT, transmit correlation as well as different path-losses of the users. With the aid of recent tools from random matrix theory (RMT), we derive a deterministic equivalent of the signal-to-interference plus noise ratio (SINR) of RZF which is independent of the individual channel realizations.

Notation: In the following boldface lower-case and uppercase characters denote vectors and matrices, respectively. The operators ✭✁✮ ❍ and tr✭✁✮ denote conjugate transpose and the trace, respectively. The expectation is ❊❬✁( and ❞✐❛❣✭①✮ is a diagonal matrix with vector ① on the main diagonal. The ◆✂◆ identity matrix is ■ ◆ . The ❦th column of ❳ is denoted ① ❦ .

II. MATHEMATICAL PRELIMINARIES

Definition 1: Let ❋ be a probability distribution function.

For ③ ✷ ❈ outside the support of ❋ , we define the Stieltjes transform of ❋ as the function

♠ ❋ ✭③✮ ❂ ) ✶ ✕ ③ ❞❋ ✭✕✮ (1) 
In this paper we are interested in the Stieltjes transform ♠ ❇ ❑ of random matrices ❇ ❑ ✷❈ ▼✂▼ of the type

❇ ❑ ❂ | ✶❂✷ ❑ ❳ ❍ ❑ ▲ ❑ ❳ ❑ | ✶❂✷ ❑ ✰ ❆ ❑ (2) 
where | ❑ ✷ ❈ ▼✂▼ and ▲ ❑ ✷ ❈ ❑✂❑ are positive definite Hermitian matrices, ❳ ❑ ✷❈ ❑✂▼ is random with independent and identically distributed (i.i.d.) entries of zero mean and variance ✶❂▼ , and ❆ ❑ is a nonnegative Hermitian matrix, with same eigenspace as | ❑ ; denote then ❛✭✕✮ a function mapping the eigenvalues of | ❑ to those of ❆ ❑ . In our derivations, we will require the following result, Theorem 1: [START_REF] Couillet | A Deterministic Equivalent for the Capacity Analysis of Correlated Multi-user MIMO Channels[END_REF] Under the above model for ❇ ❑ where ▲ ❑ and | ❑ have uniformly bounded spectral norm (w.r.t. ▼), as ✭❑❀ ▼✮ grow large with ratio ☞ ❂ ☞✭▼✮ ✁ ❂ ▼❂❑ such that

✵ ❁•✐♠ ✐♥❢ ▼ ☞✭▼✮✔•✐♠ s✉♣ ▼ ☞✭▼✮❁✶, for ③ ✷❈ ✰ , ♠ ❇ ❑ ✭③✮ ♠ ✍ ❇ ❑ ✭③✮ ▼✦✶ ✦ ✵ (3) almost surely, where ♠ ✍ ❇ ❑ ✭③✮ is defined as ♠ ✍ ❇ ❑ ✭③✮ ❂ ) ✶ ❛✭✕✮ ✰ ✕❝✭③✮ ③ ❞❋ | ❑ ✭✕✮ (4) ✇✐t❤ ❝✭③✮ ❂ ✶ ☞ ) ✗ ✶ ✰ ✗❡ ❑ ✭③✮ ❞❋ ▲ ❑ ✭✗✮ (5)
where ❡ ❑ ✭③✮ ✷❈ ✰ is the unique solution of [START_REF] Couillet | Asymptotic Analysis of Linear Precoding Techniques in Correlated Multi-Antenna Broadcast Channels[END_REF] where ♠ ✍ ❇ ❑ ✭③✮ is referred to as a deterministic equivalent of ♠ ❇ ❑ ✭③✮. 

❡ ❑ ✭③✮ ❂ ) ✕ ❛✭✕✮ ✰ ✕❝✭③✮ ③ ❞❋ | ❑ ✭✕✮

III. SYSTEM MODEL

① ❂ •s (8) 
where s ✘ ❈◆✭✵❀ ■ ❑ ✮ is the symbol vector and • ❂ ❬❣ ✶ ❀ ✿ ✿ ✿ ❀ ❣ ❑ (✷❈ ▼✂❑ is the precoding matrix. The transmitter has a limited amount of transmit power P ❃ ✵, thus we have the constraint

tr✭❊❬①① ❍ (✮ ❂ tr✭•• ❍ ✮ ✔ P (9) 
In this paper we consider regularized channel inversion precoding

• ❂ ♣ ▼✘ ✏ ▼ ⑦ ❍ ❍ ⑦ ❍ ✰ ▼☛■ ▼ ✑ ✶ ⑦ ❍ ❍ (10) ❂ ✘ ♣ ▼ ✏ ⑦ ❍ ❍ ⑦ ❍ ✰ ☛■ ▼ ✑ ✶ ⑦ ❍ ❍ ✁ ❂ ✘ ♣ ▼ ❲ ⑦ ❍ ❍ (11)
where ⑦ ❍ is the estimated channel matrix available at the transmitter and the scaling factor ✘ is set to fulfill the power constraint [START_REF] Tulino | Impact of Antenna Correlation on the Capacity of Multiantenna Channels[END_REF]. The regularization scalar ☛ in [START_REF] Shin | Asymptotic Statistics of Mutual Information for Doubly Correlated MIMO Channels[END_REF] is scaled by ▼ to ensure that, as ✭❑❀ ▼✮ grow large, both tr ⑦ ❍ ❍ ⑦ ❍ and tr▼☛■ ▼ grow with the same order of magnitude. From ( 9) we obtain

✘ ✷ ❂ P ✶ ▼ tr ✔ ⑦ ❍ ❍ ⑦ ❍ ✏ ⑦ ❍ ❍ ⑦ ❍ ✰ ☛■ ▼ ✑ ✷ ✕ ❂ P | ✗ ✭✗✰☛✮ ✷ ❞❋ ⑦ ❍ ❍ ⑦ ❍ ✭✗✮ ✭❛✮ ❂ P ♠ ⑦ ❍ ❍ ⑦ ❍ ✭ ☛✮ ☛♠ ✵ ⑦ ❍ ❍ ⑦ ❍ ✭ ☛✮ ✁ ❂ P ✠✭☛✮ ( 12 
)
where ✭❛✮ follows from (1) and ✭✁✮ ✵ denotes the derivative w.r.t. ③ in ③ ❂ ☛. The received symbol ② ❦ of user ❦ is given by

② ❦ ❂ ✘❤ ❍ ❦ ❲ ⑦ ❤ ❦ s ❦ ✰ ✘ ❑ ❳ ✐❂✶❀✐✻ ❂❦ ❤ ❍ ❦ ❲ ⑦ ❤ ✐ s ✐ ✰ ♥ ❦ (13)
where ❤ ❍ ❦ and ⑦ ❤ ❍ ❦ denote the ❦ t❤ row of ❍ and ⑦ ❍, respectively.

The SINR ✌ ❦ of user ❦ can be written in the form

✌ ❦ ❂ •❤ ❍ ❦ ❲ ⑦ ❤ ❦ • ✷ ❤ ❍ ❦ ❲❯ ❍ ❦ ❯ ❦ ❲❤ ❦ ✰ ✶ ✚ ✠✭☛✮ (14) where ❯ ❍ ❦ ❂ ❬ ⑦ ❤ ✶ ❀ ✿ ✿ ✿ ❀ ⑦ ❤ ❦ ✶ ❀ ⑦ ❤ ❦✰✶ ❀ ✿ ✿ ✿ ❀ ⑦ ❤ ❑ ( ✷ ❈ ▼✂✭❑ ✶✮ and ✚❂P❂✛ ✷ denotes the SNR. The sum-rate | s✉♠ is defined as | s✉♠ ❂ ❑ ❳ ❦❂✶ •♦❣ ✭✶ ✰ ✌ ❦ ✮ ❬♥❛ts❂s❂❍③( (15) 
Under the assumption of a rich scattering environment the correlated channel can be modeled as [START_REF] Chuah | Capacity Scaling in MIMO Wireless Systems Under Correlated Fading[END_REF]- [START_REF] Shin | Asymptotic Statistics of Mutual Information for Doubly Correlated MIMO Channels[END_REF] ❍ ❂ ▲ ✶❂✷ ❍ ✇ ✂ ✶❂✷ ❚ [START_REF] Wagner | Asymptotic Analysis of Linear Precoding in Vector Broadcast Channels with Limited Feedback[END_REF] where ❍ ✇ ✷ ❈ ❑✂▼ has i.i.d. zero-mean entries of variance ✶❂▼, ✂ ❚ ✷ ❈ ▼✂▼ is the nonnegative definite correlation matrix at the transmitter and ▲ ❂ ❞✐❛❣✭❬• ✶ ❀ ✿ ✿ ✿ ❀ • ❑ (✮ is a diagonal matrix containing the user's channel gain. We assume ❦✂ ❚ ❦ ✶ to be uniformly bounded with respect to M. Moreover, we suppose that only ⑦ ❍, an imperfect estimate of the true channel matrix ❍, is available at the transmitter. The channel-gain matrix ▲ as well as the transmit correlation ✂ ❚ can be estimated accurately and are assumed to be perfectly known. We therefore model ⑦ ❍ as

⑦ ❍ ❂ ▲ ✶❂✷ ⑦ ❍ ✇ ✂ ✶❂✷ ❚ (17) ✇✐t❤ ⑦ ❍ ✇ ❂ ♣ ✶ ✜ ✷ ❍ ✇ ✰ ✜◗ (18) 
where ◗ ✷ ❈ ❑✂▼ has i.i.d. zero-mean entries of variance ✶❂▼ which are not necessarily Gaussian distributed. Furthermore we suppose that ❍ ✇ and ◗ are mutually independent as well as independent of the symbol vector s and noise ♥. A similar model for imperfect CSIT has been used in [START_REF] Dabbagh | Multiple antenna MMSE based downlink precoding with quantized feedback or channel mismatch[END_REF]- [START_REF] Hutter | On the Impact of Channel Estimation for Multiple Antenna Diversityreception in Mobile OFDM Systems[END_REF].

IV. DETERMINISTIC EQUIVALENT OF THE SINR

In the following we will derive a deterministic equivalent

✌ ✍ ❦ of the SINR of user ❦, i.e. ✌ ✍ ❦ is such that, almost surely, ✌ ❦ ✌ ✍ ❦ ▼✦✶ ✦ ✵ (19) 
That is, ✌ ✍ ❦ is an approximation of ✌ ❦ independent of the particular realizations of ❍ ✇ and ◗. We will proceed by calculating deterministic equivalent expressions of ✠✭☛✮, the signal power •❤ ❍ ❦ ❲ ⑦ ❤ ❦ • ✷ and the power of the interference ❤ ❍ ❦ ❲❯ ❍ ❦ ❯ ❦ ❲❤ ❦ .

Consider ✠✭☛✮ in [START_REF] Yoo | Capacity and Power Allocation for Fading MIMO Channels with Channel Estimation Error[END_REF], from Theorem 1, with | ❑ ❂ ✂ ❚ and ❆ ❑ ❂✵, we know that, for ❑ large, ♠ ⑦

❍ ❍ ⑦ ❍ ✭ ☛✮ is close to ♠ ✍ ⑦ ❍ ❍ ⑦ ❍ ✭ ☛✮ given by Equation (3). Therefore we have ✠✭☛✮ ✂ ♠ ✍ ⑦ ❍ ❍ ⑦ ❍ ✭ ☛✮ ☛♠ ✍✵ ⑦ ❍ ❍ ⑦ ❍ ✭ ☛✮ ✄ ▼✦✶ ✦ ✵ (20)
The Stieltjes transform is differentiable and ♠ ✍✵ ⑦ ❍ ❍ ⑦ ❍ is well defined.

At this point we need the following results.

Corollary 1: [START_REF] Bai | No Eigenvalues Outside the Support of the Limiting Spectral Distribution of Large Dimensional Sample Covariance Matrices[END_REF] Let ❆ be a deterministic ◆✂◆ complex matrix with uniformly bounded norm. Let ①✷❈ ◆ have i.i.d. complex entries of zero mean and variance ✶❂◆. Then, almost surely,

① ❍ ❆① ✶ ◆ tr❆ ◆✦✶ ✦ ✵ (21)
and for vector ②✷❈ ◆ with standard i.i.d. entries, independent of ①, ② ❍ ❆① ◆✦✶ ✦ ✵

almost surely.

In addition we will make use of the following identity Lemma 1: [15, Lemma 2.2] Let ❆ be an ◆ ✂◆ invertible matrix and ①✷❈ ◆ , ❝ ✷ ❈ for which ❆ ✰ ❝①① ❍ is invertible.

Then ① ❍ ❆ ✰ ❝①① ❍ ✁ ✶ ❂ ① ❍ ❆ ✶ ✶ ✰ ❝① ❍ ❆ ✶ ① (23) 

A. Signal Power

Applying Lemma 1, we have

⑦ ❤ ❍ ❦ ❲❤ ❦ ❂ ⑦ ❤ ❍ ❦ ❯ ❍ ❦ ❯ ❦ ✰ ☛■ ▼ ✁ ✶ ❤ ❦ ✶ ✰ ⑦ ❤ ❍ ❦ ❯ ❍ ❦ ❯ ❦ ✰ ☛■ ▼ ✁ ✶ ⑦ ❤ ❦ (24) Together with ⑦ ❤ ❦ ❂ ♣ ✶ ✜ ✷ ❤ ❦ ✰ ✜ ⑦ q ❦ and ⑦ q ❦ ❂ ♣ • ❦ q ❦ ✂ ✶❂✷ ❚ we obtain ⑦ ❤ ❍ ❦ ❲❤ ❦ ❂ ♣ ✶ ✜ ✷ • ❦ ❤ ❍ ✇❦ ❆ ✶ ❦ ❤ ✇❦ ✶ ✰ • ❦ ⑦ ❤ ❍ ✇❦ ❆ ✶ ❦ ⑦ ❤ ✇❦ ✰ ✜• ❦ q ❍ ❦ ❆ ✶ ❦ ❤ ✇❦ ✶ ✰ • ❦ ⑦ ❤ ❍ ✇❦ ❆ ✶ ❦ ⑦ ❤ ✇❦ with ❱ ❍ ❦ ❂ ❬ ⑦ ❤ ✇✶ ❀ ✿ ✿ ✿ ❀ ⑦ ❤ ✇✭❦ ✶✮ ❀ ⑦ ❤ ✇✭❦✰✶✮ ❀ ✿ ✿ ✿ ❀ ⑦ ❤ ✇❑ (, ▲ ❦ ❂ ❞✐❛❣✭❬• ✶ ❀ ✿ ✿ ✿ ❀ • ❦ ✶ ❀ • ❦✰✶ ✿ ✿ ✿ • ❑ (✮ and ❆ ❦ ❂ ❱ ❍ ❦ ▲ ❦ ❱ ❦ ✰ ☛✂ ✶ ❚ . Since ⑦
❤ ✇❦ and q ❦ have i.i.d. entries of variance ✶❂▼ and are independent of ❆ ❦ we evoke Corollary 1 and obtain

❤ ❍ ✇❦ ❆ ✶ ❦ ❤ ✇❦ ✶ ▼ tr❆ ✶ ❦ ▼✦✶ ✦ ✵ (25) ⑦ ❤ ❍ ✇❦ ❆ ✶ ❦ ⑦ ❤ ✇❦ ✶ ▼ tr❆ ✶ ❦ ▼✦✶ ✦ ✵ (26) q ❍ ❦ ❆ ✶ ❦ ❤ ✇❦ ▼✦✶ ✦ ✵ (27) 
Consequently we have

⑦ ❤ ❍ ❦ ❲❤ ❦ ♣ ✶ ✜ ✷ • ❦ ✶ ▼ tr❆ ✶ ❦ ✶ ✰ • ❦ ✶ ▼ tr❆ ✶ ❦ ▼✦✶ ✦ ✵ (28) 
In [START_REF] Wagner | Asymptotic Analysis of Linear Precoding in Vector Broadcast Channels with Limited Feedback[END_REF] we prove that a rank-1 perturbation has no impact on the trace of ❆ ✶ ❦ for asymptotically large ❑. Therefore, almost surely,

✶ ▼ tr❆ ✶ ❦ ✶ ▼ tr❆ ✶ ▼✦✶ ✦ ✵ (29) 
where

❆❂ ⑦ ❍ ❍ ✇ ▲ ⑦ ❍ ✇ ✰ ☛✂ ✶ ❚ ( 30 
)
Furthermore we can write ✶ ▼ tr❆ ✶ in terms of the Stieltjes transform ♠ ❆ ✭③✮ in ③ ❂ ✵ (which is valid since ❦✂ ✶ ❚ ❦ is bounded away from zero) which, for large ❑ is close to

♠ ✍ ❆ ✭✵✮ ❂ ) ✕ ✕❝✭✵✮ ✰ ☛ ❞❋ ✂❚ ✭✕✮ (31) ✇✐t❤ ❝✭✵✮ ❂ ✶ ☞ ) ✗ ✶ ✰ ✗♠ ✍ ❆ ✭✵✮ ❞❋ ▲ ✭✗✮❞✗ (32) Finally, Equation (28) implies ⑦ ❤ ❍ ❦ ❲❤ ❦ ♣ ✶ ✜ ✷ • ❦ ♠ ✍ ❆ ✶ ✰ • ❦ ♠ ✍ ❆ ▼✦✶ ✦ ✵ (33)

B. Interference Power

After applying Lemma 1 twice, we obtain

❤ ❍ ❦ ❲❯ ❍ ❦ ❯ ❦ ❲❤ ❦ ❂ • ❦ ❤ ❍ ✇❦ ❇ ✶ ❦ ❱ ❍ ❦ ▲ ❦ ❱ ❦ ❇ ✶ ❦ ❤ ✇❦ ✶ ✰ • ❦ ✭✶ ✜ ✷ ✮❤ ❍ ✇❦ ❇ ✶ ❦ ❤ ✇❦ ✁ ✷ (34)
where

❇ ❦ ❂ ❆ ❦ ✰ • ❦ ✜ ✷ q ❦ q ❍ ❦ ✰ • ❦ ✜ ♣ ✶ ✜ ✷ ❤ ✇❦ q ❍ ❦ ✰ • ❦ ✜ ♣ ✶ ✜ ✷ ❤ ❍ ✇❦ q ❦ .
Lemma 2: Let ❆ ✷ ❈ ◆✂◆ of bounded norm. Let ①❀② ✷ ❈ ◆ have i.i.d. complex entries of zero mean and variance ✶❂◆ . Then, for ❝ ✐ ✷❈❀ ✐❂✵❀ ✶❀ ✷ and ✉❂

✶ ◆ tr❆ ✶ ① ❍ ❆ ✰ ❝ ✵ ①① ❍ ✰ ❝ ✶ ②② ❍ ✰ ❝ ✷ ①② ❍ ✰ ❝ ✷ ②① ❍ ✁ ✶ ① ✉✭✶ ✰ ❝ ✶ ✉✮ ✭❝ ✵ ❝ ✶ ❝ ✷ ✷ ✮✉ ✷ ✰ ✭❝ ✵ ✰ ❝ ✶ ✮✉ ✰ ✶ ◆✦✶ ✦ ✵ (35) 
almost surely. The proof can be found in [START_REF] Wagner | Asymptotic Analysis of Linear Precoding in Vector Broadcast Channels with Limited Feedback[END_REF].

Applying Lemma 2, after some algebraic manipulations we obtain

• ❦ ❬♠ ✍ ❆ ✭✵✮ ☛♠ ✍ ❆ ✷ ✂❚ ✭✵✮(❬✶ ✰ • ❦ ✜ ✷ ✭• ❦ ♠ ✍ ❆ ✭✵✮ ✰ ✷✮♠ ✍ ❆ ✭✵✮( ✭✶ ✰ • ❦ ♠ ✍ ❆ ✭✵✮✮ ✷ ❤ ❍ ❦ ❲❯ ❍ ❦ ❯ ❦ ❲❤ ❦ ▼✦✶ ✦ ✵ ( 36 
)
where

♠ ✍ ❆ ✷ ✂❚ ✭✵✮ ❂ ✶ ▼ tr ✏ ✂ ✶❂✹ ❚ ⑦ ❍ ❍ ✇ ▲ ⑦ ❍ ✇ ✂ ✶❂✹ ❚ ✰ ☛✂ ✶❂✷ ❚ ✑ ✷ .
We can express ♠ ✍ ❆ ✷ ✂❚ ✭✵✮ in terms of the derivative of

♠ ✍ ❆✂ ✶❂✷ ❚ ✭✵✮ ♠ ✍ ❆ ✷ ✂❚ ✭✵✮ ❂ ❅♠ ✍ ❆✂ ✶❂✷ ❚ ✭③✮ ❅③ ③❂✵ ❂ ♠ ✍✵ ❆✂ ✶❂✷ ❚ ✭✵✮ (37) 
Applying Theorem 1 to matrix ❆✂ ✶❂✷ ❚ leads to

♠ ✍ ❆✂ ✶❂✷ ❚ ✭✵✮ ❂ ) ✕ ✶❂✷ ✕❝✭✵✮ ✰ ☛ ❞❋ ✂❚ ✭✕✮ (38) ✇✐t❤ ❝✭✵✮ ❂ ✶ ☞ ) ✗ ✶ ✰ ✗❡ ❆✂ ✶❂✷ ❚ ✭✵✮ ❞❋ ▲ ✭✗✮ (39) ❡ ❆✂ ✶❂✷ ❚ ✭✵✮ ❂ ) ✕ ✕❝✭✵✮ ✰ ☛ ❞❋ ✂❚ ✭✕✮ (40)
For the derivatives we obtain

♠ ✍✵ ❆✂ ✶❂✷ ❚ ✭✵✮ ❂ ) ✕ ✕ ✸❂✷ ❝ ✵ ✭✵✮ ✭✕❝✭✵✮ ✰ ☛✮ ✷ ❞❋ ✂❚ ✭✕✮ (41) ❝ ✵ ✭✵✮ ❂ ✶ ☞ ) ✗ ✷ ❡ ✵ ❆✂ ✶❂✷ ❚ ✭✵✮ ✭✶ ✰ ✗❡ ❆✂ ✶❂✷ ❚ ✭✵✮✮ ✷ ❞❋ ▲ ✭✗✮ (42) ❡ ✵ ❆✂ ✶❂✷ ❚ ✭✵✮ ❂ ) ✕ ✸❂✷ ✕ ✷ ❝ ✵ ✭✵✮ ✭✕❝✭✵✮ ✰ ☛✮ ✷ ❞❋ ✂❚ ✭✕✮ (43)
Finally, the deterministic equivalent ✌ ✍ ❦ is given by (44). Note that the computation of (44) requires the solution of only one fixed-point equation [START_REF] Wagner | Asymptotic Analysis of Linear Precoding in Vector Broadcast Channels with Limited Feedback[END_REF].

V. SUM-RATE MAXIMIZING REGULARIZATION

To optimize the achievable sum-rate, ☛ in (44) should be chosen to maximize [START_REF] Silverstein | On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices[END_REF]. We then define ☛ ❄ as

☛ ❄ ❂ ❛r❣ ♠❛① ☛❃✵ ❑ ❳ ❦❂✶ •♦❣ ✭✶ ✰ ✌ ✍ ❦ ✮ (45)
For the general channel model [START_REF] Tulino | Random Matrix Theory and Wireless Communications[END_REF] the optimization in ( 45) is very tedious and no closed-form solution for ☛ ❄ exists.

However, in case of a homogeneous network (▲ ❂ ■ ❑ ) without transmit correlation (✂ ❚ ❂ ■ ▼ ) ☛ ❄ has a closed-from. In

this case ♠ ✍ ❆ ✭✵✮ ❂ ♠ ✍ ❆✂ ✶❂✷ ❚ ❂ ♠ ✍ ⑦ ❍ ❍ ✇ ⑦ ❍✇ ✭ ☛✮ is the Stieltjes ✌ ✍ ❦ ❂ • ✷ ❦ ✭✶ ✜ ✷ ✮ ✭♠ ✍ ❆ ✭✵✮✮ ✷ • ❦ ✔ ♠ ✍ ❆ ✭✵✮ ☛♠ ✍✵ ❆✂ ✶❂✷ ❚ ✭✵✮ ✕ ❬✶ ✰ • ❦ ✜ ✷ ✭• ❦ ♠ ✍ ❆ ✭✵✮ ✰ ✷✮♠ ✍ ❆ ✭✵✮( ✰ ✶ ✚ ✭✶ ✰ • ❦ ♠ ✍ ❆ ✭✵✮✮ ✷ ✠✭☛✮ (44) 
transform of the Marcenko-Pastur law and has the unique solution given by [START_REF] Tulino | Random Matrix Theory and Wireless Communications[END_REF] ♠

✍ ⑦ ❍ ❍ ✇ ⑦ ❍✇ ✭ ☛✮ ❂ ☞✭✶ ☛✮ ✶ ✰ ❞✭☛❀ ☞✮ ✷☛☞ with ❞✭☛❀ ☞✮ ❂ ♣ ☞ ✷ ☛ ✷ ✰ ✷☛☞✭✶ ✰ ☞✮ ✰ ✭✶ ☞✮ ✷ (46)
Substituting ( 46) into (44) and setting the derivative w.r.t. ☛ to zero, we obtain

☛ ❄ ❂ ✒ ✶ ✰ ✜ ✷ ✚ ✶ ✜ ✷ ✓ ✶ ☞✚ (47) 
For this ☛ ❄ , ✌ ✍ ❦ in (44) takes the surprisingly simple form

✌ ✍ ❦ ❂ ♠ ✍ ⑦ ❍ ❍ ✇ ⑦ ❍✇ ✭ ☛ ❄ ✮ ❂ ☞✭✶ ☛ ❄ ✮ ✶ ✰ ❞✭☛ ❄ ❀ ☞✮ ✷☛ ❄ ☞ (48) 
The sum-rate saturation level at high SNR is

| •✐♠ s✉♠ ❂ •✐♠ ✚✦✶ ❑ •♦❣✭✶ ✰ ✌ ✍ ✮ ❂ ❑ •♦❣ ✒ ✶ ✶ ✰ ☞✭✜ ✷ ✶✮ ✰ ❞✭☞❀ ✜✮ ✷✜ ✷ ✓ (49) with ❞✭☞❀ ✜✮ ❂ ♣ ☞ ✷ ✜ ✷ ✰ ☞✜ ✷ ✭✶ ✜ ✷ ✮✭✹ ☞✮ ✰ ✭☞ ✶✮ ✷
Let's assume that the parameters involved in (47) are mutually independent and look at their asymptotic values.

First, notice that for perfect CSIT (✜ ❂ ✵) we have ☛ ❄ ❂ ✶❂✭☞✚✮ which corresponds to the result derived in [START_REF] Peel | A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication-Part I: Channel Inversion and Regularization[END_REF]. As mentioned in [START_REF] Peel | A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication-Part I: Channel Inversion and Regularization[END_REF], for large ✭❑❀ ▼✮ the RZF precoder is equal to the MMSE precoder in [START_REF] Joham | Transmit Wiener Filter for the Downlink of TDD DS-CDMA Systems[END_REF], [START_REF] Dabbagh | Multiple antenna MMSE based downlink precoding with quantized feedback or channel mismatch[END_REF].

In contrast, for ✜ ❃✵ the RZF transmit filter and the MMSE transmit filter are not identical anymore, even in the large ❑ limit. Moreover, for asymptotically high SNR, (47) becomes

•✐♠ ✚✦✶ ☛ ❄ ❂ ✜ ✷ ✶ ✜ ✷ ✶ ☞ (50) 
Thus, for ✚✦✶, RZF has a finite sum-rate limit. That means, as soon as there are errors in the CSIT a sum-rate saturation effect occurs and the system becomes interference-limited. An open question is to determine how the distortion ✜ ✷ has to scale in order to assure that the system sum-rate does not saturate at high SNR.

VI. NUMERICAL RESULTS

In our simulations all results are averaged over 10,000 independent channel realizations. Additional results can be found in [START_REF] Wagner | Asymptotic Analysis of Linear Precoding in Vector Broadcast Channels with Limited Feedback[END_REF].

Figure 1 shows the ergodic sum-rate two different precoder, RZF-1 using the sum-rate maximizing regularization term ☛ ❄ in (47) and RZF-2 with ☛ ❂ ✶❂✭☞✚✮ i.e. designed based on perfect CSIT. For comparison we also plot the performance of the MMSE filter proposed in [START_REF] Dabbagh | Multiple antenna MMSE based downlink precoding with quantized feedback or channel mismatch[END_REF] and the ZF precoder.

We observe that as soon as the error variance ✜ ✷ dominates over the noise power ✛ ✷ , the ergodic sum-rate of the RZF-2 filter decreases and approaches ZF precoding for high SNR.

We further notice that the RZF-1 and MMSE filters achieve similar performance since they are almost identical for small values of ✜ ✷ . But, since ☛ ❄ is derived for asymptotically large ✭❑❀ ▼✮, the performance advantage of the RZF-1 over the MMSE filter increases with increasing ✭❑❀ ▼✮.

Figure 2 illustrates the ergodic sum-rate of RZF with the asymptotic optimal regularization ☛ ❄ and the true optimal reg- ularization ☛ ❖♣t found by exhaustive search for ▼ ❂❢✷❀ ✹❀ ✽❣.

As expected, we observe that for an increasing number of transmit antennas ✌ ❦ approaches ✌ ✍ ❦ . Figure 3 compares our deterministic results to Monte-Carlo simulations for a correlated channels with unequal user path loss. We indicate the standard deviation of the simulations by error bars.

The transmit correlation is assumed to depend only on distance ❞ ✐• , ✐❀ • ❂ ✶❀ ✷❀ ✿ ✿ ✿ ❀ ▼ between antennas ✐ and • placed on a uniform circular array (UCA). Thus, ✭✂ ❚ ✮ ✐• ❂ ❏ ✵ ✭✷✙❞ ✐• ❂✕✮ [START_REF] Jakes | Microwave Mobile Communications[END_REF], where ❏ ✵ is the zero-order Bessel function of the first kind and ✕ is the signal wavelength. To assure that ❦✂ ❚ •❦ ✶ is bounded we suppose that the distance between adjacent antennas ❞ ❂ ❞ ✐❀✐✰✶ is independent of ▼, i.e. as ▼ grows the radius of the UCA increases. Furthermore, we consider a uniform density of users in a circular cell. We take ❑ samples of the user distribution which remain constant over all channel realizations. According to [START_REF] Huang | TR 25.996 Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations[END_REF] ("Suburban Macro")

• ❦ ❂ ✭✸✶✿✺ ✰ ✸✺ •♦❣ ✶✵ ❞ ❦ ✮ dB,
where ❞ ❦ is the distance of user ❦ to the transmitter.

From Figure 3 we observe, that the expressions derived for large ✭❑✿▼✮ lie approximately within one standard deviation of the simulation results even for finite ✭❑❀ ▼✮. To avoid the small divergence of the asymptotic results from the simulation results for high SNR, ▼ has to be increased.

VII. CONCLUSION

In this paper we derived a deterministic equivalent of the SINR of RZF precoding in MISO broadcast channels by applying recent results from random matrix theory. We use the deterministic equivalent expression of the SINR to compute the sum-rate maximizing RZF precoder for large ✭❑❀ ▼✮.

Simulations show that the asymptotic results extend well into finite regimes. 
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